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Highlights:
What are the main findings?

• A new heat reflective coating material for asphalt pavement was obtained.
• The inorganic filler with lipophilicity after surface modification was obtained.
• A double coating structure with better cooling effect is obtained.
• A heat reflective coating with excellent road performance was obtained.

What is the implication of the main finding?

• Compared with the traditional heat reflection coating, it has better physical and chemical properties
and lower cost.

• Make the inorganic filler better dispersed in the matrix.
• The higher the temperature, the better the cooling effect of the coating.
• After the heat-reflective coating is laid, its skid resistance, wear resistance and impermeability

meet the requirements of the specification, and the performance is improved.

Abstract: This paper aims to study the applicability of an epoxy resin modification to improve its
anti-aging properties, which are conducive to road performance. To achieve this goal, a wide range
of laboratory activities were conducted, including an emulsion mixed with epoxy resin and liquid
phenolic resin as the coating substrate; surface-modified titanium dioxide, silica, hollow glass beads
and sericite powder as functional fillers; then adding pigments and various additives to prepare a
new asphalt pavement heat-reflective coating. Secondly, the optimum brushing amount of the coating
was obtained, and the cooling effect was clarified. Finally, the road performance was evaluated
by testing the coating’s skid resistance, wear resistance and impermeability. The results show that
the skid resistance, abrasion resistance and impermeability of the heat reflection coating meet the
specification requirements.

Keywords: asphalt pavement; thermal reflection coating; filler modification; cooling performance

1. Introduction

Given the excellent smoothness and driving comfort of asphalt pavement and its short
construction time, less driving noise and dust, and simple and fast repair and maintenance,
it occupies nearly 90% of the total mileage of high-grade highways [1]. However, asphalt
pavement also has the characteristics of easy heat absorption. High temperatures will
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cause the adhesion force between the binder of asphalt pavement and mineral aggregate
to decrease, the fluidity to increase, the creep property to increase, and the dynamic
stability to decrease [2]. Under heavy and repeated loads, the shear stress and shear
flow in the layer will be generated, resulting in the deformation of the pavement. In
addition, the accumulation of deformation caused by road traffic channelization will
produce damage, such as rutting and congestion [2,3]. The thermal reflective coating can
reduce the road surface temperature by increasing the road surface reflectivity, namely
reducing the absorbed radiation energy [4]. It can radiate the energy radiated to its surface
through the window with a wavelength range of 2.5–15 µm to the outside world to actively
limit the temperature rise of the road surface and reduce the internal and surrounding
temperature of the coating under the condition of no energy consumption.

Anna et al. [5] prepared a common color road solar thermal reflective coating. Through
the analysis of the reflective spectrum of the coating by factors such as filler particle size
and binder, it was found that the reflectivity of the coating on the whole band could reach
about 20%. Xie et al. [6] prepared a thermal reflection coating using several common fillers,
and the infrared reflectivity was close to 50%, and the total reflectivity reached 34.85%. TiO2
had the highest contribution to the cooling capacity of all fillers. Still, with the increase in
TiO2 content, the reflectivity of the coating only increased in the infrared region and even
decreased slightly in other bands. Kyriakodis et al. [7] coated the thermal reflective coating
on a large area of asphalt pavement that covered an area of 0.037 km2. Through a series of
tests, the road surface temperature was reduced by 11.5 ◦C, and the ambient temperature
was reduced by 1.5 ◦C. At the same time, the ease of vision and driving greatly improved.

However, the aging phenomenon of the coating during service may weaken about half
of its cooling capacity. Carnielo et al. [8] and Rossi et al. [9] found that applying a thermal
reflection coating can effectively reduce the temperature of asphalt pavement, which has
great potential to alleviate the ‘urban heat island effect’. Uemoto [10] points out that the
reflectivity of the coating is inversely proportional to its color depth; that is, the lower the
depth of color, the better the cooling performance of the thermal reflection coating, but
too shallow will lead the road surface to produce dazzling, and other hazards to traffic
safety have brought great hidden dangers, so blind to the color of the coating is not a good
choice to reduce road temperature. Synnefa et al. [11] studied five different color coatings
used on asphalt pavement by adding different coloring pigments and found that as long
as the reflectivity of the coating was between 0.27 and 0.55, it was higher than that of the
asphalt pavement in any color. All five coatings could achieve the purpose of reducing
pavement temperature, among which the best one could reduce pavement temperature
by 12 ◦C. Tukiran et al. [12] studied the thermal performance of five kinds of thermal
reflective coatings on the market with different colors by measuring and evaluating the
cooling capacity and reflectivity. The results showed that all color coatings could improve
the cooling performance of asphalt pavement to varying degrees, and the reflectivity and
cooling value of the white coatings reached 61% and 17 ◦C, respectively. The lowest green
coatings were 14% and 1.26 ◦C, respectively. Du et al. [13–15] studied the pavement surface
temperature after painting the coating on different asphalt pavement structures. The results
showed that different surface composite structure designs could reduce the pavement
temperature by 2–8 ◦C, and there was also a cooling of about 0.5–5 ◦C inside the road.
Zheng et al. [16] studied the relationship between road surface temperature and human
thermal comfort in urban areas by establishing the near-surface thermodynamic model of
the road surface. The results showed that after the thermal reflection coating was laid, the
radiation heat of the road surface was reduced by nearly 70%, and the convective heat was
reduced by nearly 50%.

Moreover, the road surface and near-surface temperatures were decreased, which
greatly improved human comfort. Chen Qian et al. [17] tested the cooling capacity of
various coatings and simulated the complex coupling environment affected by temperature,
traffic load and pollution in the actual environment. The durability evaluation index of
road cooling coatings under complex working conditions was proposed and evaluated
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by a multi-objective decision-making method. Shen Aiqin et al. [18] used a self-made
cooling simulation device to explore the influence of coating amount and temperature on
the indoor cooling effect of the coating after preparing a thermal reflection coating and
carried out an outdoor cooling test. In terms of the consistency of other parameters, the
surface temperature of different specimens in the indoor test had a stronger correlation,
which had a better reference value.

Most of the existing asphalt pavement thermal reflection coatings are based on epoxy
resin, and epoxy resin has many advantages, but it is brittle and ages easily. In this paper, a
suitable amount of liquid phenolic resin was added to epoxy resin, and the active groups
on the resin chain were combined by copolymerization to toughen and improve the aging
resistance. Then, a new type of asphalt pavement thermal reflective coating was prepared
with the mixed resin as the thermal reflective coating substrate, titanium dioxide, hollow
glass beads, silicon dioxide and sericite powder as functional fillers, ferric oxide red as
a pigment, propylene glycol and other materials as additives, and quartz sand for its
anti-skid particles. In this paper, in the process of preparation and technical research of
heat reflective asphalt pavement coating, using the principle of coating cooling, according
to the characteristics of sunlight and the principle of cooling, the influencing factors of
the cooling effect were obtained, and then the mix ratio design and coating preparation
were carried out. Then, through the indoor and outdoor cooling tests for data analysis,
the road performance was tested, and the environmental performance was evaluated.
Finally, exploration of the construction process resulted in a new type of asphalt pavement
heat-reflective coating.

2. Coating Material
2.1. Composition of Raw Materials

Asphalt pavement thermal reflection coating comprises a matrix, functional fillers,
pigments, additives and anti-skid particles.

(1) Elementary body

The selection of matrix resins should avoid subs containing O = C-, -OH, C-O-C- as
much as possible [19]. After repeated comparison and selection, the non-solvent E51 (618)
epoxy resin was used as the resin of this experiment, and the 593 epoxy curing agent was
used as the curing and plasticizer material of this coating. The liquid phenolic resin was
added to the coating to toughen and modify the epoxy resin, and the mixed resin was used
as the coating matrix material. After many tests, it was found that when the mass ratio of
epoxy resin to liquid phenolic resin in 100 g mixed resin was 97: 3. The basic characteristics
of each material are shown in Tables 1–3.

Table 1. Material properties of non-solvent E51 (618) epoxy resin.

Resin Category Epoxide Equivalent
(g/EP)

Chromaticity
(Platinum–Cobalt color)

Viscosity at 25 ◦C
(mPa·S)

Hydrolyzable Chlorine
(%)

Volatile Matter
(%)

E51 epoxy resin 186.6 23 12,380 0.0623 0.087

Table 2. Material properties of 593 curing agent.

Category of Curing Agents Appearance Amine Value
(mgKOH/g)

Density
(g/cm3)

Active Hydrogen
Equivalent

Viscosity at 25 ◦C
(mPa·S)

593 epoxy curing agent Colorless
transparent liquid 500~600 0.985 45~48 150 ± 25

(2) Functional fillers

The functional fillers selected in this paper are rutile titanium dioxide, hollow glass
beads, silica and sericite powder. The main characteristics of each material are shown in
Table 4, and the microstructure is shown in Figure 1.
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Table 3. Material properties of liquid phenolic resin.

Category of Curing Agents Appearance Amine Value
(mgKOH/g)

Density
(g/cm3)

Active Hydrogen
Equivalent

Viscosity at 25 ◦C
(mPa·S)

593 epoxy curing agent Colorless transparent liquid 500~600 0.985 45~48 150 ± 25

Table 4. Main characteristics of four functional materials.

Name Main Feature

Rutile titanium dioxide
It has strong light scattering ability, anti-ultraviolet ability, stability and refraction ability, high
density, low photochemical activity, high refractive index and reflection ratio to near-infrared
radiation, and can obviously shield solar thermal radiation energy.

Hollow glass microspheres

The coating has low density, low thermal conductivity, high reflection ratio, good thermal
insulation, sound insulation, stability and flow smoothness. The addition of small doses of the
coating has a low effect on the viscosity of the coating, so it can reduce the amount of solvent,
reduce the emission of VOCs, and enhance the elasticity of the coating, which greatly reduces the
possible cracks and shedding phenomena [20–22].

Silicon dioxide
It has porosity, heat insulation, high-temperature resistance, strong dispersion, high reflection and
barrier ability to light and heat, and strong weather resistance. It can improve the viscosity and
stability of the coating and also has a certain effect on the extinction of the coating.

Sericite powder

The lamellar structure can form the ‘maze effect‘ of heat transfer due to its large aspect ratio and
significantly improve the UV shielding ability, impermeability, surface hardness and corrosion
resistance of the coating. Moreover, due to the polarization effect of mineral crystals and the
intervention effect of interlayer water molecules, the ability of the coating to shield ultraviolet,
microwave and infrared rays is higher than that of all other inorganic fillers, so it can greatly
improve the aging resistance and high-temperature resistance of the coating.

(3) Pigment

The refractive index of epoxy resin is 1.48, while iron oxide red has a high refractive
index of 2.8. At the same time, the light red color shown after its incorporation into the
coating can bring the driver vigilance and concentration after laying. Based on safety
considerations, iron oxide red was selected as pigment to be added to the coating solution.

(4) Additive

To improve the properties of the coating solution and weaken its negative influence
on some road performance of asphalt pavement, fumed silica, propylene glycol, and active
diluent, which can participate in the reaction during coating preparation, are added as
additives in addition to the matrix and functional filler.

(5) Anti-slip pellet

Soft anti-skid particles have low hardness and are often prone to deformation due to
vehicle load when used in the lane, which makes them unable to provide greater friction;
hard anti-skid particles usually use inorganic material particles. When making contact with
rubber tires, such anti-skid particles cause deformation of the rubber tires due to their high
hardness, so the contact surface between tires and the ground can be widened to better
achieve anti-skid properties. This paper used hard anti-skid particle quartz sand.

2.2. Surface Modification of Functional Filler

To ensure the functional filler particles have more affinity with the base material,
silane coupling agent KH-550 was used to modify the surface of these functional fillers.
This agent can help reduce the surface energy of particles so that they can be stable and
evenly dispersed in the asphalt pavement thermal reflection coating and give full play
to the cooling effect of the coating. The appearance of titanium dioxide before and after
modification is shown in Figure 2.
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glass microspheres. (d) Sericite powder.

Figure 2 shows that the plastic packaging bag adsorbs a lot of modified inorganic
fillers, but the unmodified fillers are not adsorbed. This is because the surface of the filler is
mainly composed of inorganic groups without surface modification, which is manifested as
hydrophilic and hydrophobic. The plastic bag is composed of organic compounds, so there
is no good combination between the two. When modifying the surface of inorganic fillers,
some polar groups in the modifier are adsorbed with them. The other part is oriented
towards the organic groups in the resin solution, which is equivalent to wearing a layer of
‘camouflage clothing‘ on the surface of the fillers. This ensures a good combination of the
modified filler and the plastic packaging bag.

2.3. Determination of Filler Content

With the increase in the proportions of a functional filler and matrix resin, the cooling
effect of the coating was effective, but the rising trend tends to be gentle after exceeding
a certain limit. The increase in the surface area means the resin cannot completely fill the
gaps between the pigments and fillers, and there will be many defects after the coating,
decreasing the reflection ability and the instability of the particles. When the proportion
is small, the appearance of smearing on the asphalt pavement is not uniform, and the
covering force is insufficient and therefore does not yield a good cooling effect. According
to multiple tests, the cooling effect and operability are good when the filler content accounts
for 25–35% of the mass of the mixed matrix.
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Figure 2. Appearance of functional fillers before and after surface modification. (a) Titanium dioxide,
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(1) TiO2 dosage

Under the fixed conditions of 100 parts of the matrix resin, 4 parts of SiO2, 6 parts of
hollow glass beads and 6 parts of sericite powder, the influence of the TiO2 content on the
partial properties of the coating was analyzed, and the results are shown in Figure 3a. It
can be seen that the viscosity increased slowly, and the cooling capacity increased rapidly
when the TiO2 content was low. With the increase in TiO2 content, the viscosity gradually
increased, and the cooling value decreased. TiO2 had a significant influence on the cooling
effect of the coating, and the cooling value reached 13.7 ◦C when the amount of TiO2 was
18 phr. When the dosage continued to increase, the increase in the cooling value tended to
be flat, and the viscosity value of the coating increased significantly, which is not conducive
to construction. The dosage of TiO2 is 15 ~ 18 phr.

(2) SiO2 dosage

Under the fixed conditions of a 100 phr matrix resin, 18 phr TiO2,6 phr hollow glass
beads and 6 phr sericite powder, the effect of the SiO2 content on the performance of the
coating was judged, as shown in Figure 3b. When the SiO2 was added, the cooling value of
the coating decreased greatly. With the increase in SiO2 content, the decreasing trend of the
cooling value of the coating gradually becomes uniform, which is because SiO2 can make
the coating surface rougher and increase the heat absorbed by the coating. The viscosity of
the coating increased, and the increase rate was relatively slow in the early stage. When the
dosage was more than 4 phr, the viscosity increased rapidly. So, the dosage of SiO2 was
2 ~ 4 phr.

(3) The volume of hollow glass beads

Under the fixed conditions of 100 portions of the matrix resin, 18 portions of TiO2,
4 portions of SiO2 and 6 portions of sericite powder, the effect of the hollow glass micro-
sphere content on the coating performance was analyzed, and the results are shown in
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Figure 3c. It can be seen from the figure that the hollow glass microsphere had a significant
influence on the viscosity of the coating: when the dosage was less than 4 phr, the viscosity
generally showed a slow increase trend, but with the continuous increase of the dosage,
the viscosity of the coating increased sharply. The effect of the beads on temperature did
not just increase or decrease the cooling capacity but also strengthened the cooling effect
at a relatively small dosage and weakened the cooling effect after more than 6 phr. This
may be due to the addition of too many hollow glass beads will change its arrangement,
and too large a volume to cover other fillers, resulting in a decline in its cooling capacity
considering the content of 4 ~ 6 phr.

(4) Dosage of sericite powder

Under the fixed conditions of 100 portions of the matrix resin, 18 portions of TiO2,
4 portions of SiO2, and 6 portions of hollow glass beads, the influence of the amount of
sericite powder on the coating performance was judged, and the results are shown in
Figure 3d. The results show that sericite powder had little effect on temperature, but it
had a slight increase in 0 ~ 8 phr and a large increase in 4 ~ 8 phr, and a slight decrease
after more than 8 phr. This is because the ‘maze effect‘ can be formed due to the sericite
powder’s large diameter–thickness ratio, which weakened the heat transfer process to a
certain extent. However, when the dosage was too large, it will gradually accumulate and
cover up the other functional fillers, resulting in other fillers that cannot display the cooling
effect. With the increase in the sericite powder content, the viscosity of the coating first
showed a fast trend, then slow, and then fast again. However, the second rapid increase in
the viscosity of the coating after the content of sericite powder exceeded 8 phr led to the
difficulty of a subsequent coating. Therefore, the content of sericite powder was 4 ~ 8 parts.
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Through the calculation of the standard deviation, it can be seen that the standard
deviation of the cooling value of different TiO2, SiO2, hollow glass beads and sericite
powder is 3.25, 1.30, 0.71 and 0.42, respectively. It can be concluded that the most influential
factor on the cooling value is the amount of TiO2, and the standard deviation of viscosity is
44.28, 79.18, 45.32 and 57.56, respectively. It can be seen that the most influential factor in
viscosity is the amount of SiO2.

The orthogonal test was carried out with the coating’s viscosity, gloss and cooling
value as the evaluation indexes. A total of nine groups of experiments were designed by
four factors and three levels of the orthogonal table, as shown in Table 5. The test results
are shown in Table 6. In the test, the matrix resin was fixed at 100 parts, and the amount of
each filler was the corresponding proportion of the matrix amount.

Table 5. Packing orthogonal design Table L9 (34).

Level
Factor Dosage (Part)

TiO2 SiO2 Hollow Glass Microsphere Sericite Powder

1 15 2 4 4
2 15 3 5 6
3 15 4 6 8
4 16.5 2 5 8
5 16.5 3 6 4
6 16.5 4 4 6
7 18 2 6 6
8 18 3 4 8
9 18 4 5 4

Table 6. Orthogonal test results of packing.

Test Number Filler/
(Fill + Base)

Drop Range of Temperature
(◦C)

Kinematic Viscosity
(mm2/s) Glossiness

1 20.0% 12.7 159.9 34.1
2 22.5% 13.4 187.5 33.0
3 24.8% 13.6 226.4 33.6
4 23.9% 13.9 189.6 36.8
5 22.8% 13.9 208.8 28.7
6 23.4% 13.6 197.6 30.8
7 24.2% 14.2 205.3 33.6
8 24.8% 14.0 198.7 33.7
9 23.7% 13.9 203.8 26.7

The data in Table 6 shows the effects of the coating viscosity, cooling value and gloss
factor shown in Figures 4–6. The comprehensive analysis method was used to select the
most balanced ratio of each performance. According to the orthogonal test results, the
coating with 18 phr TiO2 had the best cooling effect. Compared with 16.5 phr TiO2, the
maximum cooling value increment was not large, but the viscosity growth rate was low,
and the gloss of the coating also decreased slightly. When the SiO2 content was 2 ~ 4 phr,
the gloss of the coating decreased continuously, but when the SiO2 content was 3 ~ 4 phr,
the viscosity increased greatly, and the cooling value decreased. Hollow glass beads have
a small improvement on the gloss of the coating, and the increase of its content had a
significant impact on the cooling value, but when the content is greater than 5 phr, the
viscosity began to increase significantly, and the increase of the cooling value decreased.
The sericite powder was mainly aimed at improving the physical and chemical properties
of the coating. The addition of sericite powder slightly increased the maximum cooling
value of the coating but also increased the viscosity and gloss of the coating, but the growth
rate was not large in the range of 4 ~ 6 phr. In conclusion, under the condition of 100 phr
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matrix resin, 18 phr modified TiO2, 3 phr modified SiO2, 5 phr modified hollow glass beads
and 6 phr modified sericite powder can make the coating achieve the best balance among
the three indexes.
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2.4. Determination of Pigment Content

The cooling test determined the pigment content. The three groups of pigment content
of 1%, 3% and 5% of the matrix mass were set as the test group, and the white coating
without pigment was the control group. The cooling test measured the temperature
difference. The results are shown in Figure 7.
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It can be seen from Figure 7 that the temperature difference between the experimental
group and the control group increased with the increase in pigment content. When the
content was from 1% to 3%, the temperature difference was 0.6 ◦C. When the content was
from 3% to 5%, the relative temperature difference was large, reaching about 1.1 ◦C, which
significantly weakened the cooling capacity of the thermal reflective asphalt pavement
coating. Considering the pavement color was shallow when the dosage was 1%, which
is not conducive to driving, the dosage of ferric oxide red was selected as 3%, and the
temperature difference with the white coating was 1.4 ◦C.

2.5. Material Dosage of Each Component

The determined amounts of thermally reflective asphalt pavement coating materials
are shown in Table 7:

Table 7. Components of each material of heat-reflective asphalt pavement coating.

Category Name of the Material Content (Mass Fraction)

Basal body
Solvent-free epoxy resin 97

Liquid phenolic resin 3
593 curing agent 25

Functional fillers

Modified rutile
titanium dioxide 18

Modified silica 3
Modified hollow glass beads 5

Modified sericite powder 6

Pigment Iron oxide red powder 3

Assistant
692 epoxy active diluent 8

Gas phase silica 0.5
Propylene glycol 2.5

Anti-slip pellet Quartz sand 5

3. Test Scheme
3.1. Indoor Cooling Test

(1) Determination of coating amount

After evenly dividing a rutting plate specimen into four parts, an electric drill was
used to drill in parallel at a distance of 2 cm from the upper surface of each part of the
specimen. The aperture was about 0.3 ~ 0.5 cm, and the hole depth was about 7 ~ 8 cm. The
thermocouple temperature sensor was arranged inside. The four parts were coated with
0 kg/m2, 0.5 kg/m2, 0.8 kg/m2 and 1.1 kg/m2 heat-reflective asphalt pavement coatings,
respectively. The bottom of the rutting plate was paved with foam board and wrapped
with tin foil to avoid the test error caused by heat loss. After the coating on the rut board
specimen solidified, an iodine tungsten lamp was used to simulate the sunlight for the
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cooling test. The surface temperature and internal temperature of the rutting plate before
the test was measured and recorded as 25.4 ◦C and 24.7 ◦C, respectively, which were used
as the starting temperature of the rutting plate test. The temperature of the four parts was
measured every 5 min for a total of 12 times.

(2) Determination of coating structure

The working principle of the double-layer coating structure is shown in Figure 8. It
can be seen from Figure 8 that the double-layer brush structure was used to reflect the
solar radiation transmitted through the surface layer again at the bottom layer, thereby
increasing the number of reflections of the incident light in the coating. At the same time,
the white coating was used as the bottom layer to force the pavement and further improve
the cooling effect of the coating.
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The concrete implementation steps are as follows: The white coating without pigments
was used as the bottom coating on the asphalt pavement, and the coating with iron oxide
red as the pigment was used as the surface layer after the coating was uniformly cured.
Three kinds of two-layer structure coating dosage schemes are: (1) Test group 1: bottom
coating amount is 0.2 kg/m2, surface coating amount is 0.6 kg/m2; (2) Test group 2: bottom
coating amount was 0.4 kg/m2, surface coating amount was 0.4 kg/m2; (3) Test group 3:
bottom coating amount was 0.6 kg/m2, surface coating amount was 0.2 kg/m2; the cooling
capacities of the three groups of coating on the rutting plate specimens were compared
with that of the single-layer coating structure, and the temperatures of the four groups
were measured 12 times every 5 min.

3.2. Outdoor Cooling Test

The outdoor cooling test was carried out to evaluate the coating’s cooling capacity
more comprehensively. Firstly, the coating was brushed on the asphalt pavement with a
coating amount of 0.8 kg/m2, and its geometric center was determined as the temperature
to be measured. A point on the same road section was selected as the control point. At
10:00 on the test day, the ambient temperature was 32 ◦C, and the surface temperature
of the uncoated specimen was 37.2 ◦C. The surface temperature of the coated part was
35.1 ◦C, which was taken as the initial temperature of the test. The surface temperature
was measured every 0.5 h between 10:00 and 16:00 for a total of 12 measurements.

3.3. Anti-Skid Test

Adding 0.2 kg/m2 quartz sand as anti-skid particles, the coating adopted the ‘sand-
wich’ structure that is the coating bottom + anti-skid particles + coating surface coat-
ing structure. According to the ‘Highway Subgrade Pavement Field Test Regulations’
(JTG 3450-2019), three measuring points without coating were selected as the control group,
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and three measuring points with coating were selected as the experimental group. The pen-
dulum friction instrument was used for the control test. Each measuring point was repeated
five times, and the average value was taken as the road anti-skid value of the point.

3.4. Structural Depth Test

On the asphalt pavement, three measuring points without coating were selected as
the control group. Three measuring points with coating added with anti-skid particles
were selected as the experimental group. An electric sanding instrument measured the
structural depth.

3.5. Wear Resistance Test

According to the ‘Highway Engineering Asphalt and Asphalt Mixture Test Procedures’
(JTG E20-2011), six corresponding specimens were made. The specimens were baked in
the oven at a temperature of 60 ◦C for 16 h. After drying, three specimens were randomly
selected to be painted with a 0.8 kg/m2 coating solution on their surface, and then the wet
wheel wear comparison test was carried out with the specimens without a coating solution.
The mass of each specimen before and after the test was weighed, the mass change was
compared, and the wear mass loss was calculated according to Formula (1). Three groups
of parallel tests were carried out.

W = (Ma − Mb)/A (1)

Formula: Ma−quality of the specimen before wear; Mb−The quality of the specimen
after wear; A−Wear area of rubber tube of wear head, namely 0.03077514 m2; W−Loss of
wear quality.

3.6. Water Impermeability Test

Referring to the ‘Highway Subgrade and Pavement Field Test Procedure’ (JTG 3450-2019),
the seepage coefficients of five rut board specimens before and after coating were measured.

4. Results Analysis and Discussion
4.1. Evaluation of Indoor Cooling Effect

(1) Determination of coating amount

The real-time temperature diagram and cooling value diagram of the asphalt surface
and internal are shown in Figures 9–12. It can be seen that the internal and external
cooling values of the thermal reflection coating are proportional to the internal and external
temperature of the specimen and the coating amount. The maximum surface cooling values
were 10.2 ◦C, 12.4 ◦C and 13.2 ◦C, respectively, when the coating amount was 0.5 kg/m2,
0.8 kg/m2 and 1.1 kg/m2; the maximum internal cooling values were 9.4 ◦C, 10.8 ◦C and
11.3 ◦C, respectively. When the amount of coating increased from 0.5 kg/m2 to 0.8 kg/m2,
the maximum surface temperature of the specimen without coating was 64.7 ◦C, and the
internal temperature was 61.8 ◦C, the maximum surface cooling value increased by 21.6%.
The maximum internal cooling value increased by 14.9%. When 0.8 kg/m2 increased to
1.1 kg/m2, the cooling capacity was not obvious, and the maximum cooling value of surface
and internal increased by 6.5% and 7.4%, respectively. At 60 min, the internal temperature
of the specimen without coating was 2.9 ◦C lower than that of the surface temperature. In
comparison, the internal temperature of the specimen with coating was 2.1 ◦C, 1.3 ◦C and
1.0 ◦C lower than that of the surface temperature, respectively. This is because the specimen
without a coating caused a certain loss in heat transfer. With the increase of the coating
amount, the heat loss of the specimen with coating was increased, and its reflection and heat
insulation ability were also enhanced. However, when the coating amount increased from
0.5 kg/m2 to 0.8 kg/m2, the internal and external temperature difference was significant
at 38.1%. When 0.8 kg/m2 increased to 1.1 kg/m2, the decrease was 23.1%. Therefore,
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it is recommended that the coating amount be 0.8 kg/m2, and the internal and external
temperature difference with the uncoated specimen was 12.4 ◦C and 10.8 ◦C, respectively.
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It can be seen from the calculation of standard deviation that when the brushing
amount is 0 kg/m2, the standard deviation of the surface and internal temperature of the
specimen with the change of illumination time is the largest, which is 11.15 and 12.11,
respectively. The standard deviation of each group decreases with the increase of brushing
amount. This shows that the laying of the coating can effectively block heat transfer. When
the coating amount was 1.1 kg/m2, it had the greatest influence on the specimen’s surface
and internal cooling value. As the coating amount increased, the standard deviation
showed an increasing trend, which indicates that the coating can effectively cool the surface
and interior of the asphalt.

(2) Determination of coating structure

The real-time temperature and cooling values of the surface and interior of each group
are shown in Figures 9–12.

It can be seen from the calculation of standard deviation that when the brushing
amount is 0 kg/m2, the standard deviation of the surface and internal temperature of
the specimen with the change of illumination time is the largest, which is 11.15 and
12.11, respectively. The standard deviation of each group decreased with the increase of
the brushing amount. This shows that the laying of the coating can effectively block heat
transfer. When the coating amount was 1.1 kg/m2, the standard deviation of the specimen’s
surface and internal cooling value with time was the largest, which were 3.99 and 3.78,
respectively. With the increase in the coating amount, the standard deviation showed an
increasing trend, which indicated that the coating could effectively cool the surface and
interior of the asphalt.

It can be seen from Figures 13–16 that the maximum surface and internal cooling values
of the three schemes are 13.0 ◦C, 11.8 ◦C; 13.4 ◦C, 12.0 ◦C; 13.6 ◦C, 12.1 ◦C, respectively.
Compared with the single-layer coating structure of 12.4 ◦C, 10.8 ◦C, the cooling value
growth rates were 4.8%, 9.3%; 8.1%, 11.1%; 9.7%, 12.1%. Although the cooling capacity
of experimental group 3 reached the highest, the growth rate was extremely limited, and
the pavement color was lighter, which could easily cause adverse effects such as glare.
Through the calculation of the standard deviation, it can be seen that the coating’s surface
temperature and internal temperature changed the most with time in test group 1, and the
coating’s surface cooling and internal cooling changed the most with time in test group
3. Therefore, test group 2 had the least response to light, so the brushing method adopts
the double-layer coating structure with the bottom brushing amount of 0.4 kg/m2 and the
surface brushing amount of 0.4 kg/m2 in test group 2.
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4.2. Evaluation of Outdoor Cooling Effect

The real-time temperature diagram and the road surface cooling value diagram are
shown in Figures 17 and 18. It can be seen from Figures 17 and 18 that the temperature rise
law of the two specimens was basically the same. Still, the temperature of the specimen
with a coating was lower than that of the specimen without coating in each period. The
cooling capacity of the thermal reflection coating gradually increased with the increase of
the ambient temperature. The reason is that the solar radiation reflection and scattering
speed that radiates to the coating surface are fast at low ambient temperature, so the
temperature is relatively close. At 14:30, the ambient temperature reached the maximum
of 38 ◦C, but at 15:00, the coating cooling value reached the maximum of 8.5 ◦C. At this
time, the ambient temperature was 37 ◦C, the road surface temperature was 54.7 ◦C, and
the coating surface temperature was 46.2 ◦C, with a cooling rate of 15.5%. Due to the
limitation of time and place and other external factors, the ambient temperature did not
reach above 40 ◦C, and the road surface temperature did not exceed 60 ◦C. Moreover, due
to the interference of various external factors, such as wind speed and humidity, in the
outdoor cooling test, the results were not consistent with those in the indoor cooling test.
Therefore, the actual cooling effect of the thermal reflection asphalt pavement coating needs
further certification.
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Figure 18. Pavement cooling value diagram.

Since the surface temperatures corresponding to each temperature measurement time
point in the indoor and outdoor cooling tests are almost inconsistent, the cooling capacity
value can be calculated according to the outdoor asphalt pavement surface temperature,
and its cooling value under the that the surface temperature of the uncoated specimen
in the indoor cooling test was consistent with that of the indoor cooling test. Then, the
indoor cooling value is compared with the outdoor cooling value to obtain the internal and
external cooling values, as shown in Table 8. With the surface temperature of the indoor
uncoated rut plate as the horizontal axis and the cooling value ratio as the vertical axis, the
trend line of internal and external cooling value ratio is shown in Figure 19.

Table 8. Indoor and outdoor cooling value ratio at the same temperature.

Surface Temperature of
Indoor Rut Plate (◦C)

The Cooling Value of
Indoor Test T1 (◦C)

The Calculated Outdoor
Cooling Value T2 (◦C)

Internal and External
Cooling Value Ratio

(T1/T2)

36.3 2.1 - -
41.0 3.6 3.435 1.048
43.8 4.6 4.288 1.073
45.8 6.1 5.533 1.102
48.3 7.1 6.400 1.109
50.6 7.8 6.961 1.121
52.6 9.0 7.962 1.130
54.8 10.4 - -
57.0 11.7 - -
61.1 13.2 - -
64.8 13.4 - -
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Figure 19 shows the fitting curve of indoor and outdoor cooling values as follows:

y = −0.0004x2 + 0.0467x − 0.1531
(

R2 = 0.9825
)

(2)

Formula: y—indoor and outdoor cooling value ratio; x—uncoated surface temperature, ◦C.
The maximum temperature of the uncoated surface in the indoor cooling test was

64.8 ◦C as the value, which was brought into Formula (2) to calculate the ratio of the indoor
and outdoor cooling value ≈ 1.193 (retaining the three-digit decimal). Thus, the theoretical
cooling value of the outdoor test at this time was T2 ≈ 13.4/1.193 = 11.23 ◦C, and the
cooling effect was excellent. The correlation of this fitting curve R2 = 0.9825 indicates a
good correlation, so it can be used to estimate the outdoor cooling value.

4.3. Anti-Slip Performance

The anti-sliding pendulum value and structural depth of the measuring points without
coating and the measuring points with coating are shown in Tables 9 and 10.

Table 9. Asphalt pavement anti-skid pendulum value.

Surface Condition Pendulum Value (BPN) Average Value (BPN) Average Value Difference
(BPN)

>No coating
70

67

7

63
68

Coated
61

6060
58

Table 10. Texture depth of asphalt pavement.

Surface Condition Measuring Points Tectonic Depth TD
(mm)

Average Tectonic Depth
(mm)

Average Difference
(mm)

No coating
Point 1 0.79

0.80

0.14

Point 2 0.82
Point 3 0.80

Coated
Point 1 0.66

0.66Point 2 0.64
Point 3 0.67

It can be seen from Table 9 that the anti-skid value of the pavement after the coating is
reduced from 67 to 60 (a decrease of 10.4%). However, it still meets the requirements of the
‘Specification for Design of Highway Asphalt Pavement’(JTG D50-2017) for the anti-skid
value of the pavement (BPN ≥ 45). To reduce the skid resistance of asphalt pavement
weakened by heat-reflective coating after laying, the coating selects ‘sandwich’ structure
that is coating the bottom layer + anti-skid particles + coating surface coating structure.
Soft anti-skid particles mainly include rubber and plastic particles of different textures.
They have low hardness and certain elasticity. When used in the carriageway, they are often
prone to deformation due to vehicle load, which makes them unable to provide greater
friction. In addition, in the case of oil and water, the vehicle slip is not conducive to driving,
but the effect is better when used on the sidewalk. Rigid anti-skid particles usually use
inorganic material particles such as diamond, ceramic, quartz, and natural sand. This
kind of anti-skid particles in contact with the rubber tire due to its high hardness led to
a certain deformation of the rubber tire. Hence, the tire and the ground contact surface
widened to better achieve the anti-skid properties. It was also easy to pierce the oil and
water films to enhance the friction of the road in this state, and it is an excellent choice for
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anti-skid particles. However, ceramic particles are brittle, fragile, and not durable when
used as anti-skid particles for heavy traffic. Quartz sand is low in cost and high in hardness.
Therefore, quartz sand is selected as anti-skid particles in this paper, which also effectively
ensures that the coating has good performance for a long time.

Table 10 shows that the structural depth of asphalt pavement after the coating is
reduced from 0.80 mm to 0.66 mm (17.5%) but still meets the requirements of TD ≥ 0.55 mm
in ‘Highway Engineering Quality Inspection and Evaluation Standard‘ (JTG F80/1-2017).
Therefore, although applying a thermal reflection coating on asphalt pavement weakened
the anti-skid properties of pavement to some extent, it still greatly exceeds the minimum
value in the specification, and the coating has a good anti-skid performance.

4.4. Wear Resistance Evaluation

The wear mass loss of each group of specimens is shown in Table 11. According
to Table 11, the mass loss of the specimen coated with thermal reflection coating after
wear meets the W < 0.2 g/m2 specified in the ‘epoxy resin surface coating material’
(JC/T 1015-2006), indicating that the thermal reflection asphalt pavement coating can
reduce the wear degree of traffic tools on the road surface and has good wear resistance.

Table 11. Quality loss comparison of wet wheel wear specimens.

Groups Surface State Wear Mass Loss (g·m−2) Mass Loss Difference (g·m−2)

Group 1 Coated 0.166
0.073No coating 0.093

Group 2 Coated 0.163
0.076No coating 0.087

Group 3 Coated 0.162
0.071No coating 0.091

Average value Coated 0.164
0.074No coating 0.090

Because the indoor test environment was not necessarily consistent with the actual
outdoor situation, the heat-reflective asphalt pavement coating was brushed on the asphalt
pavement. The coating surface was observed after six months under the repeated load of
the actual traffic participants and the erosion of the rain, snow, sand and stone, and the
coating was brushed for two months, four months, and half a year. The structural depth
and the anti-sliding values of the coating surface were tested and compared with those just
brushed. The test results are shown in Tables 12 and 13.

Table 12. Comparison of texture depth.

Surface State Tectonic Depth (mm) Mean Value of Tectonic Depth (mm) Mean Difference (mm)

When just painting 0.66 0.64 0.67 0.66 -
Two months later 0.67 0.68 0.67 0.67 +0.01
Four months later 0.65 0.63 0.64 0.64 −0.03
Half a year later 0.63 0.62 0.63 0.63 −0.01

It can be seen that there are no obvious wear marks on the surface of the coating under
the action of the external environment for six months. Tables 12 and 13 show that with the
increase in coating service time, the structural depth and anti-slipping values showed an
increasing trend and then a decreasing trend. After half a year of painting, the structural
depth of the coating decreased from 0.66 mm to 0.63 mm (with a decrease of 4.5%), and
the anti-sliding value decreased from 60 to 57 (with a decrease of 5.0%). This is because
when the coating is just brushed, the surface state of the coating changes from fuller and
smoother to rougher when the wheel is rolled, which increases the structural depth and



Materials 2022, 15, 8087 20 of 23

anti-skid value. Under the subsequent effects, the anti-skid particles will gradually be worn
out or even fall off, resulting in a small decrease in both. However, in half a year, the overall
change trend is small and meets the specification requirements, indicating that the coating
also has good anti-sliding performance. After a wet-wheel wear test, the unit wear quality
of the specimen coated with the coating solution meets the specification requirements.
After six months of external action, the appearance of the coating had little change, and the
anti-skid ability had little change, so the coating has good durability.

Table 13. Comparison of anti-skid pendulum value.

Surface State Anti-Skid Value (BPN) Anti-Skid Average Value (BPN) Average Difference (BPN)

When just painting
61

60 -60
58

Two months later
62

61 +160
62

Four months later
58

58 −359
58

Half a year later
57

57 −157
56

4.5. Evaluation of Impermeability

The seepage coefficients of five rut plate specimens before and after coating were
compared, as shown in Table 14. It can be seen from Table 14 that the water permeability
coefficient after coating was 0, while the average value of the water permeability coefficient
before the coating is 147 mL/min, indicating that the coating has good water permeability
resistance. The excellent water sealing effect after application to the pavement makes it
difficult for water to penetrate into the structural layer in pavement damage. This is because
part of the coating solution will gradually penetrate into the micropores and cracks of the
pavement when it is not dried, and it plays a filling and sealing role after curing. Therefore,
the thermal reflection coating plays an important role in preventing water damage, so it is
also a type of pavement pre-curing material.

Table 14. Results of water permeability coefficient.

Groups Surface State Permeability Coefficient CW
(mL/min) CW Difference (mL/min) Average Difference

(mL/min)

Group 1 Coated 138
138

147

No coating 0

Group 2 Coated 156
156No coating 0

Group 3 Coated 143
143No coating 0

Group 4 Coated 147
147No coating 0

Group 5 Coated 151
151No coating 0

4.6. Anti-Aging Performance Evaluation

The heat-reflective coating will not be invaded and corroded by natural environmental
factors all the time after service. Under the irradiation of ultraviolet light, most inorganic
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materials can maintain their stability, but organic materials will gradually age [23]. The
epoxy resin used in this coating is an organic material, so the cooling capacity of the coating
after outdoor aging was tested. The coating was painted on a rut board to test its cooling
capacity and was placed in a natural environment after being hit by wind and rain, sun
and rain. The cooling capacity was tested at 30 d, 60 d and 90 d, respectively. Its maximum
cooling value is shown in Figure 20.
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It can be seen from the above figure that the cooling effect of the coating gradually
decreases with the continuous natural aging process. After 90 days, the maximum cooling
values on the surface and inside are weakened by 1.4 ◦C and 0.7 ◦C, respectively. The main
reason is that epoxy resin is a high molecular polymer, and its resistance to photooxidation
is not too high. Ultraviolet light will break its chemical bonds, and the irradiation of
infrared light and visible light will accelerate aging and degradation. Its chemical structure
determines that under photothermal conditions, some chemical bonds in the molecule were
highly active and easily generated free radicals for an oxidation reaction, which will affect
the cooling performance of the coating [24]. However, the sericite powder and fumed silica
added to the coating greatly delayed the oxidation and aging process of the coating, and
the strong inertia of the titanium dioxide made the coating very stable. Therefore, after
90 days of natural aging, the cooling capacity of the coating did not suffer too much loss,
and it still had a good cooling effect. At the same time, after March, the coating did not
appear to have yellowed, become brittle and display any other aging phenomenon. The
error line obtained by calculating the standard deviation shows that as time increased, the
surface of the heat-reflective coating aged faster than the interior.

The gloss loss rate can also be used to measure the degree of aging of the heat-reflective
coating. The irradiation of ultraviolet light will break the macromolecular chain to form a
new molecular chain, which is the main reason for the change in the coating structure and,
thus, the production of internal stress. When the internal stress accumulates, it can result in
uneven cracks on the coating surface, which is intuitively reflected in the decrease of gloss.
The gloss of the coating before and after aging was measured three times in parallel using a
gloss meter, and the average value was taken. The gloss of the coating before aging was
32.6, and the gloss after aging was 30.8. The gloss loss rate was calculated by substituting it
into Formula (3) [25]:

Gloss loss rate =
A0 − A1

A0
× 100% (3)

In the formula:
A0-gloss measurement value before aging;
A1-Measured value of gloss after aging.
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It can be seen that the light loss rate of the coating is 5.5%, which is a very slight light
loss, indicating that the coating had a very small light loss rate after three months of natural
aging and had strong aging resistance.

5. Conclusions

(1) A new type of asphalt pavement thermal reflective coating was developed. The
emulsion mixed with epoxy resin and liquid phenolic resin was used as the matrix
resin, and silica, hollow glass beads and sericite powder were used to replace part of
titanium dioxide as the functional filler of the thermal reflection coating. Compared
with all titanium dioxide as the functional filler, it was more economical, and the
physical and chemical properties were more prominent.

(2) After surface modification of functional fillers, it was found that the particles were
hydrophobic and lipophilic, which could be stably and uniformly dispersed in the
thermal reflection coating of asphalt pavement and displays the cooling effect of
the coating.

(3) With the cooling value, viscosity and gloss as the evaluation indexes, the orthogonal
experimental design analysis was used to optimize the distribution ratio of each filler
group that could best balance the three indexes as follows: 18 portions of modified
TiO2, 3 portions of modified SiO2, 5 portions of modified hollow glass microspheres
and 6 portions of modified sericite powder were added to each 100 mass portion of
the mixed matrix resin, and the amount of pigment was determined to be 3% of the
matrix mass after testing.

(4) The indoor cooling test showed that the optimal coating amount was 0.8 kg/m2,
and the double-layer coating structure was adopted, i.e., the bottom layer was white
pigment-free coating, and the upper layer was colored layer. The test results showed
that when the coating amount of the bottom layer and the surface layer was 0.4 kg/m2,
the coating structure could make the internal and external cooling values of the
mixture reach 12.0 ◦C and 13.4 ◦C, respectively, and the cooling capacity increased
by 11.1% and 8.1%, respectively, compared with the single coating structure. Due
to the limitations of the external environmental conditions, the maximum cooling
value of the outdoor cooling test is 8.5 ◦C, which is somewhat different from that of
the indoor test. However, according to the fitting calculation of the indoor cooling
test value, it can be seen that the outdoor asphalt pavement surface cooling value
will be close to 11.23 ◦C when the ambient temperature is consistent, which has
progressive achievements.

(5) The new asphalt pavement heat-reflective coating has good skid resistance, wear
resistance, impermeability and aging resistance, indicating that the heat-reflective
coating has good excellent prospects for application.

Author Contributions: Z.L.: conceptualization, investigation, project administration, supervision,
and writing—review and editing. T.G.: conceptualization, formal analysis, methodology, and visual-
ization. Y.C.: supervision, project administration, data curation, and formal analysis. C.W.: concep-
tualization, writing–original draft, supervision, investigation. Q.C. (Qian Chen): conceptualization,
supervision, and writing—original draft. S.D.: conceptualization, project administration, supervision,
and investigation. Q.C. (Qi Chen): funding acquisition and investigation. H.C.: project administration
and resources. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key R&D and Promotion of Special Scientific and Techno-
logical Research Projects of Henan Province: [Grant Number 182102210061, 212102310089], and the
Key Scientific Research Projects of Colleges and Universities in Henan Province in 2021: Study on
pavement performance of cotton straw cellulose modified asphalt [Grant Number 21A580004].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data supporting this study’s findings are included within the article.



Materials 2022, 15, 8087 23 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jarnette, V.D.; McCarthy, L.M.; Bennert, T.; Guercio, M.C. Use of Mechanistic-Empirical Pavement Design Principles to Assign

Asphalt Pavement Pay Factor Adjustments. J. Constr. Eng. Manag. 2013, 139, 04013024. [CrossRef]
2. Zhu, S.S.; Mai, X.M. A Review of Using Reflective Pavement Materials as Mitigation Tactics to Counter the Effects of Urban Heat

Island. Adv. Compos. Hybrid Mater. 2019, 2, 381–388. [CrossRef]
3. Feng, D.C.; Yi, J.Y.; Wang, D.S. Performance and Thermal Evaluation of Incorporating Waste Ceramic Aggregates in Wearing

Layer of Asphalt Pavement. J. Mater. Civ. Eng. 2013, 25, 857–863. [CrossRef]
4. Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015,

52, 445–459. [CrossRef]
5. Anna, L.P.; Franco, C.; Andrea, N.; Brinchi, L. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs. Energies 2013, 6,

3637–3653.
6. Xie, N.; Li, H.; Zhang, H.J.; Zhang, X.; Jia, M. Effects of Accelerated Weathering on the Optical Characteristics of Reflective

Coatings for Cool Pavement. Sol. Energy Mater. Sol. Cells 2020, 215, 110698. [CrossRef]
7. Kyriakodis, G.E.; Santamouris, M. Using Reflective Pavements to Mmitigate Urban Heat Island in Warm Climates-Results From a

Large Scale Urban Mitigation Project. Urban Clim. 2018, 24, 326–339. [CrossRef]
8. Carnielo, E.; Zinzi, M. Optical and Thermal Characterisation of Cool Asphalts to Mitigate Urban Temperatures and Building

Cooling Demand. Build. Environ. 2013, 60, 56–65. [CrossRef]
9. Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Anderini, E.; Filipponi, M.; Nicolini, A. Experimental Evaluation of Urban Heat

Island Mitigation Potential of Retro-Reflective Pavement in Urban Canyons. Energy Build. 2016, 126, 340–352. [CrossRef]
10. Uemoto, K.L.; Neide, M.N.S.; John, V.M. Estimating Thermal Performance of Cool Colored Paints. Energy Build. 2010, 42, 17–22.

[CrossRef]
11. Synnefa, A.; Karlessi, T.; Gaitani, N.; Santamouris, M.; Assimakopoulos, D.N.; Papakatsikas, C. Experimental Testing of Cool

Colored Thin Layer Asphalt and Estimation of Its Potential to Improve the Urban Microclimate. Build. Environ. 2011, 46, 38–44.
[CrossRef]

12. Tukiran, J.M.; Ariffin, J.; Ghani, A.N.A. Comparison on Colored Coating for Asphalt and Concrete Pavement Based on Thermal
Performance and Cooling Effect. J. Teknol. 2016, 78, 63–70. [CrossRef]

13. Du, Y.F.; Shi, Q.; Wang, S.Y. Bidirectional Heat Induced Structure of Asphalt Pavement for Reducing Pavement Temperature.
Appl. Therm. Eng. 2015, 75, 298–306.

14. Du, Y.F.; Shi, Q.; Wang, S.Y. Highly Oriented Heat-Induced Structure of Asphalt Pavement for Reducing Pavement Temperature.
Energy Build. 2014, 85, 23–31.

15. Du, Y.F.; Wang, S.Y.; Zhang, J. Cooling Asphalt Pavement by a Highly Oriented Heat Conduction structure. Energy Build. 2015,
102, 187–196.

16. Zheng, M.L.; Tian, Y.J.; He, L.T. Analysis on Environmental Thermal Effect of Functionally Graded Nanocomposite Heat Reflective
Coatings for Asphalt Pavement. Coatings 2019, 9, 178. [CrossRef]

17. Chen, Q.; Wang, C.H.; Fu, H. Durability Evaluation of Road Cooling Coating. Constr. Build. Mater. 2018, 190, 13–23. [CrossRef]
18. Shen, A.; Kong, T.; Guo, Y.; Qian, Y.; Li, P. Optimal Design and Road Performance of Waterborne Acrylic Heat Reflective Coating

on Asphalt Pavement. Bull. Chin. Ceram. Soc. 2021, 40, 3829–3836.
19. Morini, E.; Castellani, B.; Anderini, E.; Presciutti, A.; Nicolini, A.; Rossi, F. Optimized Retro-Reflective Tiles for Exterior Building

Element. Sustain. Cities Soc. 2018, 37, 146–153. [CrossRef]
20. Gao, P.; Yu, C.; Du, L.; Luo, H.; Li, Y.; Wei, C. Preparation and research progress of hollow mesoporous silica microsphere.

New Chem. Mater. 2019, 47, 31–34+38.
21. Dong, J.; Lu, P.; Ding, Y. Thermal Insulation Performance of High Reflection Hollow Glass Beads in Heat Reflecting Coatings.

Bull. Chin. Ceram. Soc. 2019, 38, 2191–2195.
22. Yu, X.; Xu, C. Influence of Hight-Performance Hollow Class Microsphere on Thermal Insulation of Coatings. Paint. Coat. Ind.

2014, 44, 1–5.
23. Sha, A.M.; Liu, Z.Z.; Li, P. Solar Heating Reflective Coating Layer (SHRCL) to Cool the Asphalt Pavement Surface. Constr. Build.

Mater. 2017, 139, 355–364. [CrossRef]
24. Pan, L. Preparation of Waterborne Epoxy Heat-Reflective Coating for Asphalt Pavement. Master’s Thesis, Chongqing Jiaotong

University, Chongqing, China, 2017.
25. GB/T 1766-2008; Rating Method for Aging of Paint and Varnish Coatings. China Standards Press: Beijing, China, 2008.

http://doi.org/10.1061/(ASCE)CO.1943-7862.0000748
http://doi.org/10.1007/s42114-019-00104-9
http://doi.org/10.1061/(ASCE)MT.1943-5533.0000788
http://doi.org/10.1016/j.rser.2015.07.177
http://doi.org/10.1016/j.solmat.2020.110698
http://doi.org/10.1016/j.uclim.2017.02.002
http://doi.org/10.1016/j.buildenv.2012.11.004
http://doi.org/10.1016/j.enbuild.2016.05.036
http://doi.org/10.1016/j.enbuild.2009.07.026
http://doi.org/10.1016/j.buildenv.2010.06.014
http://doi.org/10.11113/jt.v78.8239
http://doi.org/10.3390/coatings9030178
http://doi.org/10.1016/j.conbuildmat.2018.09.071
http://doi.org/10.1016/j.scs.2017.11.007
http://doi.org/10.1016/j.conbuildmat.2017.02.087

	Introduction 
	Coating Material 
	Composition of Raw Materials 
	Surface Modification of Functional Filler 
	Determination of Filler Content 
	Determination of Pigment Content 
	Material Dosage of Each Component 

	Test Scheme 
	Indoor Cooling Test 
	Outdoor Cooling Test 
	Anti-Skid Test 
	Structural Depth Test 
	Wear Resistance Test 
	Water Impermeability Test 

	Results Analysis and Discussion 
	Evaluation of Indoor Cooling Effect 
	Evaluation of Outdoor Cooling Effect 
	Anti-Slip Performance 
	Wear Resistance Evaluation 
	Evaluation of Impermeability 
	Anti-Aging Performance Evaluation 

	Conclusions 
	References

