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Abstract: In this paper, we report the experimental results obtained in slag waste processing by
direct current arc discharge initiated in ambient air. The method does not employ vacuum and gas
equipment, therefore increasing the energy efficiency of processing. Plasma processing of coal slag
was performed at different arc exposure times: 5, 10, 15, 20, and 25 s. The obtained materials contained
a significant amount of graphite, which was removed through combustion. The micropowder based
on silicon carbide and aluminum nitride was obtained and then sintered by spark plasma. The bulk
ceramic samples based on silicon carbide with the hardness of ~10.4 GPa were finally fabricated.
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1. Introduction

The amount of waste generated during the combustion of coal, particularly ash and
slag, is increasing due to non-stop operation of coal-fired thermal and power plants around
the world [1]. Green energy technologies are actively developed, yet their energy contri-
bution in the energy balance is still insignificant to compete with coal and coal chemistry
technologies. Thus, the imperfection of coal and coal chemistry technologies and the ash
and slag waste they produce cause severe environmental problems. The main components
of natural coal ash include silica (up to ~61%), alumina (up to ~22%), and iron oxide (up to
~7%), which make up to ~90% of its volume. The remaining components are calcium (Ca),
magnesium (Mg), sodium (Na), potassium (K), and sulfur (S) [2]. In addition to these, ash
and slag often contain potentially toxic trace elements such as Hg, As, Cr, Ni, V, Se, and
Cd [3,4]. Therefore, ash and slag waste should be treated as both a hazardous type of waste
and a potential source of raw material for manufacturing high-demand products.

A number of currently used technologies employ ash and slag waste for the production
of building materials, various structural materials, and adsorbents; less developed methods
use ash and slag waste to produce geopolymers and aerogels, extract rare earth metals from
ash, and manufacture catalysts [5]. It is also believed that ash and slag waste utilization
can bring some metals (molybdenum, cobalt, and others) back to the production cycle in an
amount comparable to the production volumes [6].

One of the approaches to ash and slag waste processing is the use of plasma to
achieve the melting temperature of ash or to reduce metal and non-metal oxides in its
composition. The main advantage of plasma methods is a wide range of temperatures
(up to 5000–10,000 K) and heating rates up to 106 K/s [7]. Materials processed using
plasma methods are being used for the production of building materials [8,9] and hard
ceramics [10], for the synthesis of zeolites with a high cation exchange capacity [11], and
for other applications.

However, plasma methods for waste processing are not yet sufficiently developed to be
widely used [12]. One of the main drawbacks is the consumption of a significant amount of
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electrical energy for waste processing [13], which inevitably creates waste at least during the
extraction, enrichment, and processing of fuel. An important area of science and technology
in the field of waste processing is related to the simplification of plasma methods, devices,
and technological chains through atmospheric pressure processes [14] and the use of cheap
materials as electrodes, such as natural coal or graphite [15]. An essential issue of recycling
is obtaining useful ultrafine powder materials through processing [16], which implies the
isolation of individual crystalline phases, particles of a given chemical composition and/or
size, and separation of magnetic and non-magnetic fractions [17,18]. Thus, development
of ash processing technology that employs simple equipment and consumes minimum
energy to produce useful materials is of current relevance.

This paper presents the experimental results obtained during the development of
an electric arc method for processing slag waste produced through the gasification of
natural D-grade coal [19]. A feature of the process is its implementation in a self-shielding
autonomous gaseous medium, which simplifies processing since the process does not
require reactor pressurization, a vacuum pump, and the entire vacuum module. After
a series of experiments, hard ceramics based on silicon carbide and aluminum nitride
were fabricated.

The novelty of this study lies in the fact that for the first time, on a non-vacuum electric
arc installation, slag waste was utilized to obtain ceramics based on silicon carbide.

2. Materials and Methods

Coal slag formed during gasification of D-grade coal was taken as the raw material [19].
The slag was crushed mechanically and then sifted through a sieve (60 µm). The resulting
powder was subjected to magnetic separation to separate the slag into predominantly
magnetic and non-magnetic components. The proportion of the ferromagnetic component
depends on the operation mode of the coal gasifier. Published data show that silicate-type
ash exhibits the highest content of magnetic iron compounds (about 10%), ash with a high
aluminum content has a lower content, and calcium-rich ash contains the least amount
of magnetic iron compounds [20]. The main components of the magnetic fraction of ash
and slag waste are magnetite and hematite [21,22]. In this study, plasma processing of
slag was performed to obtain a silicon carbide-based material; in this regard, the magnetic
component must be removed from the raw material, and it requires a specific processing
technology. During magnetic separation, slag was separated into powders mainly contain-
ing a ferromagnetic component and those virtually free of it. Typical XRD patterns of the
initial slag and that with the magnetic fraction removed are presented in the Supplementary
Materials (Figure S1). The XRD analysis showed that the initial slag and that purified from
ferromagnetic fractions contain oxide crystalline phases AlxSiyOz, SiO2, and Fe3O4. In
this case, the XRD pattern of the material obtained after magnetic separation showed a
decreased relative intensity of the Fe3O4 diffraction maxima.

The slag micropowder purified from the magnetic fraction was mixed with carbon
micropowder in a mass ratio of 2:1 using a Sample Spex Prep MixerMill8000M ball mill
(SPEX, Costa Mesa, CA, USA). The resulting mixture was used as a raw material for
plasma processing.

A series of experiments on processing of coal slag were performed using an experi-
mental set-up, which was previously described in [23]. A 0.5 g (±0.001 g) sample of the
raw material was placed on the crucible bottom, where it was exposed to DC arc discharge
plasma at different exposure times from 3 to 25 s. The experimental technique and the
set-up itself are described in more detail in the Supplementary Materials.

The samples were analyzed by X-ray diffractometry using a Shimadzu XRD 7000s
X-ray diffractometer (Shimadzu, Kyoto, Japan). Qualitative analysis was performed using
the ICCD PDF4+ database. Quantitative analysis was carried out by the Rietveld method.

The morphology of microsized particles of the raw material and that of the fabricated
materials were analyzed using a scanning electron microscope (SEM, Vega SBU3, Tescan,
Brno, Czech Republic) supplied with an energy dispersive attachment. Quantitative
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analysis data on the content of the main elements by the EDX method are shown in the
results section in the form of a donut chart with average values for a series of measurements
with a standard deviation.

Thermal analysis was carried out using a Netzsch STA 449 Jupiter analyzer (Netzsch,
Selb, Germany) in an oxidizing medium. All the experiments were performed at a heating
rate of 10 ◦C/min in a corundum crucible with a perforated lid in the temperature range
of 50–1200 ◦C at atmospheric pressure. A sample weighing ~10 mg was placed in a
mixture of air (150 mL/min) and argon (20 mL/min). According to the TG data, the
determined characteristic parameters of the process were as follows: the initial temperature
(Ti) and the final temperature (Tf) of intense oxidation; the maximum rate of the oxidation
reaction (wmax) at the corresponding temperature (Tmax); sample heating time before active
oxidation (τe); total active oxidation time (τf).

Most of the micropowder samples were exposed to high temperatures in an oxidizing
medium in an EKPS-10 muffle furnace (Lab-Term, Novosibirsk, Russia) for 1 h at 700 ◦C
(2.8 kW electric heaters) to remove free carbon.

Consolidation of the resulting micropowder was performed by spark plasma sintering
(SPS 10-4 Advanced Technologies, Newport News, VI, USA). No less than 1 g of the
micropowder fabricated and purified from free carbon was loaded into graphite dies with
graphite punches. The sample was sintered by heating to 1800 ◦C at a heating rate of
100 ◦C/min in vacuum at a pressure of 60 MPa and holding time of 10 min. The operating
parameters of the process were taken with regard to the known literature data on the
consolidation of silicon carbide-based micropowders [24].

The obtained ceramic samples were ground and polished to study the surface mi-
crostructure. Grinding and polishing were performed using a Forcipol 1 V grinding and
polishing machine (diamond grinding discs: 54, 18, 6, 3 µm and polishing cloths: 6, 3, 1,
0.25 µm with diamond suspensions).

To calculate the relative density of ceramic samples, the theoretical density of ceramic
samples was calculated taking into account the indicated features of the composition and
the experimental density.

Hardness of the samples was measured by the Vickers method (Galileo Isoscan HV2
OD, load 1 kg).

3. Results and Discussions

Figure 1 shows XRD patterns of the initial sample (00 s indicates 0 s plasma exposure
time) and micropowders processed at different exposure times from 3 to 25 s (03 s–25 s).
This time range to maintain the arc discharge corresponds to the amount of supplied energy
up to 139 kJ at an average power of 4.0–4.5 kW. This is within the specific energy of electric
arc processing of waste in a series of experiments equal to 139 kJ/g (by weight of the
raw material).

As is known, the main components of ash and slag waste (raw material) are silicon
dioxide (up to ~33.7%) and mullite (up to ~4.7%) with different carbon content (up to
~61.6%) [25]. The obtained experimental data are in line with the known literature data [26].

The diffraction patterns of the samples synthesized via the DC arc discharge method
showed the following main phases: two phases of C (graphite), SiC (hexagonal), SiC (cubic),
and probably AlN (hexagonal) due to the superimposition of a number of diffraction max-
ima. Quantitative analysis of the studied samples is indicated in the in the Supplementary
Materials (Table S1). In a sample of 25 s, a decrease in the graphite phase can be observed
compared to the rest of the samples; this is explained by the fact that with a duration of
synthesis of 25 s, a lot of powder based on silicon carbide and graphite sinter are formed in
the crucible, which was removed mechanically. The two carbon phases are formed due to
electrical erosion of the anode with mass transfer from the anode to the cathode [27] and
the presence of residual carbon in the raw material. The absence of mullite peaks (AlxSiyOz)
and the reduced amount of quartz SiO2 indicate their consumption during the formation of
SiC [26,27] and AlN [28] phases via carbothermal reduction. The data reported in [29–31]
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confirm the formation of silicon carbide phases by electric arc processing in air. In addition,
the XRD pattern shows low-intensity traces of crystalline phases of hexagonal aluminum
nitride. Superimposition of the main diffraction maxima of aluminum nitride and the
maxima of silicon carbide complicates accurate phase identification by X-ray diffractometry.
Yet, in addition to silicon carbide, aluminum nitride can be formed during electric arc
processing of ash and slag waste [32].
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Figure 1. XRD patterns of the initial micropowder (00 s) and that processed by DC arc discharge
plasma at different times: 3, 10, 15, 20, 25 s.

Silicon carbide and aluminum nitride can be formed according to the known reaction
equations.

SiO2 (s) + 3C (s) = SiC (s) + 2CO (g) (1)

Al2O3 + 3C + N2→2AlN + 3CO (2)

The main carbide phase is cubic silicon carbide with lattice parameters a = 4.3562 Å± 0.0002
(estimated in a series of experiments). A hexagonal phase of silicon carbide with lattice parameters
a = 3.0802 Å± 0.0201 Å and c = 15.1434 Å± 0.0044 Å can be identified as well. Within the limits
of possible errors, these values of the lattice parameters are in good agreement with those of the
reference phases no. 00-900-8856 and no. 00-154-1661 from the ICCD PDF4+ database and with
the data published in [33]. The presence of two silicon carbide phases in the products of electric
arc synthesis of silicon carbide is expected due to the results reported in [32].

According to the XRD results, the reduction of oxide phases in slag waste occurred
during arc discharge burning. In this case, all the synthesized products are contaminated
with the graphite phase, which is due to the use of graphite electrodes and electroerosion
processes [27,34]. The study then evaluated the feasibility of synthesized products purifi-
cation from free carbon via powder combustion in an atmospheric furnace. Differential
thermal analysis was carried out to estimate the characteristic temperature intervals.

Experimental TG, DTG, and DSC curves for oxidation of the test samples are presented
in Figure 2. Experimental data of the TG analysis show that an exothermic process begins at
about 600 ◦C, ends at 900 ◦C, and is accompanied by weight loss. The greatest weight loss
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can be observed in samples processed for 20–25 s, where it amounts to ~60%. The weight
loss for both 10 s and 15 s samples is ~40–45%. The smallest weight loss is observed for the
sample at 25 s, since the graphite sinter was removed mechanically; this is confirmed by
X-ray diffractometry in Figure 1. The initial sample (00 s) does not exhibit a pronounced
exothermic weight loss, which can be explained by a different proportion of graphite in the
materials (the initial slag does not contain graphite, the proportion of graphite is higher in
the samples with a longer exposure time).

Materials 2022, 15, x FOR PEER REVIEW 5 of 11 
 

 

agreement with those of the reference phases no. 00-900-8856 and no. 00-154-1661 from 
the ICCD PDF4+ database and with the data published in [33]. The presence of two silicon 
carbide phases in the products of electric arc synthesis of silicon carbide is expected due 
to the results reported in [32]. 

According to the XRD results, the reduction of oxide phases in slag waste occurred 
during arc discharge burning. In this case, all the synthesized products are contaminated 
with the graphite phase, which is due to the use of graphite electrodes and electroerosion 
processes [27,34]. The study then evaluated the feasibility of synthesized products purifi-
cation from free carbon via powder combustion in an atmospheric furnace. Differential 
thermal analysis was carried out to estimate the characteristic temperature intervals. 

Experimental TG, DTG, and DSC curves for oxidation of the test samples are pre-
sented in Figure 2. Experimental data of the TG analysis show that an exothermic process 
begins at about 600 °C, ends at 900 °C, and is accompanied by weight loss. The greatest 
weight loss can be observed in samples processed for 20–25 s, where it amounts to ~60%. 
The weight loss for both 10 s and 15 s samples is ~40–45%. The smallest weight loss is 
observed for the sample at 25 s, since the graphite sinter was removed mechanically; this 
is confirmed by X-ray diffractometry in Figure 1. The initial sample (00 s) does not exhibit 
a pronounced exothermic weight loss, which can be explained by a different proportion 
of graphite in the materials (the initial slag does not contain graphite, the proportion of 
graphite is higher in the samples with a longer exposure time). 

 
Figure 2. TG (a), DTG (b), and DSC (c) curves for oxidation of the initial ash and that processed in 
the air–argon mixture at a heating rate of 10 °C/min in the temperature range of 25–1000 °C. 

The temperature of the intense oxidation onset is different for each sample. For 
plasma-processed samples (10–20 s), the Ti values were significantly higher and varied in 
the range of 268–413 °C (Table 1). 

Table 1. Parameters of the test sample oxidation. 

Parameter 00 s 10 s 15 s 20 s 25 s 
Initial temperature of intense oxidation, Ti, °С 263 268 320 395 322 
Final temperature of intense oxidation, Tf, °C 848 883 923 898 926 

Maximum reaction rate, wmax, wt %/min 0.24 2.00 2.02 3.05 1.42 
Temperature of the maximum reaction rate, Tmax, °C 315 775 825 810 793 

Time of attaining the maximum reaction rate, Ƭmax, min 26.5 75.5 77.5 76.0 74.5 
Time of sample heating before active oxidation, Ƭe, min 21.0 21.5 26.5 34.0 27.0 

Total time of active oxidation, τf, min 58.5 61.5 60.3 50.3 60.4 
Area of the DSC curve 360.8 9085 7208 11232 5470 

Similar to the Ti parameter, the Tf (Table 1) varied for all samples, except for the 20 s 
sample, which exhibited the maximum value of 898 °C. 

The DTG data (Figure 2b) showed a monomodal peak in the temperature range of 
500–950 °C for the initial sample oxidation. The 15 s sample did not show monomodal 
peaks. The oxidation of the 20 s sample was characterized by a maximum reaction rate 

Figure 2. TG (a), DTG (b), and DSC (c) curves for oxidation of the initial ash and that processed in
the air–argon mixture at a heating rate of 10 ◦C/min in the temperature range of 25–1000 ◦C.

The temperature of the intense oxidation onset is different for each sample. For plasma-
processed samples (10–20 s), the Ti values were significantly higher and varied in the range
of 268–413 ◦C (Table 1).

Table 1. Parameters of the test sample oxidation.

Parameter 00 s 10 s 15 s 20 s 25 s

Initial temperature of intense oxidation, Ti, ◦C 263 268 320 395 322
Final temperature of intense oxidation, Tf, ◦C 848 883 923 898 926

Maximum reaction rate, wmax, wt %/min 0.24 2.00 2.02 3.05 1.42
Temperature of the maximum reaction rate, Tmax, ◦C 315 775 825 810 793

Time of attaining the maximum reaction rate, Tmax, min 26.5 75.5 77.5 76.0 74.5
Time of sample heating before active oxidation, Te, min 21.0 21.5 26.5 34.0 27.0

Total time of active oxidation, τf, min 58.5 61.5 60.3 50.3 60.4
Area of the DSC curve 360.8 9085 7208 11232 5470

Similar to the Ti parameter, the Tf (Table 1) varied for all samples, except for the 20 s
sample, which exhibited the maximum value of 898 ◦C.

The DTG data (Figure 2b) showed a monomodal peak in the temperature range of
500–950 ◦C for the initial sample oxidation. The 15 s sample did not show monomodal
peaks. The oxidation of the 20 s sample was characterized by a maximum reaction rate
wmax, which amounted to 2.02 wt %/min (Table 1). For other samples, the average value of
this parameter was 1.81 wt %/min.

The DSC analysis shows (Figure 2c) that the synthesized samples undergo an exother-
mic process at 600–850 ◦C. For example, the greatest heat release was observed in the
20 s sample at 825 ◦C, which correlates with the operation mode of the arc reactor (more
eroded graphite enters the synthesized product at a longer exposure time). After plasma
processing, the calculated value of the integrand area of the DSC curves was observed to
increase at increased carbon plasma exposure time (Table 1) [33].

The DTA data revealed characteristic temperatures suitable for purification of the
synthesized products from excess uncombined carbon through its combustion. Silicon
carbide-based micropowders were purified from excess carbon through the material com-
bustion in an atmospheric furnace. With regard to the thermal analysis data and literature
data, the heating mode was chosen to be 1 h exposure at 700 ◦C.

XRD patterns of the synthesized micropowders purified from carbon confirm the
formation of cubic and hexagonal phases of silicon carbide (Figure 3). Quantitative data
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for these samples are indicated in the Supplementary Materials (Table S2). In addition,
graphite and quartz peaks can be identified. The presence of graphite is probably due to
unburned residual graphite in the volume of particle agglomerates.
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Figure 3. XRD patterns of the synthesized products purified from excess carbon and obtained at
different times.

The presence of separate weak traces of quartz can be due to incomplete electric arc
processing of the initial powders; in addition, surface oxidation of silicon carbide can occur
during purification from graphite [27].

Figure 4a presents the results of scanning electron microscopy and energy dispersive
analysis of the initial slag sample. The scanning electron microscopy of the initial sample
revealed the presence of irregularly shaped crystalline particles. The spectra of the initial
sample showed a significant amount of oxygen, silicon, carbon, aluminum, and a small
amount of calcium, iron, sodium, magnesium, and some other elements with a content close
to zero, which is characteristic of ash and slag waste samples [35], since ash and slag waste
are inhomogeneous and vary in composition depending on the coal origin. Nevertheless,
the literature data report the characteristic features of the qualitative composition of slag.
Oxygen, aluminum, and silicon are the main components of ash. Slag also contains carbon,
sodium, phosphorus, sulfur, potassium, calcium, titanium, iron, and some other elements in
fractions of a percent [35,36]. Analysis of the data obtained in a series of EDX measurements
of the chemical composition of the initial slag is shown in Figure 4a. The figure presents
quantitative data on the content of the main elements, such as O, Al, Si, Ca, and Fe, in the
form of a donut chart with averaged values for a series of measurements with a standard
deviation. Na, Mg, P, S, and K were also identified in the material. The content of Ti, Mn,
and Cu was negligible (not more than 1 wt %).
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For the 25 s sample (Figure 4b), the SEM data revealed the presence of solid particles
in the form of irregularly shaped crystalline particles.

Analysis of the energy dispersive spectra of plasma-processed samples revealed a
significant amount of carbon, silicon, and oxygen and a small amount of aluminum, calcium,
iron, and some other elements with a content close to zero. For the samples processed at the
highest energy and purified from free carbon (Figure 4c), the SEM data revealed irregularly
shaped ash particle agglomerates with sizes of up to several hundred micrometers. The
energy dispersive spectra of these samples showed an increased amount of silicon and a
decreased amount of carbon, which correlate with the XRD data; in this case, the fraction
of oxygen averaged over a series of measurements decreases, and in a series, it can vary
locally from 0% to 50%.

After a series of experiments performed based on the above data, the electric arc
processing mode (current strength 220 A, arc duration 25 s) was chosen for the production
of the raw material for subsequent studies, and it was purified from excess carbon. Figure 5
shows the XRD pattern of the sample accumulated for subsequent sintering. According
to the XRD data, the sample contains hexagonal and cubic phases of silicon carbide, a
hexagonal phase of aluminum nitride, and traces of carbon.
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The resulting material was sintered by spark plasma without sintering additives. For
comparison, commercial silicon carbide micropowder was sintered under similar conditions
without and with sintering additives (aluminum, boron, carbon). Table 2 summarizes the
main sintering parameters and results. The experimental technique and the setup itself are
described in more detail in the Supplementary Materials (Figure S2).

Table 2. Sintering parameters and results for commercial silicon carbide and for that obtained through
slag plasma utilization.

Sample
Sintering Parameters

ρ,
g/cm3 ρ, %ρth H, GPa

T, ◦C P, MPa ∆T/∆t,
K/min ∆t, min

SiC (TSPROF F230, Russia) (from commercial
raw materials, the current work)

1800 60 100 10
2.25 70.0 2.2 ± 0.6

SiC (from slag, the current work) 3.04 95.2 10.3 ± 0.4
SiC + Al (4%) + B (2%) + C (2%) [25] 3.03 95.3 23.3 ± 0.3

SiC [37] 1800 40 373 5 - 87.2 10.2
SiC [38] 1860 50 423 5 - 98.5 28.5
SiC [39] 1850 75 373 10 2.58 80.0 -

SiC–B4C +Al (8%) [40] 1800 40 - - - - 26.20

According to the XRD analysis (Figure 6a), the resulting material contains up to
~49.6 vol % of cubic silicon carbide, up to ~31.6 vol % of hexagonal silicon carbide, up to
~18.8 vol % of graphite, and peaks of aluminum nitride (Figure 6a). It should be noted that
traces of silicon and iron oxides can be seen in the XRD pattern and SEM images of the
obtained materials based on silicon carbide (Figure 6b).
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EDS analysis (b).

It should be noted that the relative density of the resulting material was 94.7%, which
is significantly higher than that of the sample sintered from commercial silicon carbide
without sintering additives (with similar parameters), and it was close to the density of the
sample sintered from commercial silicon carbide with sintering additives (Table 2). At the
same time, the sample obtained from waste contains impurities of various metals, which
overestimate the calculated density. Averaged hardness measurements showed that the
hardness of the sample obtained from waste is lower than that of samples sintered from
commercial silicon carbide both with and without sintering additives. The hardness of
the material obtained from waste is 25% lower than that of commercial silicon carbide
micropowder sintered under similar conditions. Thus, the quality of the resulting ceramic
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is apparently lower than that of the ceramic obtained from commercial raw materials;
however, the obtained material is of great value due to its production via waste processing
using a simple technique but not due to its high quality.

4. Conclusions

This paper presents the results of slag waste processing by DC arc discharge plasma.
During processing, silicon carbide-based micropowder was obtained. The resulting mi-
cropowder contained free carbon, which was subsequently removed via the micropowder
combustion in an atmospheric furnace at 700 ◦C for 1 h. In a series of experiments, a
plasma processing mode (200 A, 25 s) was chosen to produce raw materials for subsequent
sintering. As a result of spark plasma sintering of the synthesized material, bulk ceramic
samples based on silicon carbide were obtained with the hardness of 10.3 ± 0.4 GPa, which
is lower compared to that of commercial silicon carbide. The experimental data showed
that slag waste utilization via the DC arc discharge plasma method can be employed to
obtain silicon carbide-based micropowders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15228134/s1, Figure S1. Typical X-ray diffraction patterns:
initial coal slag and slag after magnetic separation. Figure S2. The sintering process for commercial
silicon carbide. Table S1: Quantitative XRD data of the initial micropowder (00 s) and that processed
by DC arc discharge plasma at different times: 3, 10, 15, 20, 25 s. Table S2: Quantitative XRD data of
the synthesized products purified from excess carbon and obtained at different times.
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