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Abstract: To address the environmental pollution caused by nitrogen oxides, V2O5-WO3/TiO2 is
widely used as a catalyst based on selective catalytic reduction (SCR) technology. However, spent
SCR catalysts pose a potential hazard to the environment due to the presence of heavy metals. This
problem continues to plague countries with predominantly thermal power generation, and landfills
as the dominant disposal method wastes significant metal resources. Previous research into the
recovery of these metal resources has received considerable attention. Here, we summarise the
methods of recovery and find that research trends are beginning to move towards improving the
added value of recovered products. One very promising application is photocatalysts; however,
the atomic efficiency of current methods is not satisfactory. Therefore, this review first focuses on
the regeneration of spent SCR catalysts and the processes used for elemental extraction to clarify
what forms of V, W and Ti can be obtained from existing processes. This is followed by providing
directions for the conversion of spent SCR catalysts into photocatalysts with improvements based on
such processes. From a different perspective, this also provides a new resource for photocatalysts
and is expected to significantly reduce the cost of photocatalyst production.
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1. Introduction

Industrial gas emission has been a concern for decades, and nitrogen oxides (NOX)
are one of the most important toxic industrial gases [1,2]. A selective catalytic reduction
catalyst (SCR catalyst) is widely used for coal-fired boilers as a flue gas denitrification
catalyst to convert NOX into harmless N2 emission [3]. Furthermore, V2O5-WO3/TiO2-
based SCR catalysts are the most common type. At high temperatures, the presence of
H2O, SO2, alkali metals, heavy metals and halogens causes the SCR catalyst to be poisoned
and, after deactivation, become a spent SCR catalyst [4]. Spent SCR catalysts have several
characteristics: (i) increasing waste generation [5], (ii) containing large amounts of metal
resources [6], and (iii) causing serious threats to soil and water bodies [7]. The severity and
urgency of the problem is reflected in the increase in patents for the recycling of spent SCR
catalysts in China since 2013 [8].

The treatment process must prevent toxic elements (e.g., V, As, Pb, etc.) from entering
soil and water bodies to avoid secondary pollution. Conventional treatment is landfill for
spent SCR catalysts as hazardous solid waste [9]. According to the policy guidelines, such
wastes are required to be roasted above 1000 ◦C with flux to prevent the leaching of toxic
elements [10]. Recent research has tended to add spent catalysts to production lines that
require significant use of SCR catalyst for denitrification, thus avoiding transportation. For
instance, spent SCR catalysts can be blended into the iron-ore sintering process [11], with
heavy metals being recovered from the sintering dust [12]. However, the addition of spent
SCR catalysts will reduce several indicators [13]. Alternatively, the spent SCR catalyst can
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also be mixed into cement and the leaching of As and Pb is significantly inhibited after
sintering [14].

However, spent SCR catalysts have a high recovery value with components of over
80wt% consisting of V2O5, WO3 and TiO2 and should, therefore, be regenerated or recov-
ered in order to recycle the resource [15–17]. Although spent SCR catalysts may contain
oxides such as SiO2, Al2O3 and CaO that constitute the ceramics, as well as compounds of
elements including As and Pb deposited from the flue gas, the extraction of these materials
is not reviewed in this article. Regeneration methods can extend the life of SCR catalysts by
focusing on detoxification and reactivation. The major problems to be addressed during re-
generation are the deactivation and loss of active sites as well as blocking of pores [4,18–20].
Specific regeneration methods for different types of deactivations can achieve promising
results [21]. However, current regeneration processes are unable to achieve the expected
results when the catalyst is severely deactivated or has undergone several regenerations. In
this case, the SCR catalyst will reach the end of its life and be recycled by recovery [22]. Con-
ventional recovery methods focused on the extraction and purification of metals (V, W and
Ti) [23]. However, recent research has increasingly turned to the added value of the product
with a view to increasing the economic benefits of recycling. For instance, after separation,
NH4VO3, ammonium paratungstate and anatase TiO2 are produced, respectively [24].

Under light conditions, photocatalysts produce photogenerated electrons and holes
and, further, form active species such as hydroxyl (·OH) and oxygen (O2

−) radicals. Due
to the strong redox properties of the active species, photocatalysts can address pollutions
caused by heavy metals, organics and other substances [25]. Anatase TiO2 is a classical
photocatalyst with excellent photocatalytic activity. Studies have often used doping to build
heterostructures to extend the wavelength range of light and to suppress the separation
of photogenerated carriers [26,27]. On the other hand, to inhibit the agglomeration of
nano TiO2 and to assist recycling, the preference is to use carrier-loaded nano TiO2 [28].
Spent SCR catalysts contain a large amount of anatase TiO2 and are cost-effective; therefore,
recovery as photocatalysts not only increases the recovery benefit, but also overcomes the
high cost of conventional photocatalysts. In addition, V [29,30] and W [31,32] in spent SCR
catalysts have the potential to build heterostructures with TiO2.

This paper will first review the research on the recycling of spent SCR catalysts carried
out between 2013 and 2022. Thereafter, it will continue with a discussion of the studies on
the recycling of spent SCR catalysts between 2019 and 2022, including both the regeneration
and recovery of spent SCR catalysts. The discussion will focus on the use of reagents
with acid, base, complexing, oxidising, or reducing properties in these studies and will
summarise the different effects of the different reagents. For the recovery methods, the
extraction process of the elements is discussed. This is followed by an introduction to the
idea of converting spent SCR catalysts into photocatalysts. Finally, the developments in the
recycling of spent SCR catalysts are concluded.

2. Progress in Research on Spent SCR Catalysts
2.1. Methodology

Articles were retrieved on 24 July 2022 from Web of Science (www.webofscience.com)
database. The articles were found using the following search formula: TS = (selective-
catalytic-reduction OR NH3-scr or deNO(x)-catalysts OR scr) AND TS = (spent OR waste)
AND TS = (recovery OR recycling OR leaching OR extraction OR management) AND
TS = (titanium OR vanadium OR tungsten). Patents were found through the European
Patent Office (www.epo.org) on 24 July 2022. The keywords used are selective-catalytic-
reduction, NH3 scr, deNO, scr, spent, recovery, recycling, leaching, extraction, management,
titanium, vanadium, tungsten. Patents and articles between 2013 and 2022 were counted
using the search method described above to give a general trend of research on recycling
spent SCR catalysts. Other sections review articles for 2019 to 2022.

www.webofscience.com
www.epo.org
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2.2. Research Process

The data on articles and patents described in 2.1 are plotted in Figure 1, where Figure 1a
shows the number of articles and patents issued with the year, and Figure 1b shows the
proportion of patent disclosures in different countries or organisations. From 2013 onwards,
the number of studies addressing the recovery and regeneration of spent SCR catalysts
continues to rise and reaches a peak in 2020. The proportion of patents is higher than
that of articles, reflecting the huge demand for practical applications in this field. In
Figure 1b, significant interest in the disposal of waste SCR catalysts is shown, since the
energy structure in China, Korea and Japan is dominated by thermal power generation.
Take China as an example: the Emission standard of air pollutants for thermal power
plants (GB 13223-2011) limits NOX emissions to <100 mg/m3. With increasingly stringent
restrictions on NOX emissions, the use of SCR catalysts will also increase. In view of the
limited effect of regeneration on spent SCR catalysts, the cycle time of regeneration has
been limited to ensure that gas emissions comply with standards [22]. As a result, there is a
growing interest in the development of regeneration processes and the reuse of resources
through recycling.
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The principles of green chemistry and green engineering by Ziemmerman et al. [33]
in 2020 also emphasise the importance of this idea of recycling. The principles point to a
shift in future industry from mostly linear processes to circular processes and a shift from
“waste” treatment to “waste” utilisation. In this field, the main idea is to avoid landfills
in favour of efficient regeneration of spent SCR catalysts and recycling those that cannot
be regenerated. Current research has explored several methods for recycling spent SCR
catalysts, but these methods have not been replicated in industry, so there is still much
scope for research into recycling methods. Factors limiting their application include the
process, waste generation, material consumption, and equipment requirements and, in the
case of recycled production products, the value of the product is also important [22].

3. Regeneration of Spent SCR Catalysts

SCR catalysts under a high-temperature flue gas condition are subjected to deactiva-
tion due to multiple factors including pore blocking, catalytic-site poison and catalytic-
component loss [4,18–20]. In recent years, most regeneration processes have employed
ultrasonic instead of stirring to obtain better results (Table 1). Regeneration processes have
been designed to address the poisoning of spent SCR catalysts and to attempt to restore the
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structure of spent SCR catalysts. Following this effort, some studies have supplemented
the regenerated catalysts with active sites by impregnation. NH4VO3 solutions are usually
used to reload V2O5 [34], and, relatively, Ce(NO3)3 solutions can be used instead to load
CeO2 avoiding the use of V [35].

Table 1. Regeneration process for SCR catalysts.

Process Testing Condition Performance Ref.

Mixed acid immersing, NaOH
immersing, CH3COOH immersing 0.2% NO2 + 0.2% NH3, 2 L min−1, 400 ◦C

NOX conversion = 73.0%
(used: 17.1%, virgin: 89.9%) [36]

H2SO4 immersing 0.05% NH3 + 0.05% NO, 0.2 L min−1, 400 ◦C
NOX conversion ≈ 100%

(comparable to fresh) [37]

Ultrasonic water immersing,
ultrasonic acid immersing, NH4VO3
impregnation, roasting, and loading

335 mg m−3 NO + 513 mg m−3 NO2,
1L min−1, 230 ◦C

NOX conversion = 93.5%
(higher than fresh) [34]

Ultrasonic water immersing,
ultrasonic EDTA+LAS immersing,

and roasting
0.05% NH3+0.05% NO, 0.1 L min−1, 400 ◦C

NOX conversion = 86%
(poisoned: about 40%, fresh:

nearly 100%)
[38]

Ultrasonic TMT103 immersing,
ultrasonic EDTA+LAS+H2SO4
immersing, Ce(NO3)3·6H2O
impregnation, and roasting

0.08% NH3+0.08% NO, 0.1 L min−1, 400 ◦C
NOX conversion = nearly
99% (comparable to fresh) [35]

EDTA: ethylenediaminetetraacetic acid. LAS: dodecylbenzene sulfonic acid. TMT103: 2,4,6-trimercaptotriazine.

Improvement of the pore landscape of regenerated SCR catalysts can effectively in-
crease catalytic activity without reloading the active site. Various data can be used to
characterise the pore landscape, such as: mesopore volume, mesopore surface area, BET
surface area, acidic sites etc. Here, the mesopore volume data obtained with thermoporom-
etry measurements (TPM) provides a reliable indication of the effect of the immersing
method [36]. In addition to regenerating the activity by improving the pore landscape,
pore size and specific surface area can also be enhanced by loading the regenerated SCR
catalyst powder onto the cloth surface. Shi et al. [34] regenerated the spent SCR catalyst
in H2C2O4 and NH4VO3 solutions after sequential blowing, grinding, deionised water
washing and 0.5 M sulphuric acid washing. The regenerated catalyst was then loaded onto
a P84 filter cloth by impregnation and used as a catalytic filter for low-temperature flue gas
denitrification achieving 91.6% of the catalytic effect of the fresh catalyst.

The regeneration process attempts to achieve better results for catalysts that are
severely deactivated as well as repeatedly experiencing deactivation–regeneration [22].
Complex processes can effectively extend the life cycle of SCR catalysts. However, the
complexity of the process also results in higher costs. Therefore, despite the fact that
complex processes can be used for longer cycle times, the difficult regenerated spent SCR
catalysts need to be further recovered as metal (V, W, and Ti) resources to reduce costs.

4. Extraction of Elements from Spent SCR Catalysts

Two common methods can be used to effectively extract V and W from spent SCR
catalysts: the leaching method [39,40] and the roasting method [16,41]. The leaching
method is a process dissolving certain components from the catalyst. Leaching reagents are
typically employed to selectively separate specific components with acid [42], base [43],
complexation [44], reduction [44], oxidation [45] and other properties. In most cases, TiO2
will be retained in the residue to be recycled [46,47]. The roasting method is a process in
which reagents eutectic with spent SCR catalyst under high-temperature conditions form
salts. This process generally forms soluble salts which are subsequently separated from
the solid phase in a leaching step [48,49]. Table 2 summarises the studies of extracting by
roasting or leaching methods for V, W and lists the final form of Ti.
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Table 2. Extraction process for spent SCR catalysts.

Process Form of Ti Leaching Efficiency of V Leaching Efficiency of W Ref.

(NH4)2CO3+H2O2 leaching Anatase TiO2 98% 99% [45]

NaOH leaching Anatase TiO2 40.0~51.0%/66.8~69.8% 44.6~57.3%/38.0%~52.6% [50]

NaOH leaching In residue 95.76% on average 98.63% on average [51]

NaOH leaching Anatase TiO2 82.4% 54.3% [52]

HCl leaching Anatase TiO2 52.5% 0.1% [52]

HNO3 leaching Anatase TiO2 42.2% 0.0% [52]

H2SO4 leaching Anatase TiO2 69.0% 0.6% [52]

NaOH leaching, H2SO4 leaching,
carbothermic reduction, flotation

operation, and electrochemical process
Metallic Ti (purity of 99.5 wt%) 91% 67% [6]

NaOH+NaCl roasting, and
water leaching In residue 93.25% 99.17% [53]

K2CO3 roasting, water leaching, Si
removal, and CaCl2 precipitation Potassium titanates 99.65% 96.89% [54]

Na2CO3+NaCl roasting, and
water leaching

Resin enrichment, NaOH stripping,
NH4Cl precipitation

Nano TiO2 and sodium
titanate nanorods

94.9% of leaching
93.4% of precipitation

95.5% of leaching
96.2% of crystallization [49]

Na2CO3 roasting, water leaching, and
HCl leaching TiOCl2 99.3% 99.2% [55]

Na2CO3 roasting, and water leaching Anatase/rutile TiO2 >99% >99% [48]

Roasting, H2C2O4 leaching, repeat,
HCl precipitation, and roasting Anatase/rutile TiO2 None 87% [56]

Soda roasting, and water leaching
Aliquat 336 extraction, and

NaOH+NaCl stripping
In residue >99.9% of extraction

71.31% of stripping
>99.9% of extraction
71.31% of stripping [24]

NaOH+Na2CO3 roasting, HCl
immersing, and calcination Rutile/anatase TiO2 nanosphere None None [7]

Aliquat 336: trioctylmethylammonium chloride.

4.1. Leaching Method

Leaching is a process of separating V2O5, WO3 from the catalyst carrier using a solvent
to break the V-O, W-O and Ti-O bonds [52]. The separation can be achieved by selectively
dissolving V2O5, WO3 and TiO2 into different solvents based on the difference in solubility.
Whereas V2O5 is usually well soluble in acids and bases, WO3 is only soluble in bases
and stable to acids, while TiO2 is always retained in residues. Therefore, leaching with
normal acid (e.g., H2SO4 [52]) allows a highly selective separation of V from the catalyst,
and, conversely, extracts both V and W.

In the case of V extraction, V(III) is not easily soluble and can be oxidised by adding
an oxidant or V(V) under an acidic condition. H2O2 is commonly used as an oxidant
to convert low-valent V to V(V) under alkaline conditions, contributing to the leaching
efficiency in both leaching [45] and precipitation [54] processes. In contrast, the reaction
between V(III) and V(V) will take place at 5wt% H2SO4 at 95 ◦C and will eventually be
converted to VOSO4 in the presence of the reducing agent Na2SO3 (leaching efficiency is
nearly 100%) [57]. Theoretical calculations show [52] that (i) with alkaline reagents, OH-

reacts directly with V and W atoms; and (ii) with acidic reagents, H+ reacts with O atoms.
Organic acids such as H2C2O4 exhibit complexation reaction activity as well, e.g., V can
be separated out as VOC2O4 using 1.0 mol/L H2C2O4 at 90 ◦C in a reaction of 3 h at a
liquid-to-solid ratio of 20 mL g−1 (leaching efficiency of 84.22%) [44]. Among the organic
acids, H2C2O4 is more effective than citric and tartaric acids for the extraction of V [58].

The extraction of W was also facilitated by the addition of the oxidising agent H2O2
but the leaching efficiency remained at a low level [54]. Additionally, at high V content,
the leaching efficiency of W is limited due to the strong V-W-Ti interaction [50]. WO3
has good stability in acid and requires alkaline reagents for dissolution. Leaching of W
generally uses NaOH as the leaching agent and requires heating. For instance, heating a
1.5 mol L−1 NaOH solution to 100 ◦C at atmospheric pressure for a 4 h leaching (liquid-to-
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solid ratio = 15) resulted in leaching efficiencies ranging from 38.0% to 57.3% for W [50]. In
contrast, applying a pressure condition to heat a 4.75 mol L−1 NaOH solution to 190 ◦C
for 44.5 min leaching reaction (liquid-to-solid ratio = 10) could achieve 98.63% leaching
efficiency [51]. When the temperature was increased to 300 ◦C, 96% W (liquid-to-solid
ratio = 10) was leached after 2 h of immersing using a 2 mol L−1 NaOH solution [39].
Further studies have found that mixing NaOH with spent SCR catalysts using a ball-mill
premix promotes leaching at lower temperatures [59]. After premixing NaOH to a catalyst
at a mass ratio of 0.9, leaching with the addition of water for 20 min at 25 ◦C (liquid-to-
solid ratio = 15) could achieve the same result as a 4 h reaction at 100 ◦C under the same
conditions (see Figure 2 for SEM images). The final leaching efficiencies for V and W were
67.7% and 56.3%, respectively.
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Ammonium salt can form water-soluble NH4VO3 and (NH4)2WO4 with V and W,
respectively. Cao et al. [45] leached V and W using a solution of 2 mol L−1 (NH4)2CO3 and
1.5 mol L−1 H2O2. After 0.5 h leaching at 70 ◦C, the leaching efficiencies of V and W reached
98% and 99% (liquid-to-solid ratio = 25). The addition of H2O2 has a promoting effect on V
but is not sensitive to the concentration. The use of alkaline leaching agents requires the
further separation of V and W. For example, diethylhydroxydodecanoneoxime (LIX 63) can
selectively separate V from W [45]. Similar extractants are trioctylphosphine oxide (TOPO),
triisobutylphosphine sulphide (TIBPS), trioctylmethylammonium chloride (Aliquat 336)
and di-2-ethylhexylphosphoric acid (HDEHP) [60]. Aliquat 336 can simultaneously extract
V and W [24]. After separation, W can be converted to ammonium paratungstate, while V
can be converted to NH4VO3.
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4.2. Roasting Method

Roasting is a method of converting oxides of V and W into soluble salts with the
assistant of alkaline reagents by high-temperature solid-state reactions. The main reagents
used are NaOH, Na2CO3 and NaCl. NaOH and Na2CO3 are the major alkaline reagents,
which can react with W more effectively than NaCl [53]. The Na2CO3 will decompose
above the melting temperature, accompanied by the occurrence of alkali fusion. When the
CaO content is low and the Na2O content is high, V and W tend to form soluble NaVO3
and Na2WO4, thereby avoiding the formation of insoluble CaV2O6 and CaWO4 during the
process [48]. Due to the different proportions of Na2O and metal oxides, the catalyst will ex-
hibit different states after the reaction (Figure 3). Studies have shown that mixing NaCl with
Na2CO3 [49] (NaCl:Na2CO3 = 8.8:16) and NaOH [53] (NaCl:NaOH = 3:2) can effectively
promote leaching efficiency. NaCl will produce Cl2 in the process of high-temperature
calcination, acting as catalyst and oxidant, thus reducing the reaction temperature (from
1000 ◦C to 750 ◦C) [53].
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After roasting with an alkaline reagent, the obtained solid can be selectively extracted
using the leaching method. In this condition, water is able to dissolve the sodium salts
formed during roasting, including NaVO3, Na2WO4, etc. [49]. Thus, V and W are trans-
ferred to water. Since Si affects the leaching efficiency of V and W, Si needs to be removed
first in the case of high Si content. At room temperature, 85% of Si can be removed in the
form of silicate precipitation by reducing the pH to 9.5 by HCl, avoiding the loss of W and
V. Water leaching can reach more than 99% leaching of V and W, and is less affected by
leaching conditions [55]. Afterwards, V and W can be precipitated from water with Ca2+

ions [54]. Alternatively, highly selective extraction can be achieved with the help of the
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selective complexation of V and W by organic ammonium salts (e.g., [R3NCH3]+Cl− [24]).
Following a stripping process using a solution of NaOH and NaCl, the stripping step has a
leaching efficiency of around 70% for V and W.

Leaching processes are limited for the efficient leaching of W due to the stability of the
W-O bond. In contrast, roasting methods are highly efficient in breaking such stable bonds
at high temperatures, thus reducing the requirement for a leaching reagent. However,
roasting reagents require NaOH or Na2CO3 for alkali fusion at high temperatures, raising
the equipment requirements and, therefore, making it difficult to promote. To solve this
problem, the leaching process can be adjusted to reduce the reliance on alkaline reagents
during roasting. In the case of leaching with HCl instead, for example, CaO can be added
to the spent SCR catalyst instead of the alkaline reagent [17]. Such acid leaching takes
place by the selective dissolution of the calcium salts (e.g., CaV2O6 and CaWO4) formed
from roasting step. The use of a high concentration (4 mol L−1) of HCl promotes the
dissolution of V and inhibits the dissolution of W, thus achieving the separation of V and
W. The undissolved W will be deposited on the surface of CaWO4 in the form of H2WO4.
The H2WO4 precipitation should be dissolved in a low-concentration (1 mol L−1) NaOH
solution to inhibit the dissolution of Fe, Al, and V. Subsequently CaCl2 is added to once
again precipitate W from the solution as CaWO4 (CaWO4 content was 96.1%). Using
H2C2O4 (0.5 mol L−1) instead of HCl (1 mol L−1) was found to increase the dissolution
efficiency of W as well as reduce the dissolution of V [56]. In contrast to HCl, the use of
H2C2O4 does not produce H2WO4, but is further converted to soluble H2[WO3(C2O4)H2O].
This dissolution process is accompanied by a precipitation of CaC2O4. A secondary roasting
of the leach residue converts this precipitate into CaO. Further H2C2O4 leaching after the
secondary roasting leads to an increase in the leaching of W to 87% and directly obtaining
a H2WO4 product.

4.3. Separation of Ti

The content of Ti is the highest in spent SCR catalysts and Ti will be retained in
the residue after the extraction of V and W. With similar leaching efficiencies of V and
W, differences in the form of Ti are presented due to the different processes. During
roasting above 500 ◦C, anatase TiO2 tends to change to rutile TiO2 [7] and a portion of
TiO2 is converted to titanate [54], yet the leaching process is relatively gentle and does
not affect the structure of TiO2 [45]. The form of Ti varies depending on the recovery
method (Figure 4): (i) roasting with Na2CO3 and NaCl at 750 ◦C gives a mixture of rutile
TiO2, anatase TiO2 and sodium titanate [49]; (ii) roasting with K2CO3 gives potassium
titanate [54]; (iii) electrolysis of Ti2CO (obtaining by a carbothermal reduction) gives Ti
metal [6]; and (iv) adding hot concentrated HCl to the roasting residue gives a TiOCl2
solution [55], etc.
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5. Conversion of Spent SCR Catalysts into Photocatalysts

Recent research has explored new recycling methods to convert spent SCR catalysts
into products rather than raw materials, such as a pigment [61] and ceramic opacifier [62].
The idea of recycling spent SCR catalysts as photocatalysts for pollution treatment is in-line
with the concept of “treating waste with waste” [63].

5.1. Catalyst Carriers

Photocatalytic degradation is a promising technology to address environmental pollu-
tion with economic and environmental efficiency [64]. However, as most photocatalysts
are nanoparticles, they are difficult to recycle and, therefore, present the potential risk of
secondary pollution [65]. On the other hand, the tendency of nanoparticles to agglomerate
can also limit their catalytic activity [66]. To solve these problems, photocatalysts can be
loaded onto carriers, such as fly ash [67] and activated carbon [68]. The carriers not only
provide dispersion and easier recycling, but specific carriers can also improve the catalytic
activity of the catalyst by forming a specific heterostructure [69].
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Spent SCR catalysts contain a variety of oxides with catalytic activity, which can
be used as carriers to enhance catalytic activity. However, it is important to ensure that
components such as V2O5 and As2O5 do not enter the environment during utilization and
cause secondary contamination. Jin et al. [70] investigated spent SCR catalysts by grinding
into powder and adding Al2O3, diatomite and agglomerant to calcine at 1000 ◦C to obtain
ceramics. This was followed by impregnation and sintering in an 8wt% Ni(NO3)2 solution
to obtain NiO loading (Figure 5). The prepared NiO-based catalysts were used for the
reforming of formaldehyde and water vapour for hydrogen production with a selectivity of
100% for H2, 31.9% for CO and 53.2% for CO2 at 500 ◦C, and a conversion of formaldehyde
above 93.0%. The analysis of the XPS data and the mechanism of the reforming reaction
revealed that the presence of oxides on the surface had a positive effect on the performance
of the catalysis. Based on the work of Jin et al., it can be demonstrated that spent SCR
catalysts have potential as catalyst carriers. Particularly, TiO2 shows typical photocatalytic
activity and research on recycling spent SCR catalysts as photocatalyst carriers for this
feature awaits further exploration.
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5.2. Photocatalysts

V2O5, WO3 and TiO2 from spent SCR catalysts can be used for the preparation of
photocatalysts. V2O5 and WO3 can form crystals with cations such as Bi3+ in the form
of VO4

3− and WO6
6−, respectively [71], while TiO2 exists as anatase TiO2 mostly [72].

Zhang et al. [57] used a solution of H2SO4 and Na2SO3 to leach out V from spent SCR
catalyst, followed by dissolving the Ti-containing residue in HF solution to obtain WO3-
TiO2 photocatalyst after a hydrothermal reaction. In another case, V and W were leached
out using a NaOH solution, followed by the addition of Bi(NO3)3 for a hydrothermal
reaction to obtain BiVO4/Bi2WO6 photocatalysts [71]. Wang et al. [73] also used NaOH
to retain Ti in the leach residue for separation. Subsequently, Na3PO4 and Mg(NO3)2
were used to precipitate Ca2+, SiO4

4−, and PO4
3−, respectively. This was followed by the

precipitation of Al3+ and Mg2+ using HNO3 and NaOH to adjust the pH. The solution
retains VO3

− and WO4
2−, but additional NH4VO3 is required due to the low V. The

addition of Zn(NO3)2 eventually leads to a visible light responsive Zn3(VO4)2/ZnWO4
photocatalyst by hydrothermal reaction.

Qian et al. [74] used NaOH to leach the V element from the catalyst, followed by a
hydrothermal reaction using 96% H2SO4 to convert the TiO2 to TiOSO4 after roasting at
200 ◦C (Figure 6). V is removed after reaction with NaOH, while W remains in the residue.
This method overcomes the difficulty of separating Ti and W and makes effective use of Ti.
The prepared photocatalyst exhibits similar catalytic activity to P25 at a lower Ti content
and demonstrates the feasibility of dissolving and converting Ti to nano TiO2. Furthermore,
loading TiO2 onto the fly-ash surface also overcomes the shortcomings of nano TiO2, which
is difficult to recover and prone to agglomeration.
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Figure 6. (a) Microscopic view of Ti-FA surface by TEM, (b) XRD pattern, (c) XRF test results
and (d) UV degradation of rhodamine B catalytic performance test results; (e) UV-DRS test results.
Reproduced with permission [74]. Copyright 2022, Elsevier.

Current research has focused on the separation of TiO2 from V2O5 and WO3 with
some progress being achieved. Figure 7 illustrates the transformation relationships of
substances in these works. Since the goal is no longer to separate and purify V, W and
Ti, the process can be simplified based on current separation processes. New extraction
processes can also be developed, such as the dissolution of TiO2 with sulphuric acid under
hydrothermal conditions [75]. Mechanochemical methods also have potential applications
in the preparation of TiO2 [76]. Ball milling as a pre-treatment has proven to be effective
in the recycling of spent SCR catalysts [59]. On the other hand, both BiVO4 [77] and
Bi2WO6 [78] can form corresponding heterostructures with TiO2. Moreover, V and W can
be extracted directly into solution as NH4VO3 and (NH4)2WO4 [45], which would assist in
the further synthesis of bismuth salt.
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6. Conclusions

To recycle spent SCR catalysts as a metal resource, it is vitally important for future
research to explore environmentally friendly and economically feasible recycling methods.
Regeneration processes are currently employed in industry to extend the life of SCR
catalysts, but catalysts that have undergone three to four regenerations are eventually
abandoned as they are difficult to regenerate. Landfill is the main disposal method for
spent SCR catalysts at present; although wasteful of resources, it is much easier to process.
Consequently, even though the recycling process is more in-line with the principles of
green chemistry, it is difficult to promote because of its complexity, high cost, low economic
efficiency, and the risk of secondary pollution. Nevertheless, further exploration of the
recycling process is necessary to address these shortcomings to achieve broader application.

This review of research progress in the last 3 years shows that an increasing num-
ber of studies are focusing on the added value of the product obtained after extraction.
The common elemental extraction processes include leaching and roasting methods. The
leaching method can achieve the extraction of elemental V at lower temperatures, and
efficiency can be improved by combining with a reducing agent (e.g., Na2SO3) under acidic
conditions and oxidizing agent (e.g., H2O2) under alkaline conditions. The roasting method
can overcome the difficulty of extracting W by the leaching method as it converts insoluble
oxides into soluble salts. Improvements to the roasting method include (i) adaptation of
the roasting condition with reference to the phase diagram, (ii) addition of a Cl− containing
catalyst (e.g., NaCl) to reduce the temperature and time for the reaction, and (iii) application
of acid leaching rather than water leaching to avoid the use of an alkaline reagent in the
roasting process. With the above method, V2O5 can be recovered as CaV2O6, NH4VO3,
BiVO4, and Zn3(VO4)2, while WO3 is recovered as CaWO4, ammonium tungstate, Bi2WO6,
and ZnWO4. Additionally, both BiVO4/Bi2WO6, and Zn3(VO4)2/ZnWO4 and TiO2 can be
utilized as photocatalysts for environmental management, respectively. Further research
should explore photocatalyst conversion processes with higher atomic efficiency. The
selective conversion of V, W and Ti into their salt or oxide can be applied in the treatment of
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spent SCR catalysts, and attempts can be made to combine these substances into a hetero-
geneous photocatalyst. In addition, new treatment technologies such as mechanochemical
processes to reduce contamination during the recycling of spent SCR catalysts need to be
introduced. The process should avoid high-temperature and pressure-reaction conditions
and reduce the production of wastewater, waste gases and residues.
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