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Abstract: In this paper, we studied the transmission properties, including photonic band gap (PBG)
and defect mode properties, of one-dimensional photonic crystals (1D PCs) consisting of gradient
materials. When keeping the average refractive index of the gradient materials in the 1D gradient-
material PCs (1D GPCs) the same as the index of the corresponding normal materials in the 1D
normal-material PCs (1D NPCs), by transfer matrix method, we found that the complete 1D GPCs
with high-index gradient materials benefit to achieve larger omni-PBG than that in 1D NPCs. In
our high-index gradient material case, for TE(TM) wave, the optimal omni-PBGs in 1D GPCs with
first- and second-order gradient materials are 38.6% (50.2%) and 15.9% (22.3%) larger than that in 1D
NPCs; while for the optimal relative bandwidths of omni-PBG, the corresponding promotions are
41.1% (52.3%) and 16.1% (22.6%), respectively. In addition, when defective 1D GPCs have gradient-
material defect, the position of defect modes can be adjusted by selecting proper parameters of the
gradient materials. These types of research are useful for designing wide PBG devices and tunable
narrow-band filters which have potential application in optical communication.

Keywords: one-dimensional photonic crystals; gradient materials; photonic band gap; defect mode;
tunable filters

1. Introduction

Photonic crystal (PC), firstly proposed by E. Yablonovitch and S. John in 1987 [1–3], is
a type of novel artificial materials with periodic structure. In the past decades, PCs have
been systematically studied due to their unique characteristics such as photonic band gap
(PBG), localized modes, self-collimating phenomena, and surface states, which provide an
effective and reliable way for the manipulation of electromagnetic (EM) wave or light [4–7].
Many devices have been fabricated based on PCs [8–11].

It is well known that complete (or perfect) PCs possess PBGs in which the propagation
of EM wave in the certain range of frequency is strongly forbidden. However, if the
periodicity of a complete PC is destroyed by introducing a defect, localized defect modes
may appear inside the PBG [12]. The PBG effect and the localized defect mode are the most
important properties of PCs, thus many PBG- and defect-mode-based devices have been
designed for microwave, terahertz, or optical applications [13,14].

For example, in 2016 Yang et al. proposed a kind of one-dimensional (1D) PC
nanobeam waveguides sensor array. They constructed special waveguides by assem-
bling one central 1D defective PC and two sided asymmetric 1D complete PCs, and realized
high-quality multiplexers at the wavelength of 1490, 1520, and 1550 nm [15]. In 2022,
researchers from Jouf University and Beni-Suef University used 1D PCs as a sensor to
detect heavy metals ions in water contamination. By detecting the change of defect modes
caused due to the change in concentrations of the heavy metals in the contaminated water,
they demonstrated their designs could be a potential way for simple and accurate detection
of heavy metals in the contaminated water [16]. Also, some researchers used 1D PC of
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Si/SiO2 that has a wide and high reflection PBG for the detection of ethyl butanoate, which
could be promising for accurate and rapid diagnosing of COVID-19 [17].

From above, we see that most of the researches mainly put their attention on the
properties of PC composed of normal (or conventional) materials, i.e., the refractive indexes
of the materials for PCs are constant [18–20]. However, the performances of the 1D PC
consisting of gradient materials are quite different from that with normal materials [21,22].
Therefore, it is necessary to put some effort into the research of 1D gradient-material PCs
(1D GPCs).

Recently, Singh et al. have done some researches on the 1D PCs composed of linear [23],
e-exponential [24], and hyperbolic gradient materials [25]. Some interesting results were
found with the presence of gradient materials. In this paper, we systematically study
the properties of 1D GPCs with first- and second-order gradient materials. Different
from that in Singh’s researches, when comparing the performances of 1D GPCs with
the corresponding 1D normal-material PCs (1D NPCs), the average refractive index (n)
of the gradient materials in the 1D GPCs are always kept the same as the index of the
corresponding normal materials in the 1D NPCs (the reference model). We call this a
fair comparison.

In this paper, by using the transfer matrix method (TMM), the features of TE-, TM-,
omni-, and complete PBG (C-PBG) in complete 1D GPCs are studied. We found that the
complete 1D GPCs with high-index gradient materials benefit to achieve larger omni-PBG
than that in 1D NPCs. In addition, the performances of defective 1D GPCs with gradient
material defect are also studied. We found that the position of defect modes within the gap
can be controlled by selecting proper parameters of the gradient materials.

2. Physical Model and Numerical Method
2.1. Physical Model

In our study, the refractive index of the gradient materials is given by:

nG = kxu + C, (1)

where k and u are the slope and order of the refractive index, and C is the initial refractive
index. In the following, first- and second-order (u = 1, 2) of nG are considered. It should
be pointed out that, in investigations we find that for u ≥ 3, the properties of PBGs and
defect modes of 1D GPCs will change with the change of u, however, they are quite similar
to that for u = 2. To save space, only u = 1, 2 are considered. The average refractive
index of the gradient materials can be calculated by:

nG =
1

dG

∫ dG

0
nGdx. (2)

Here we assume that the PC structures are arranged along x-direction as shown in
Figure 1. dG is the thickness of the gradient materials, so that 0 ∼ dG is a complete layer of
gradient material.

As illustrated in Figure 1, Models 1–4 are complete 1D GPCs for the research of PBG,
and Models 5–6 are the defective 1D GPCs for the research of defect mode, where (H′, L′,
D′), (H′′, L′′, D′′), and (H, L) represent the first-order (u = 1) gradient-material layers, the
second-order (u = 2) gradient-material layers, and the normal-material layers, respectively.
N is the number of periods.

For the research of PBG, four types of models are considered. They are, from models
1–4, corresponding to (H′L)N , (H′′L)N , (HL′)N , and (HL′′)N , respectively. In models 1
and 2, H′ and H′′ denote the high-index gradient-material-layers, and L is the low-index
normal-material-layer. Suppose nH′ and nH′′ are the refractive index of H′ and H′′, then
they both satisfy Equation (1) for u = 1, 2, respectively. According to Equation (2),
the average refractive index of the gradient materials can be calculated. Here we choose
nH′ = nH′′ = 3.6 and nL = 1.8, so it is obvious that in Models 1 and 2 nH′(nH′′) > nL are
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satisfied. While in Models 3 and 4, L′ and L′′ denote the low-index gradient-material layers,
and H is the high-index normal-material layer. In these two cases, we choose nH = 3.6
and nL′ = nL′′ = 1.8 and we have nH > nL′(nL′′).
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Figure 1. Schematics and distributions of refractive index for Models 1–6 from (a–f). Models 1–4 are
the complete 1D GPCs for the research of PBG, and Models 5–6 are the defective 1D GPCs for the
research of defect mode.

In the PBG study, the quarter-wave stack method [26] is used to construct all the 4 Models,
i.e., the optical thicknesses of them are set to satisfy nH′dH′ = nH′′dH′′ = nLdL = λ0/4
for Models 1 and 2, and nHdH = nL′dL′ = nL′′dL′′ = λ0/4 for Models 3 and 4, where
λ0 is the character wavelength, and dH′ , dH′′ , dL, dH , dL′ , dL′′ are the thicknesses of the
corresponding layers. In addition, for the purpose of comparison, the performance of 1D
NPC (HL)N with only normal-material layers (nH = 3.6 and nL = 1.8) are also studied.
For example, in Models 1 and 2, the performances of (H′L)N , (H′′L)N and (HL)N will
be compared. In Models 3 and 4, the performances of (HL′)N , (HL′′)N and (HL)N will
be compared. We call these a fair comparison because in this way the average refractive
indexes of the gradient materials in 1D GPCs are the same as the index of the corresponding
normal materials in the 1D NPCs (the reference model).

For the research of defect mode, two types of models are considered. They are, from
Models 5–6, corresponding to (HL)N D′(LH)N , (HL)N D′′(LH)N , respectively. In Models
5 and 6, D′ and D′′ denote the gradient-material-defects, and (HL)N and (LH)N are the
left and right repeated layers by normal materials. In the following, we select nH = 3.6,
nL = 1.8 and nD′ = nD′′ = 4.5.

In the defect mode study, the optical thicknesses of the models are selected to satisfy
nHdH = nLdL = λ0/4 and nD′dD′ = nD′′dD′′ = λ0/2 for Models 5 and 6. Also, for com-
parison, the performances of structure (HL)N D(LH)N with normal-material-defect are also
studied. For example, in Models 5 and 6, the defect-mode performances of (HL)N D′(LH)N ,
(HL)N D′′(LH)N will be compared with (HL)N D(LH)N , where the defect layers satisfy
nD′ = nD′′ = nD. It is also a fair comparison because in this way the average refractive
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indexes of the gradient defects in 1D GPCs are the same as the index of the corresponding
normal defect in the 1D NPCs.

2.2. Numerical Method

The TMM method is performed to study the properties of our models. Assuming the
wave or light is injected from vacuum at an angle θ onto the structure in the +x direction.

For the normal-material layer, the characteristic matrix can be calculated by:

MN =

[
cosβN − i

pN
sinβN

−ipNsinβN cosβN

]
, (3)

where βN = (2π/λ)nNdNcosθN, and pN =
√

εN/µNcosθN for TE wave, and pN =
√

µN/εNcosθN
for TM wave with dN , nN , λ, and θN being, respectively, the geometrical thickness of the
layer, the refractive index of the layer, the wavelength of the incident wave, and the angle
between the wave vector and the surface normal vector of the layer.

For the gradient-material layer, the situation is different. We divide each gradient-
material layer into q sublayers, calculate the sub-matrix of each sublayer, and multiply
them together to get the characteristic matrix of one complete gradient-material layer [27].
That is:

MG =
q

∏
j = 1

Uj =

[
1 −i 2π

λ Ψ2
−i 2π

λ Ψ1 1

]
. (4)

In Equation (4), Uj is the sub-matrix of one sublayer and it fits Equation (3). When q is
big enough (here we select q = 200, which is big enough for the convergence of results), the
thickness of sublayers dj is approximate to 0. Then β j = (2π/λ)njdjcosθj → 0 , cosβ j → 1 ,
and sinβ j → β j . So Uj can be simplified to be:

Uj =

[
1 − i

pj
β j

−ipjβ j 1

]
. (5)

As a result, Ψ1 and Ψ2 can be calculated as:

Ψ1 =
q

∑
j = 1

pjnjdjcosθj =


q
∑

j = 1

(
ε j −

(njsinθj)
2

µj

)
dj, TE

q
∑

j = 1

(
µj −

(njsinθj)
2

ε j

)
dj, TM

(6)

Ψ2 =
q

∑
j = 1

nj

pj
djcosθj =


q
∑

j = 1
µjdj, TE

q
∑

j = 1
ε jdj, TM

(7)

when q is big enough, we can rewrite Ψ1 and Ψ2 with integral forms as:

Ψ1 =


∫ dG

0

(
εG − (nGsinθG)

2

µG

)
dx, TE∫ dG

0

(
µG − (nGsinθG)

2

εG

)
dx, TM

(8)

Ψ2 =

{∫ dG
0 µGdx, TE∫ dG
0 εGdx, TM

(9)

where εG, µG, nG, dG, and θG are, respectively, the permittivity, the permeability, the
refractive index, the thickness of the gradient-material layer, and the angle between the



Materials 2022, 15, 8049 5 of 15

wave vector and the surface normal vector of the layer. From Equations (8) and (9) and
Equation (4), the characteristic matrix of the gradient material can be calculated.

Then, the amplitudes of the incidence, transmitted, and reflected waves for the whole
PC structure can be connected by the matrix:

M =
N

∏
i = 1

Mi =

[
m11 m12
m21 m22

]
. (10)

And the reflectivity and transmissivity can be derived out to be

R =

∣∣∣∣ (m11 + m12 pB)pA − (m21 + m22 pB)

(m11 + m12 pB)pA + (m21 + m22 pB)

∣∣∣∣2, (11)

T =
pB
pA

∣∣∣∣ 2pA
(m11 + m12 pB)pA + (m21 + m22 pB)

∣∣∣∣2, (12)

where pA(B) =
√

εA(B)/µA(B)cosθ for TE wave, and pA(B) =
√

µA(B)/εA(B)cosθ for TM

wave, and A and B represent the space at the left and right side of the whole PC structure,
with εA(B) and µA(B) being the permittivity and permeability of A or B, respectively. It
can be easily obtained that pA = pB = cosθ when the left and right side of the whole
structure are vacuum. It should be noted that Equations (11) and (12) are suitable for the
isotropic media [27], however, these two equations are not applicable for the anisotropic
media [28,29].

3. Numerical Results and Discussions

In the following, in Section 3.1 we first discuss the PBG properties of Models 1 and 2,
and then for Models 3 and 4; in Section 3.2 we will study the properties of defect modes in
Models 5 and 6.

3.1. Research of PBG

3.1.1. PBG Properties of Model 1 (H′L)N and Model 2 (H′′L)N

We firstly discuss the properties of PBG in Model 1 (H′L)N and Model 2 (H′′L)N .
As mentioned above, Models 1 and 2 represent the complete 1D GPCs with high-index
gradient-material layers and low-index normal-material layers, and H′ and H′′ are high-
index gradient materials with first- and second-order (u = 1, 2), respectively. The
transmission spectra for different incident angles at slope k = −10.4 of the gradient
materials are plotted as shown in Figure 2. For comparison, the transmission spectra of
reference model (HL)N with normal materials are also studied. The parameters for Figure 2
are selected as: nH′ = nH′′ = nH = 3.6, nL = 1.8, nH′dH′ = nH′′dH′′ = nLdL = λ0/4,
N = 15, and we consider all the materials are non-magnetic with µ = 1. It should be
noted that the slopes k of the high-index gradient materials (H′ and H′′) should be kept in
−10.4 ∼ 10.4, otherwise the refractive index of the gradient materials may become negative
while keeping nH′ = nH′′ = 3.6.

From Figure 2, we see that, no matter for the structures with or without gradient
materials, the PBGs become bigger with the increase of incident angle for TE wave, and
become smaller for TM wave. However, at a certain incident angle, no matter for TE or TM
waves, the PBGs of 1D GPCs are always larger than that of 1D NPCs, and the structure
with first-order (u = 1) gradient materials has the largest PBG, i.e., the PBGs of (H′L)N

and (H′′L)N are always larger than (HL)N , and the PBG of (H′L)N is the largest one. The
1D GPCs with high-index gradient materials benefit to achieve larger PBG than that in
1D NPCs.
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Figure 2. The transmission spectra of Model 1 (H′L)N , Model 2 (H′′L)N and the reference model
(HL)N for different incident angles at slope k = −10.4 of the gradient materials for (a) TE and
(b) TM polarizations.

The above results can be understood by the field distributions as shown in Figure 3, in
which the Bragg scattering effect inside these three models can be observed. Figure 3 shows
the field distributions of these three models for ω = 1.2ω0 and k = −10.4 at incident
angle θ = 0◦, where all the parameters are the same as those in Figure 2. We know that
in field distributions, the lower the peak amplitude of the field is, the stronger the Bragg
scattering effect is [30,31]. From Figure 3, we can see that, the peaks of (H′L)N and (H′′L)N

with gradient materials are lower than (HL)N with normal materials (we can see clearly
from the first peak on the far left), and the peak of (H′L)N with first-order gradient material
is the lowest. So that the Bragg scattering effects for (H′L)N and (H′′L)N are stronger
than that for (HL)N , and the effect for (H′L)N is the strongest. Since the stronger Bragg
scattering effect results in larger PBG, so that the PBGs of (H′L)N and (H′′L)N are larger
than that of (HL)N , and the PBG of (H′L)N is the largest one. It is very consistent with the
results obtained from Figure 2.
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In order to study the influence of the slope k on PBG, the transmission spectra of
Model 1 (H′L)N , Model 2 (H′′L)N and the reference Model (HL)N for different slopes k at
incident angle θ = 45◦ are plotted as shown in Figure 4a,b, where all the parameters are
the same as those in Figure 2. From these two figures, we can see that, no matter for TE or
TM waves, the PBGs increase with the increase of the absolute value of k. The bigger the
absolute value of k is, the larger the PBGs for 1D GPCs will be. And the structure (H′L)N

with first-order gradient materials still has the largest PBG. Besides, the distributions of
refractive index of the high-index gradient-material layers H′ and H′′ for different slopes k
are also presented, as shown in Figure 4c,d. We see that, although the average refractive
indexes of the gradient materials are keeping at nH′ = nH′′ = 3.6, the range of variation in
indexes increase with the increase of |k|, and the first-order gradient material H′ possesses
more sharp or obvious change in indexes compared with that in the second-order gradient
material H′′, resulting stronger Bragg scattering and larger PBG. The changes of k agree
well with the changes of PBG as shown in Figure 4a,b.
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Figure 4. The transmission spectra of Model 1 (H′L)N , Model 2 (H′′L)N and the reference Model
(HL)N for different slopes k at incident angle θ = 45◦ for (a) TE and (b) TM polarizations, and
(c,d) are the distributions of refractive index for different slopes k for the first- and second-order
gradient material H′ and H′′, respectively.

To further clarify the PBG properties of the models, the PBG, omni-PBG, and complete
PBG (C-PBG) for TE and TM waves are listed as shown in Table 1. From Table 1, we can also
obtain the conclusions that have been previously obtained from Figures 2 and 4. Besides,
we can clearly see the improvements of PBG for 1D GPCs. For example, when k = −5.2,
for TE wave the omni-PBGs of (H′L)N and (H′′L)N are 12.7% and 5.7% larger than that
in the reference model (HL)N ; for TM wave the corresponding promotions are 18.3% and
8.4%. When k = −10.4, we achieve the optimal improvements. For TE wave the optimal
omni-PBGs are 38.6% and 15.9%, and for TM wave 50.2% and 22.3%, larger than that in
the reference model. It is worth noting that all of our comparisons are obtained under
the condition of keeping the average refractive indexes of the gradient materials in 1D
GPCs the same as the index of the corresponding normal materials in the 1D NPC (the
reference model).
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Table 1. PBG, omni-PBG, C-PBG (in unit ω/ω0 ) for Model 1 (H′L)N , Model 2 (H′′L)N and the
reference model (HL)N .

TE TM

θ (H’L)N
(H”L)N (HL)N (H’L)N (H”L)N (HL)N

k = −10.4

0◦ 0.5792 0.4958 0.4370 0.5792 0.4958 0.4370
30◦ 0.6192 0.5307 0.4676 0.5796 0.4904 0.4279
45◦ 0.6645 0.5701 0.5020 0.5776 0.4824 0.4155
60◦ 0.7164 0.6152 0.5413 0.5723 0.4705 0.3988

Omni-PBG 0.5533 0.4626 0.3992 0.4485 0.3650 0.2986
C-PBG 0.4485 0.3650 0.2986 The same as TE case

k = −5.2

0◦ 0.4835 0.4583 0.4370 0.4835 0.4583 0.4370
30◦ 0.5173 0.4904 0.4676 0.4778 0.4505 0.4279
45◦ 0.5554 0.5268 0.5020 0.4694 0.4396 0.4155
60◦ 0.5989 0.5683 0.5413 0.4572 0.4247 0.3988

Omni-PBG 0.4500 0.4220 0.3992 0.3532 0.3236 0.2986
C-PBG 0.3532 0.3236 0.2986 The same as TE case

k = −2.5

0◦ 0.4491 0.4446 0.4370 0.4491 0.4446 0.4370
30◦ 0.4805 0.4757 0.4676 0.4409 0.4359 0.4279
45◦ 0.5158 0.5109 0.5020 0.4296 0.4240 0.4155
60◦ 0.5562 0.5510 0.5413 0.4140 0.4079 0.3988

Omni-PBG 0.4125 0.4074 0.3992 0.3138 0.3078 0.2986
C-PBG 0.3138 0.3078 0.2986 The same as TE case

k = 2.5

0◦ 0.4475 0.4352 0.4370 0.4475 0.4352 0.4370
30◦ 0.4788 0.4655 0.4676 0.4392 0.4260 0.4279
45◦ 0.5142 0.4996 0.5020 0.4280 0.4137 0.4155
60◦ 0.5546 0.5386 0.5413 0.4128 0.3972 0.3988

Omni-PBG 0.4101 0.3971 0.3992 0.3088 0.2958 0.2986
C-PBG 0.3088 0.2958 0.2986 The same as TE case

k = 5.2

0◦ 0.4808 0.4399 0.4370 0.4808 0.4399 0.4370
30◦ 0.5146 0.4705 0.4676 0.4751 0.4313 0.4279
45◦ 0.5528 0.5049 0.5020 0.4668 0.4197 0.4155
60◦ 0.5965 0.5443 0.5413 0.4552 0.4042 0.3988

Omni-PBG 0.4460 0.4024 0.3992 0.3445 0.3004 0.2986
C-PBG 0.3445 0.3004 0.2986 The same as TE case

k = 10.4

0◦ 0.5762 0.4677 0.4370 0.5762 0.4677 0.4370
30◦ 0.6165 0.5002 0.4676 0.5768 0.4617 0.4279
45◦ 0.6623 0.5368 0.5020 0.5753 0.4532 0.4155
60◦ 0.7148 0.5787 0.5413 0.5706 0.4415 0.3988

Omni-PBG 0.5487 0.4327 0.3992 0.4375 0.3310 0.2986
C-PBG 0.4375 0.3310 0.2986 The same as TE case

In addition, we consider the relative bandwidth (RBW, RBW = Bandwidth/Central frequency)
of the three models. Figure 5a,b show the RBWs of PBG for different incident angles at
k = −10.4, and Figure 5c,d show the RBWs of omni-PBG for different slopes k, where all
the parameters are the same as those in Figure 2. From Figure 5a,b, we can see that, for all
the three models, the RBWs of PBG become larger for TE wave and smaller for TM wave,
with the increase of incident angle. For TE wave, the optimal RBWs of PBG of (H′L)N and
(H′′L)N are 32.2% and 12.7% larger than that of the reference model (HL)N ; for TM wave
the corresponding promotions are 31.8% and 13.6%. The RBWs of PBG for 1D GPCs with
high-index gradient material are always larger than that in 1D NPCs, and the RBW of PBG
for (H′L)N is the best. From Figure 5c,d we see that, no matter for TE or TM waves, the
RBWs of omni-PBG increase with the increase of the absolute value of k. When k = −10.4,
for TE wave the optimal RBWs of omni-PBG of (H′L)N and (H′′L)N are 41.1% and 16.1%
larger than that in the reference model (HL)N ; For TM wave the corresponding promotions
are 52.3% and 22.6%. It is obvious that the 1D GPCs with high-index gradient materials
benefit to achieve larger omni-PBG than that in 1D NPCs.
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Figure 5. The relative bandwidth of PBG and omni-PBG for Model 1 (H′L)N , Model 2 (H′′L)N

and the reference model (HL)N , (a,b) are relative bandwidth of PBG for different incident angles at
k = −10.4, and (c,d) are relative bandwidth of omni-PBG for different slopes k.

3.1.2. PBG Properties of Model 3 (HL′)N and Model 4 (HL′′)N

Then, we discuss the PBG properties of Model 3 (HL′)N and Model 4 (HL′′)N , which
represent the complete 1D GPCs with high-index normal-material layers and low-index
gradient-material layers. L′ and L′′ are low-index gradient materials with first- and second-
order (u = 1, 2), respectively. Similarly, the transmission spectra for different incident
angles at the same slope, the field distributions for these three models, and the transmission
spectra for different slopes k at the same incident angle θ = 45◦, are shown in Figures 6–8,
respectively, where all the parameters are selected as: nH = 3.6, nL′ = nL′′ = nL = 1.8,
nHdH = nL′ dL′ = nL′′dL′′ = λ0/4, N = 15, and all the materials are non-magnetic with
µ = 1. It should be noted that the slopes k of the low-index gradient materials (L′ and
L′′) cannot be too large and are kept in −1.2 ∼ 1.6, otherwise the refractive index of the
gradient materials may become negative while keeping nL′ = nL′′ = 1.8.
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Figure 8. The transmission spectra of Model 3 (HL′)N , Model 4 (HL′′)N and the reference Model
(HL)N for different slopes k at incident angle θ = 45◦ for (a) TE and (b) TM polarizations, and
(c,d) are the distributions of refractive index for different slopes k for the first- and second-order
gradient material L′ and L′′, respectively.

From Figure 6, we can find that in these three models, the PBGs still become bigger
with the increase of incident angle for TE wave, and become smaller for TM wave. However,
at a certain incident angle, the PBGs are almost the same for these three models. The field
distributions in Figure 7 show that the peaks for these three models have no obvious
difference, which agree well with the performances of PBGs obtained from Figure 6. From
Figure 8, we see that the PBGs have only a little change with the increase of |k| for both
TE and TM waves. The situations are quite different from those in model 1 (H′L)N and
Model 2 (H′′L)N . As shown in Figure 8c,d, the range of variation in indexes for L′ and L′′

in Model 3 (HL′)N and Model 4 (HL′′)N are not as strong as H′ and H′′ in Model 1 (H′L)N

and Model 2 (H′′L)N , so that the changes of PBG are not obvious. The improvements of
RBW in these three models are also not obvious, so here we omit the figures of RBW. Thus,
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the complete 1D GPCs with low-index gradient materials may not benefit to achieve larger
PBG than that in 1D NPCs.

3.2. Research of Defect Mode in Model 5 (HL)N D′(LH)N and Model 6 (HL)N D′′(LH)N

Next, we will discuss the defect mode properties of Model 5 (HL)N D′(LH)N and
Model 6 (HL)N D′′(LH)N , in which D′ and D′′ represent the gradient defects with first- and
second-order, respectively. For comparison, the defect mode properties of (HL)N D(LH)N

with normal-material defect are also studied. In the following, the parameters for these
three models are selected as: nH = 3.6, nL = 1.8, nD′ = nD′′ = nD = 4.5,
nHdH = nLdL = λ0/4, nD′dD′ = nD′′dD′′ = nDdD = λ0/2, N = 15, and all the
materials have µ = 1.

Figure 9 shows the defect mode properties for different incident angles at slope
k = 7.8 of the gradient defects in Model 5 (HL)N D′(LH)N , Model 6 (HL)N D′′(LH)N ,
and the reference model (HL)N D(LH)N . From Figure 9, we can see that, no matter for TE
or TM waves, the defect modes move to the high-frequency region (blue shift) with the
increase of the incident angles. However, the defect modes for structures with gradient
defects shift faster to the high-frequency region than that with normal material defect, and
the defect modes for structure with first-order (u = 1) gradient defect have the fastest shift.
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reference Model (HL)N D(LH)N for different incident angles at slope k = 7.8 of the gradient defects
for (a) TE and (b) TM polarizations.

Furthermore, the transmission spectra and the refractive index distributions for differ-
ent slopes k are plotted as shown in Figure 10, where all the parameters are the same as
those in Figure 9. We can find that, no matter for TE or TM waves, the frequencies of defect
modes decrease with the decrease of the absolute value of k. And the changes of defect
modes are asymmetrical with respect to the value of k since the changes of refractive index
for the gradient defects are not symmetrical with the change of k as shown in Figure 10c,d.

To clearly show the defect mode properties of the models, the frequencies of defect
mode for different slopes of gradient defect and incident angles for all the three models
are listed as shown in Table 2, from which we can clearly see the changes of defect modes
for different situations. For example, when k = 7.8, for TE wave the frequencies of defect
modes are 4.79% and 1.69% for model 5 (HL)N D′(LH)N and model 6 (HL)N D′′(LH)N
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higher than that for the reference model (HL)N D(LH)N at θ = 0◦, 5.64% and 2.21% higher
at θ = 45◦, and 6.08% and 2.51% higher at θ = 60◦; for TM wave the frequencies of defect
modes are 4.79% and 1.69% higher at θ = 0◦, 4.48% and 1.69% higher at θ = 45◦, and
4.25% and 1.65% higher at θ = 60◦. With the increase of incident angle, the defect modes
for both Model 5 and Model 6 shift faster to the high-frequency region than that in the
reference model. It should be pointed out that all of our comparisons are obtained under
the condition of keeping the average refractive indexes of the gradient defects in 1D GPCs
the same as the index of the corresponding normal material defect in the 1D NPCs (the
reference Model).
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Figure 10. The transmission spectra of Model 5 (HL)N D′(LH)N , Model 6 (HL)N D′′(LH)N and the
reference Model (HL)N D(LH)N for different slopes k at incident angle θ = 45◦ for (a) TE and
(b) TM polarizations, and (c,d) are the distributions of refractive index for different slopes k for the
first- and second-order gradient defect D′ and D′′, respectively.

Table 2. Defect mode frequencies (in unit ω/ω0 ) of Model 5 (HL)N D′(LH)N , Model 6
(HL)N D′′(LH)N and the reference model (HL)N D(LH)N for nD′ = nD′′ = 4.5.

TE TM

θ (HL)ND’(LH)N (HL)ND”(LH)N (HL)ND(LH)N (HL)ND’(LH)N (HL)ND”(LH)N (HL)ND(LH)N

k = −7.8

0◦ 1.0439 1.0466 1 1.0439 1.0466 1
30◦ 1.0650 1.0672 1.0165 1.0603 1.0628 1.0171
45◦ 1.0869 1.0884 1.0335 1.0783 1.0805 1.0361
60◦ 1.1095 1.1102 1.0510 1.0982 1.1003 1.0576

k = −5.5

0◦ 1.0264 1.0334 1 1.0264 1.0334 1
30◦ 1.0458 1.0528 1.0165 1.0432 1.0500 1.0171
45◦ 1.0658 1.0729 1.0335 1.0617 1.0683 1.0361
60◦ 1.0866 1.0937 1.0510 1.0824 1.0887 1.0576

k = −1.5

0◦ 1.0021 1.0071 1 1.0021 1.0071 1
30◦ 1.0189 1.0242 1.0165 1.0192 1.0241 1.0171
45◦ 1.0361 1.0418 1.0335 1.0382 1.0430 1.0361
60◦ 1.0539 1.0599 1.0510 1.0596 1.0643 1.0576

k = 1.5

0◦ 1.0028 0.9959 1 1.0028 0.9959 1
30◦ 1.0197 1.0122 1.0165 1.0199 1.0131 1.0171
45◦ 1.0370 1.0290 1.0335 1.0389 1.0322 1.0361
60◦ 1.0548 1.0463 1.0510 1.0603 1.0538 1.0576

k = 5.5

0◦ 1.0292 1.0026 1 1.0292 1.0026 1
30◦ 1.0489 1.0201 1.0165 1.0461 1.0200 1.0171
45◦ 1.0692 1.0383 1.0335 1.0647 1.0392 1.0361
60◦ 1.0903 1.0571 1.0510 1.0854 1.0608 1.0576

k = 7.8

0◦ 1.0479 1.0169 1 1.0479 1.0169 1
30◦ 1.0694 1.0362 1.0165 1.0644 1.0343 1.0171
45◦ 1.0918 1.0564 1.0335 1.0825 1.0536 1.0361
60◦ 1.1149 1.0774 1.0510 1.1025 1.0750 1.0576
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In addition, by using the fitting curves method, we obtain the relationship between frequen-
cies of defect modes and slopes k of the gradient defects. Figure 11 shows the fitting curves for
both of the models at incident angle θ = 0◦, where the fitting curve equations can be obtained as
ωD′ = 1+ 2.573 × 10−4k+ 1.067 × 10−3k2− 3.683 × 10−8k3− 5.107 × 10−6k4 for Model 5
(HL)ND′(LH)N and ωD′′ = 1− 3.560 × 10−3k+ 6.406 × 10−4k2 + 2.633 × 10−5k3− 2.057 × 10−6k4

for Model 6 (HL)N D′′(LH)N , respectively. In this way, one can hope to obtain the needed
defect mode by selecting a proper slope k of the gradient material, which is useful for
designing tunable narrow-band PC filters.
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Figure 11. The fitting curves for frequencies of defect modes and slopes k of the gradient defects at
incident angle θ = 0◦ for (a) Model 5 (HL)N D′(LH)N and (b) Model 6 (HL)N D′′(LH)N .

4. Conclusions

In summary, we have studied the transmission properties of 1D PCs composed of
gradient materials. By using the TMM method, we find that the complete 1D GPCs with
high-index gradient materials benefit to achieve larger omni-PBG than that in 1D NPCs. In
our high-index gradient materials case, for TE(TM) wave, the optimal omni-PBGs for 1D
GPCs with first- and second-order gradient materials are 38.6% (50.2%) and 15.9% (22.3%)
larger than that in 1D NPCs; while for the optimal relative bandwidths of omni-PBG,
the corresponding promotions are 41.1% (52.3%) and 16.1% (22.6%), respectively. The
position of defect modes of 1D GPCs with gradient defect can be adjusted by selecting
proper parameters of the gradient materials. It should be pointed out that, in our study,
when comparing the performances of PCs, the average refractive index of the gradient
materials in the 1D GPCs are always kept the same as the index of the corresponding
normal materials in the 1D NPCs (the reference model). It should be noted that the results
in this paper have been checked with the finite element method by using the commercial
software COMSOL. And the results for the two methods fit quite well. These researches
may provide a promising way for designing wide PBG devices and tunable narrow-band
filters in optical communication.
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