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Abstract: This study investigated the applicability of using ultrasonic wave signals in detecting
early fire damage in concrete. This study analyzed the reliability of using the linear (wave velocity)
and nonlinear (coherence) parameters from ultrasonic pulse measurements and the applicability of
machine learning in assessing the thermal damage of concrete cylinders. While machine learning
has been used in some damage detections for concrete, its feasibility has not been fully investigated
in classifying thermal damage. Data was collected from laboratory experiments using concrete
specimens with three different water-to-binder ratios (0.54, 0.46, and 0.35). The specimens were
subjected to different target temperatures (100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, and 600 ◦C) and another set
of cylinders was subjected to room temperature (20 ◦C) to represent the normal temperature condition.
It was observed that P-wave velocities increased by 0.1% to 10.44% when the concretes were heated
to 100 ◦C, and then decreased continuously until 600 ◦C by 48.46% to 65.80%. Conversely, coherence
showed a significant decrease after exposure to 100 ◦C but had fluctuating values in the range of
0.110 to 0.223 thereafter. In terms of classifying the thermal damage of concrete, machine learning
yielded an accuracy of 76.0% while the use of P-wave velocity and coherence yielded accuracies of
30.26% and 32.31%, respectively.

Keywords: thermal damage; concrete; ultrasonic pulse waves; machine learning

1. Introduction

Thermal damages in concrete structures have a substantial influence in terms of social
and economic impact. Between 2017 and 2019, about 368,500 residential building fires were
reported in the United States, resulting in property losses of USD 8.1 billion [1]. In Japan,
an average of 22,776 building fires were recorded, with an average of USD 578,354 loss in
damaged property in the past decade [2] while at least 5000 fire cases are reported in the EU
every day, costing up to EUR 126 billion each year [3]. In South Korea, an estimated average
of 42,000 residential building fires and an average of USD 730 million in property loss have
been recorded in the past decade [4]. If feasible, doing repairs is the most cost-effective and
time-efficient option, and the most appropriate restoration procedures are determined after
an initial inspection of the fire-exposed concrete [5]. From the standpoint of having safe
and reliable operations of these structures, it is important to understand the variation in
the effects of fire damage on the different properties of concrete. It is critical to create a
reliable method for assessing the condition of heat-damaged concrete in structures and, if
necessary, determining proper operation and maintenance strategies.

Heat-induced concrete damage may be evaluated in a variety of ways. The prelim-
inary level of assessment is based mostly on optical inspection and sounding (hammer
tapping). However, optical inspections give only surface information, and the outcomes are
dependent on the inspector’s experience [6]. Similarly, the sounding process is subjective
in nature, and reliable findings require skilled inspectors [7]. In the laboratory, a variety
of analytical procedures might be utilized (e.g., colorimetry, X-ray diffraction analysis,
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differential thermal analysis, chemical analysis, dilatometry, porosimeter, or micro-crack
density analysis) [8]. However, they need the response of small samples collected from
concrete buildings on a point-by-point basis. As a result, they are labor-intensive and
time-consuming, and they cannot be applied uniformly across the building. Various non-
destructive test (NDT) methods have been developed by several researchers that may be
quickly applied to heat-damaged concrete in structures. Previous studies have highlighted
the benefits and drawbacks of the nondestructive testing (NDT) methods routinely used to
assess the state of heat-damaged concrete (see Table 1).

Table 1. Summary of some NDT methods for evaluation of heat-induced concrete damage from
the literature.

Methodology
Principle NDT Method Parameters and Procedures References

Optical
Visual Inspection

observation of color change,
cracking and spalling of the

concrete surface
[6]

Colorimetry specifically used to detect
color changes [8]

Stress-waves

UPV Method
assess uniformity and quality of

concrete through
transmission method

[9,10]

UPE Method

pulse-echo method that is based
on the idea that amplitude of
stress waves introduced into

concrete are altered by the
existence of cracks

[11]

IE Method

sonic-echo or seismic-echo
method where a stress pulse is

introduced into an object on the
available surface by a transmitter

[12,13]

Electromagnetic Wave GPR

brief bursts of electromagnetic
radiation penetrate the examined
material (within a certain broad

frequency band)

[14]

Sclerometric methods

Rebound Hammer
approach is based on impact

loading and the propagation of
stress waves

[15,16]

Windsor Probe Test
Penetration resistance test where
a hardened steel probe is driven

into the concrete
[17,18]

For the evaluation of the condition of heat-damaged concrete in the field and laboratory,
NDT methods based on elastic wave velocity measurements (resonance vibration test,
ultrasonic pulse velocity test, impact-echo, surface wave measurements, etc.) have gained
popularity. The employment of ultrasonic pulse velocity (UPV) is the most common of
these methods because of its simple operating principle, ease of equipment and data
interpretation, and the fact that it is well-standardized in the test procedure in many
countries across the world [19]. Choi et al. [20] studied and proposed two linear equations
predicting the compressive and tensile strength of concrete using UPV. Kee et al. [7]
investigated the effects of heating and cooling on the static and dynamic residual properties
of 35 MPa concrete used for nuclear reactor auxiliary buildings in Korea and proposed
correlations between static and dynamic properties of heat-damaged concrete. One study
analyzed the effect of high temperatures on the residual property of concrete with fibers [21].
A similar study was performed on normal concrete (with a design strength of 50 MPa)
and high-performance concrete (with a design strength of 98 MPa) [9]. In these studies,
ultrasonic pulse velocities were usually correlated to the concrete mechanical properties.



Materials 2022, 15, 7914 3 of 24

The traditional ultrasonic approach is sensitive to major faults or open fractures where
there is an effective barrier to transmission, but not to equally dispersed microcracks or
deterioration. Large defects in a specimen have a major impact on these linear parameters;
therefore, monitoring the change in these linear parameters can help discover relatively
large defects. Very minor faults, however, may have no effect on the linear parameters.

These minor faults, such as microcracks, can happen during the early fire exposure of
concrete. Early fire damage in concrete usually happens because of its constituent materials
such as binders, especially as it is one of the most important factors affecting the mechanical
behavior of concrete exposed to high temperatures [22]. Beyond 100 ◦C, microcracks begin
to develop in the hardened paste, and the hardened paste is subjected to an expansion-
contraction cycle until it reaches 500 ◦C [23,24]. Choinska et al. [25] found that at 105 ◦C the
pores in the porous concrete material enlarge due to heat expansion. When the temperature
hits 150 ◦C, Portland cement paste constricted as the temperature rises. Thermal shrinkage
of the cement paste and aggregate expansion cause thermal stresses in the cement pastes,
resulting in micro-cracking in the concrete [26]. Dehydration, or the loss of non-evaporable
water or hydration water, begins as temperatures reach 250 ◦C [27,28]. Between 200 ◦C
and 250 ◦C, compressive strength begins to deteriorate significantly. The presence of mi-
crostructure in concrete does not necessarily affect the mechanical properties of concrete
(e.g., compressive strength and modulus of elasticity) and the structural performance of
reinforced concrete elements (ultimate strength and deformability). However, the behavior
of microstructures can affect the permeability and durability properties of concrete struc-
tures, which could accelerate the deterioration of concrete from various sources. From the
standpoint of infrastructure management agencies, special care is needed to monitor the
condition of the concrete in structures that were partially or totally exposed to fire, and if
necessary, to make appropriate maintenance actions.

Nonlinear acoustical techniques might work in detecting early damage. There have
been studies that used nonlinear UPV parameters such as side peak count [29–31], energy
redistribution [30], coda wave interferometry [32], and the scaling subtracting method
(SSM) [33] to assess the condition of concrete structures. Antonaci et al. [33] used the SSM to
detect the delamination in concrete in the form of the discontinuity between two concrete
cubes. Another study used nonlinear parameters in detecting surface-breaking cracks
by utilizing the sideband energy redistribution and side peak count [29]. A study by
Basu et al. [30] also used side peak count to monitor damage progression in reinforced
concrete. In a study by Yim et al., a nonlinear ultrasonic method was used to estimate
the compressive strength of thermally-damaged concrete [34]. Sun and Zhu used Coda
wave interferometry to investigate the relative velocity changes of ultrasonic waves with
temperature changes [35]. Yim et al. used an impact-modulation method to acquire
nonlinearity parameters as a quantitative measure of contact-type defects [34]. Yang
and Chen used a nonlinear ultrasonic second harmonic generation (SHG) technique to
evaluate the degradation of concrete integrity exposed to extreme temperatures [36]. These
nonlinear parameters are often calculated from some parts, usually near or at the tail-end,
of the ultrasonic wave, which exhibits changes when the structure is damaged. Some
of these studies, however, deal with measurements of surface waves, which restricts
measurements due to wavelength scaling with propagating depth [36], and one study deals
with temperatures of up to 200 ◦C only [35].

Another possible solution for exploiting ultrasonic waves to detect damage is the use
of machine learning. Machine learning approaches using ultrasonic pulse data have been
used in other fields. Starzak et al. [37] investigated the use of pulse velocity in patients with
metabolic syndrome. Huang et al. [38] used CNN-LSTM to study damage detection in a
copper pipeline using ultrasonic scanning. Machine learning technologies are increasingly
being used in civil engineering due to the fast rise in data availability, as well as increased
processing capacity and simpler programming methodologies. Daneshvar et al. [39] pro-
posed a new approach for detecting and identifying damage by creating a new sensitivity
function of modal strain energy. Another study by Daneshvar et al. [40] investigated the
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effects of impact loads brought on by the falling weight on heated-and-cooled reinforced
concrete slabs using a multilayer perceptron (MLP). Research by Moradi et al. [41] predicted
the compressive strength of concrete with binary supplementary cementitious material
utilizing machine learning. Ultrasonic waves, much like vibration waves, are collected in
the time domain. The development of machine learning for time-series analysis has been
continuously improving. Machine learning has been used in some research to detect inter-
nal concrete deterioration using ultrasonic pulse data. Zhang et al. [42] used six different
machine-learning approaches to estimate the degree of corrosion within rubber concrete.
Karimpouli et al. [43] used machine learning in the ultrasonic prediction of crack density.
According to the study of Hu et al. [44], the genetic algorithm backpropagation neural net-
work (GA-BPNN), was effective in identifying pre-made voids inside concrete. However,
while machine learning has been shown to be a reliable tool for detecting crack damage,
there is still limited research on using machine learning with ultrasonic waves in detecting
fire damage. Moreover, linear properties are the common parameters being used in these
investigations, and there is still very limited research on nonlinear ultrasonic parameters of
thermally-damaged concretes. The current study was established to investigate the use of
the full waveforms from the ultrasonic signal measurements to make the most out of this
parameter. Investigations on both the nonlinear parameters and the extracted parameters
from the ultrasonic time series were also investigated in this research.

This study aims to evaluate the damage of concrete exposed to high temperatures,
especially focusing on the early detection of heat-induced damage. Ultrasonic pulse wave
signals were used for the investigation. These signals were utilized to describe the effect of
early thermal damage on both linear and nonlinear parameters of UPV. The same signals
were also used to investigate the capability of using machine learning to classify concrete
thermal damage. The data were gathered from cylindrical concrete specimens from three
different design strengths exposed to six different target temperatures. The succeeding
chapters discuss the methods used in sample preparation, data collection and preparation,
the utilized machine learning methods, and network performance. The results in this
study demonstrate the potential of machine learning of ultrasonic time series data for early
detection of heat-induced concrete damage.

2. Materials and Methods

This section describes the experimental methods used in the study to obtain the
necessary time-series data for the analysis. In general, the study followed the flowchart
shown in Figure 1. Concrete cylinder specimens were prepared and then subjected to
different temperature levels to represent different degrees of thermal damage. After thermal
exposure, ultrasonic pulse waves were measured.
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2.1. Sample Preparation and Exposure to High Temperature

Sample concrete cylinders (200 mm height × 100 mm diameter) were fabricated for
use in all the tests that were done for the study. Three concrete mixes were used, with
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different water-to-binder ratios—Mix 1, Mix 2, and Mix 3. The properties and quantities of
the samples are presented in Table 2. Thirty-five concrete cylinders were cast in 100 mm
by 200 mm plastic molds in accordance with ASTM C31/C31M [45] for each concrete mix.
Thirty cylinders (i.e., five cylinders per each target temperature) were used to evaluate the
thermal properties of concrete after heating and cooling with six target temperatures (20 ◦C
for control specimens, and 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, and 600 ◦C). In addition, ten
concrete cylinders were prepared to monitor the internal temperature of concrete during
the heating and cooling process for the test specimens. For these specimens, a plastic tube
with a diameter of 0.5 mm was fitted inside the concrete specimen. The tube served as a
casing for the placement of a thermocouple inside the specimen. All concrete cylinders were
water-cured in a water tank with a constant temperature (20 ◦C) after being de-molded
on the day after they were cast. Six concrete cylinders (five test specimens and one for
measurements of the core temperature of the concrete) were taken from the water tank and
dried in an electric oven at 100 ◦C. After 24 h, heating was stopped to let the specimens cool
naturally back to room temperature (20 ◦C~23 ◦C) and the duration of the cooling process
was referenced to the temperature of the oven. This process was done for all concrete
cylinders before they were exposed to the target temperature inside the furnace. This
added step was done to ensure that all specimens had a consistent water content within 1%
at the start of the concrete ‘firing’. It is widely known that continuous drying of concrete at
100 ◦C only results in the evaporation of the physical free water without causing thermal
damage associated with dehydration and decomposition of the hydrates in concrete [46,47].
Therefore, the concrete specimens after the oven-drying and cooling process were defined
as “without fire damage” in this study.

Table 2. Properties of the concrete cylinders used in this study.

Mixture Proportion (kg/m3)

W C S G
SCMs CA W/B

(%) SV/AV

FA SC AE

MIX 1 168 219 908 931 31 62 2.18 53.85 0.497
MIX 2 170 110 858 923 37 220 2.57 46.32 0.485
MIX 3 163 230 859 887 46 184 4.60 35.43 0.495

Note W: water, B: binder, SV: volume of sand, AV: volume of aggregates, C: Portland cement type I, S: sand, G:
gravel, SCMs: Supplementary cementitious materials, FA: fly ash type II, SC: Blast furnace slag cement type II,
CA: Chemical Admixtures, AE: high-performance air-entraining agent.

The concrete cylinders were heated in a programmed electric furnace with a tem-
perature history control shown in Figure 2a. An R-type thermocouple (platinum and
platinum-rhodium alloy, 87 percent Pt and 13 percent Rh by weight) was installed in the
electric furnace to monitor air temperature. The electric furnace heated six concrete spec-
imens at the same time. A K-type thermocouple (chromel and alumel alloy) was buried
in one of the concrete cylinders to measure the core temperature of the concrete. Note
that the R-type thermocouple gives stable and accurate (±1.5 ◦C) results and is used in
high-temperature applications (0 ◦C to 1600 ◦C) [48], but it is relatively expensive; the
K-type thermocouple is moderately accurate (2.2 ◦C), can be used in a wide temperature
range (0 ◦C to 1260 ◦C) [48], and is cost-effective for measuring concrete temperature. The
heating-cooling method was patterned after the previous literature [7,22,49,50] with a heat-
ing rate of 5◦C per minute. The six concrete cylinders were placed inside the electric furnace
for exposure to five different temperature levels (100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, or 600 ◦C)
and room temperature (20 ◦C) for control data. The temperature of the electric furnace was
held constant around the goal temperature in this investigation until the concrete’s core
temperature approached thermally steady-state conditions. The steady-state condition was
defined as the temperature at which the concrete’s core temperature was equal to its surface
temperature, or when the internal temperature increment rate was less than 0.5 ◦C/min.
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Figure 2b shows the measured temperature-time history of the internal temperature of
the furnace and core of the concrete cylinder for the target temperature of 600 ◦C. It was
observed that the measured core temperature in the concrete cylinder approached the ther-
mally steady-state condition after the internal temperature of the furnace was sustained at
the target temperature for about 2 h. The electric furnace’s heat source was shut off after the
temperature of the cylinders reached a steady-state, and the furnace was naturally cooled
in an airtight state. During the cooling period, the temperature of the concrete decreases
according to an exponential function [51] (T = c0eγt, where c0 is a constant dependent on a
target temperature in ◦C; γ is a cooling rate of about −0.14/h for all concrete specimens
and target temperature levels; T is the concrete temperature, and t is time in hours).
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Figure 2. Temperature-time history used for this research: (a) programmed temperature-time history
for heating electric furnace, (b) measured temperature in the air of the furnace and the core of a
concrete cylinder for the target temperature of 600 ◦C. Note that th is defined as the time it takes
to reach the target temperature, tss is the time when the temperature is sustained at Ttarget (target
temperature for this study, lasts for 2 h), and tc is the time it takes to naturally cool down to
room temperature.

2.2. Ultrasonic Pulse Wave Measurements

Figure 3 illustrates the test setup of ultrasonic pulse wave measurements transmitted
through a concrete sample. The standard test procedure according to ASTM C 597/C597M-
16 [52] was used to assess the P-wave velocity (constrained compressive velocity) of concrete
cylinders that were subjected to different target temperatures. The room temperature
during the ultrasonic pulse wave measurements was maintained at around 20 ◦C to 25 ◦C
throughout the experiment. The study used a pair of transducers with a center frequency
of about 50 kHz that can transmit and receive ultrasonic pulses (see Figure 3). Using a
pulse-receiver (Panametrics 5077 PR, Tokyo, Japan), a 200 V square pulse with a duration of
10 µs was used to drive the source transducer (Olympus, Tokyo, Japan). First, the concrete
surface was wiped with a wet cloth to remove dust. Next, the standard coupling agent was
applied on the contact surfaces of the concrete and transducers to minimize impedance
mismatch in the ultrasonic pulse wave measurements. Furthermore, the transducers were
firmly pressed to minimize the air gaps in the concrete and transducer interfaces. The
receiving sensor recorded transient stress waves that were created by the source sensor and
propagated through the concrete. It took a couple of seconds to obtain stable signals after
starting the ultrasonic pulse wave measurements. The receiving signals were digitized by a
high-speed digital oscilloscope (NI-PXI 5101, Austin, TX, USA) with a total signal length of
0.001 s at a sampling rate of 10 MHz after the measured ultrasonic signals became stable.
In this study, pulse data were collected ten times on each cylinder and were averaged to
improve signal-to-noise levels of the measured data. The averaged ultrasonic data was
transferred to a laptop computer for data storage and post-processing.
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Figure 4a presents the typical P-wave signals measured from the concrete cylinders
used in this study, and the enlarged signals are shown in Figure 4b. The signals from
Figure 4a,b were processed in MATLAB [53] using the ‘smoothdata’ function for smoothing
the signals and normalization by dividing the whole signal function by its maximum value.
The velocity of an ultrasonic wave can be calculated by dividing the wave path, L, by the
travel time, t, as follows:

Vp =
L

ta − td
(1)

where Vp is the wave propagation velocity, L is the distance between transducers, ta is
the initial wave arrival time, and td is the delay time computed during probe calibration.
When the two transducers were positioned opposite each other, the time for the first arrival
wave was recorded, and the delay time was calculated. It should be noted that P-waves
are potentially faster in time signals than any other refracted and reflected waves from
the border of concrete cylinders. The arrival of transient stress waves via cylinders was
computed using the modified threshold approach [54] based on the observed ultrasonic
signals. Using the conventional threshold method used in earlier investigations [55], an
estimated arrival time was initially obtained in this way. After that, a precise arrival time
was calculated by fitting a line to the signal data. The intersection of the two P-wave
travel times was then used to determine the P-wave travel time. The intersection of the
fitting line and the measured zero-signal stage was used to determine the P-wave travel
time. However, more care was needed to find the first arrival time of the P-wave in the
ultrasonic pulse waves from the severely damaged concrete after being exposed to 600 ◦C.
In this study, a low pass filter, with a cut-off frequency of 30 kHz, was applied to suppress
high-frequency noises that appeared before the arrival of the P-wave.

To analyze the nonlinear parameters of ultrasonic wave signals, this study used signal
coherence. Coherence is a statistical metric that measures the degree of correlation between
two signals as a function of frequency. Some research studies have related coherence to
microelectronics engineering [56,57], modal analysis [58–61], and signal processing [62,63].
The coherence function has been employed in concrete investigations; however, its use
is currently confined to ensuring signal consistency between ultrasonic signal measure-
ments [10,64]. The presence of out-of-phase noise, irregularity of coupling between the
source and receiving transducers during testing, and the change of internal configuration
due to defects and voids are the key variables that impair coherence [10]. The coherence
function is calculated by

γxy( f ) =
Sxy( f )√

Sxx( f )Syy( f )
(2)
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where γxy( f ) is the coherence, Sxy( f ) is the cross-spectral density of x and y, and Sxx( f )
and Syy( f ) are the power spectral densities of x and y, respectively. The resultant value is
a number between 0 and 1.0, with a value around 1.0 indicating high signal coherence.
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Figure 4. Typical time signals of ultrasonic pulse waves propagating through the thermally-damaged
concrete cylinders under different target temperatures: (a) ultrasonic waves at different target
temperatures and (b) enlarged ultrasonic signal around the first arrival of the wave shown in (a).

As can be seen from the equation, assessing the coherence between concretes with
and without fire damage requires a baseline value. To obtain the coherence values in
this study, signals were initially collected on specimens with and without fire damage.
A subset of the time-domain signals was then chosen, and each signal was converted
into power spectral density using FFT. The coherence was computed from the converted
signals using MATLAB’s ‘mscohere’ function [53]. The coherence value is averaged within
a certain frequency frame in this investigation so that the outcome may be reported as
a single number and analyzed with temperature variations. In this study, the tail end
of the ultrasonic wave signal was used (shown in Figure 4 as the signal enclosed inside
the dashed box). Figure 5 illustrates the frequency used for this study in averaging the
coherence of the time signals from the concrete. The primary wave going through the
concrete is captured in the first half of the signal. The reflected signal towards the tail end
of the transmission, however, has a lower amplitude because of energy absorption. So
far, there are still no standards on what ‘window’ should be used for averaging nonlinear
properties. Therefore, the coherence averaging approach, like other nonlinear methods,
still clearly requires engineering judgment. For this analysis, the ultrasonic signals from
the different temperatures were each compared to the signals from the normal temperature
condition (20 ◦C vs. 100 ◦C, 20 ◦C vs. 200 ◦C, 20 ◦C vs. 300 ◦C, 20 ◦C vs. 400 ◦C, and 20 ◦C
vs. 600 ◦C).

2.3. Machine Learning for Full Wave Analysis
2.3.1. Preprocessing of Time-Series Data from UPV Measurement

Before machine learning classification, it is important that the time signals from the
UPV measurement were first preprocessed. For the preprocessing of the time series, the
study followed the methodology presented in Figure 6.
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Eighty-three concrete cylinders were exposed to thermal damage. Each cylinder was
then assessed for the UPV wave measurements. For UPV measurements, 10 readings were
taken for each cylinder giving a total of 830 readings. Since the 10 readings represent one
concrete specimen under the same temperature condition, the average of 10 signals was
used to represent a specimen under a specific condition. This procedure was done after
checking the coherence of the 10 readings that were taken for the same specimen on each
temperature condition. In all, only 83 sample data were considered for the machine learning
classification system. Unfortunately, due to time, access, or interpretability restrictions,
the number of datasets considered in this study may not be sufficient to develop a general
model. Nevertheless, the number of samples in this study is more than 10 times greater
than the temperature levels (20 ◦C, 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, and 600 ◦C) considered
in the classification models in this study, which is comparable with ‘a rule of thumb’ of
the required training datasets for a machine leaning process [65]. Therefore, the number
of samples (=83 sample data) in this study can be said to be acceptable to investigate the
feasibility of machine learning of ultrasonic pulse waves to evaluate early heat-induced
concrete damage [65].

Filtering erroneous data was the first step in the preparation procedure. Imperfect
coupling can cause erroneous data, leading to a signal with non-sinusoidal shapes. Signals
that were either excessively loud or too weak, as indicated by signal clipping or signal-to-
noise indistinguishability, were deleted as well. Furthermore, due to a hardware constraint,
some received signal data included a high amplitude signal in the same time step as the
source or ‘ghost’ signal. The next step is adjusting the signal to the correct phase. Some
signals have delays in them due to the constraint of the oscilloscope. The phase of some
signals might be delayed but their integrity is still retained and they can still be considered
an ‘acceptable’ signal. The time window for each signal was then reduced to 7.5 ms to
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compensate for the loss of some data in the adjusted signal. Smoothing and normalizing
the time signals were then done so that all signals had a consistent amplitude. The data
was smoothed by computing local quadratic equations in each window of the data being
analyzed. This method results in fewer discontinuities but requires more computation. As
for the normalization of data, the study followed the conventional method in MATLAB [53]
where the values of the peak amplitudes range between −1 to 1. Using this method, the
signal’s amplitude is scaled over all samples so that the peak magnitude is set to 1. Data
resampling was then done to consider different sampling rates for the analysis. Instead of
depending on a model based on a predetermined equation, machine learning algorithms
use computer methods to “learn” information directly from data. The algorithms modify
their performance as the number of examples available for learning increases.

For machine learning classification, two sampling rates were used—10 MHz, which
is the default sampling rate of the equipment used, and 125 kHz. The data for the UPV
time signals were preprocessed to reflect the 125 kHz sampling rate. In terms of time
windows, the study used lengths of 9 ms (for comparison of the two sampling rates used),
7.5 ms, 5.5 ms, 3.5 ms, and 1.5 ms. There would be six classification groups for each target
temperature (20 ◦C, 100 ◦C, 200 ◦C, 300 ◦C, 400 ◦C, and 600 ◦C) labeled as 0, 1, 2, 3, 4, and
5, respectively. For this analysis, this study used the Classification Learner application built
into MATLAB [53].

2.3.2. Classification Algorithms

In this study, machine learning was used to classify the thermal damage of the concrete
specimens that were exposed to different temperatures. The different machine-learning
methods used for this study are summarized in Table 3. The data used for the analysis was
from the ultrasonic waves of the UPV measurement.

Table 3. List of the machine learning algorithms used in this study.

Classification Method Principle Advantage Limitations

Support Vector Machine
(SVM)

n Classifies data by
determining the
optimum
hyperplane for
separating data
points from different
classes.

n Effective in
high-dimensional
spaces

n May be used
effectively with
unstructured and
semi-structured data

n Large datasets
require a long
training period

n Resulting model is
difficult to
comprehend and
interpret

K-nearest Neighbor
(KNN)

n New data point is
classified based on
its similarity to a set
of nearby data points

n Simple and
comprehensible

n Resistance to noisy
data among them.

n Provides a high level
of performance

n In low dimensions,
prediction accuracy
is good, but not in
high dimensions

n Use a lot of memory
and are difficult to
understand

Gaussian Naive Bayes
(GNB)

n Given the class,
Bayes theorem is
used to assume that
predictors are
conditionally
independent

n Simple to
understand and
apply to multiclass
categorization

n Flexibility is limited
n To manage model

flexibility, you can’t
modify any
parameters

Decision Tree
(DT)

n A branching
flowchart that
represents several
paths for possible
options and results

n Ease of use
and interpretability

n Predictive accuracy
is low

Support vector machine (SVM) for classification is a supervised learning technique.
This method has been used in some studies for time-series prediction or
forecasting [56,66,67]. A support vector machine, in more formal terms, creates a hy-
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perplane or set of hyperplanes in a high- or infinite-dimensional space that can be used for
classification and regression in a variety of activities such as image retrials, financial study,
and so on. The idea behind SVM is to use the “hyperplane” as a decision boundary (see
Equation (3)), to divide learning targets into positive and negative classes, and to make any
sample’s point-to-plane distance (see Equation (3)) larger than or equal to 1.

wTx + b = 0 (3)

yi

(
wT xi + b

)
≥ 1 (4)

K-nearest neighbor (KNN) is a non-parametric supervised learning method. The func-
tion is only approximated locally in k-NN classification, and all computation is postponed
until the function is evaluated. Because this method relies on distance for classification,
normalizing the training data can greatly increase its performance if the features represent
various physical units or come in wildly different scales. It provides a high level of per-
formance [68]. The KNN classifier has a few disadvantages, including a long execution
time, sensitivity to large datasets, sensitivity to the value of parameter K, and a large
number of computing steps [69]. K-nearest neighbor is a classic learning strategy in which
no model is built from the training data. A distance function, such as the Euclidean or
Manhattan distance metric, is employed to assess the similarity of an unknown instance
to each instance in the training set. The unknown instance’s class label is then chosen by
a majority vote among its K closest neighbors. The theoretical features of the KNN rule
ensure that its probability of error is bounded above twice the Bayes probability of error for
any distributions.

Naive Bayes classification models are widely used for a variety of real-world tasks,
including email spam filtering, text categorization, and document classification. This family
of probability classifiers is based on a very simple premise, and they perform extremely well
in training and prediction on high-dimensional datasets. They just require a modest amount
of training data to calculate the required parameters, and their findings are usually always
interpretable, unlike neural networks, where this is frequently impossible [70]. In general,
naive Bayes classifiers use Bayes’ theorem to apply a strong mutually independency (naive)
assumption between features. This means that the probability p(yk|v1, . . . , vN) of a given
voltage value vi (feature) belonging to a given class value (also called label or target value)
yk, i.e., being a correct (k = +) or false (k = −) pulse, is independent of all other (N − 1)
voltages representing the detector pulse v = {v1, . . . , vN} of length N. (feature vector).

A Decision Tree (DT) is a flowchart-like structure model that represents its findings
using a tree-like structure made up of internal nodes that carry test conditions and class
labels or leaf nodes (decision made after computing all features). The DT method has a
built-in feature selection mechanism since it assesses the importance of the attribute when
creating test conditions [71,72]. Because of these qualities, as well as its predictive power,
DT is one of the most extensively used classifiers.

2.3.3. Input Data

The types of input data for the machine learning process were also considered for this
study. As discussed in the previous section, the sampling rate and the time window of the
signals were also investigated. The preprocessed time series or signal was used to compare
the different sampling rates and different time windows. All signals were adjusted to reflect
the source signal, i.e., time zero (t0) is at the beginning of the source signal. As discussed
in Section 2.3.1, above, the time window was adjusted to compensate for the loss of other
signal data due to preprocessing, so the length signal was reduced to 9 ms.

Feature extraction from the time series was also considered for use for inputting data
in machine learning. In one study by Li et al. [73], the researchers observed that extracting
some features from the time series can improve the model accuracy for machine learning
or deep networks. For this study, the two features extracted were spectral entropy and
instantaneous frequency. Spectral entropy is based on Shannon entropy in the field of
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information theory, which measures the spectral power distribution of the data x with N
number of samples in different frequencies. The fundamental equations are as given in [74].

Typically, the part of the time series that contains the signal will have a higher entropy
than another part that is purely noise. The instantaneous or soon-to-be frequency is a
measure of the change in the time parameter of a nonstationary signal associated with
the average of the frequencies as the signal alters. More details regarding instantaneous
frequency can be found in the research by Boashash [75].

2.3.4. Training and Testing

Matlab R2022a [53] Classification Learner toolbox was used to train and test the model.
The hyperparameters used were set as default in the toolbox. The hyperparameters for
training the network were set up once the data had been prepared. For validation of the
algorithms, k-Fold cross-validation was used with the value of k-folds set to the default
value of five. This means that the dataset was shuffled and then split into 5 groups with
each group having 16 observations. The selected algorithm would then be trained and
evaluated with each group, i.e., the model or algorithm would train on four of the five
groups and then be evaluated or tested on the remaining group.

For each algorithm used in machine learning, the dataset was prepared with the same
preprocessing method as discussed in Section 2.3.1. Afterward, default parameters were
assigned in the MATLAB [53] Classification Learner Toolbox. For the SVM algorithm,
the linear Kernel function was used with a Kernel box constraint level and Kernel scale
both equal to 1 as default values. For this algorithm, the multiclass method used was
‘One-vs-One’. For the KNN algorithm, the number of neighbors was set to three with
a distance metric of Euclidian and distance weight set to ‘Equal’. For the Naïve Bayes
algorithm, the default hyperparameters set by MATLAB [53] were used for the Gaussian
kernel. For the Decision Tree algorithm, the maximum number of splits used was 100 with
the split criterion set to ‘Gini’s diversity index’. All misclassification cost was set to default.

2.3.5. Performance Measure

There are many evaluation metrics used to investigate the performance of a machine
learning classification. These metrics are often related to the confusion matrix, which is a
specialized table layout that visualizes the performance of a supervised learning algorithm.
It was named as such to demonstrate whether the algorithm is confusing different classes,
i.e., mislabeling a class as another class. This table has two dimensions—actual and
predicted—with equal sets of classes in each dimension. An example of a confusion matrix
can be seen in Figure 7. The blue color represents the true positives—correctly predicted
classes—while the other colors represent the mislabels or misclassifications. The intensity
of the color depends on the number of inputs that were labeled in a particular class, i.e.,
darkest blue represents the highest number of inputs that were correctly labeled while the
darkest orange represents those that were incorrectly labeled.

From this table, different evaluation metrics can be calculated. The basic metrics are
accuracy, F1-score, precision, and recall. Accuracy describes how the model performs in
classifying the time signals. Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations, while recall is the ratio of correctly predicted
positive values to all observations in that particular class. Precision and recall exist in a
trade-off relationship, i.e., optimizing one comes at the cost of the other. To avoid this,
F1-score is used, which utilizes precision and recall to present the test’s accuracy through a
harmonic mean. Theses metrics can be calculated using the following equations:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

F1 − score =
2 × (Precision × Recall)

Precision + Recall
(8)

where TP is true positives (correctly predicted positive classes), TN is true negatives
(correctly predicted negative classes), FP is false positives (incorrectly predicted pos-
itive classes), and FN is false negatives (incorrectly predicted negative classes). For
this study, accuracy and F1-score were used to evaluate the performance of the machine
learning algorithms.
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3. Results and Discussion
3.1. Ultrasonic Pulse Velocity

Figure 8 shows the variation of the ultrasonic pulse wave velocity, Vp, of heat-damaged
concrete with increasing temperature. The results from the concrete for the Mixes 1, 2,
and 3 are shown as red, blue, and black solid circles. The average value of the P-wave
velocity ranges from 3019.20 m/s to 4029.11 m/s across different mix designs and different
temperatures. The COV varies from 4.68% to 26.92% with the highest COV found with the
temperature of 600 ◦C. For all mixes of concrete, there is a slight increase of wave velocity
from room temperature to 100 ◦C, then the wave velocity dropped at 200 ◦C. Between
20 ◦C and 100 ◦C, the wave velocity increased to about 3.3% for Mix 1, 0.1% for Mix 2, and
10.4% for Mix 3, of the wave velocity at room temperature. At 200 ◦C, the P-wave velocity
dropped to about 2.0% of the Vp measured at 20 ◦C, VP20, for Mix 1 and 5.4% of VP20 for
Mix 2. Conversely, the wave velocity of Mix 3 decreased from 100 ◦C to 200 ◦C but was still
higher than VP20 by about 3.8%. By 300 ◦C, the decrease of P-wave velocities was apparent,
dropping by around 14.1%, 12.6%, and 5.7% for Mix 1, Mix 2, and Mix 3, respectively.
Furthermore, by 400 ◦C and 600 ◦C, P-wave velocities of all mixes substantially dropped to
around 17.0% to 65.8% of VP20, with Mix 1 having the highest percentage drop, equal to
65.8% after being exposed to 600 ◦C. Results from the literature [7,21,49,76] are also shown
to evaluate the results from this work. As expected, the effect of the thermal exposure
cannot be clearly seen because of a minimal change in the P-wave velocity values with
varying the exposure temperature from 20 ◦C to 300 ◦C. Other studies [21,76] also show
that there is a minimal change in the values of the P-wave velocities from room temperature
to, at most, 300 ◦C. In this study, a nonlinear equation was used to relate the exposure
temperature and P-wave velocity of heat-damaged concrete as follows,

VP = 4119 − 0.0077T2 + 0.5817T, for 37.8 ◦C ≤ T ≤ 770 ◦C (9)

where Vp is the P-wave velocity in m/s and T is the exposure temperature in ◦C. The use
of a linear parameter of the ultrasonic wave showed that exposure of concrete cylinders
to relatively low temperatures did not affect the P-wave velocities significantly. It can be
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seen from the graph that there is a gradual decrease in the P-wave velocity in the early
exposure to fire, until the temperature of 300 ◦C. From this temperature until 600 ◦C, a
sudden decrease can be observed. Values of P-wave velocity are also fluctuating between
the range of 20 ◦C to 300 ◦C. For this parameter, six classes were also established from the
ranges of temperatures—class 1 for P-wave velocities when the temperature is T < 50 ◦C
(Vp > 4128 m/s), class 2 for 50 ◦C ≤ T < 150 ◦C (4033 m/s < Vp ≤ 4128 m/s), class 3
for 150 ◦C ≤ T < 250 ◦C (3783 m/s < Vp ≤ 4033 m/s), class 4 for 250 ◦C ≤ T < 350 ◦C
(3379 m/s < Vp ≤ 3783 m/s), class 5 for 350 ◦C ≤ T < 450 ◦C (2821 m/s < Vp ≤ 3379 m/s),
and class 6 for T ≥ 450 ◦C (Vp ≤ 2821 m/s). This classification system is also visualized in
Figure 8b. Figure 9 shows the confusion matrix from the results of classifying after using
Equation (9) in predicting the corresponding temperature and consequently classifying to
specific classes. This method of using the equations derived from the P-wave velocities of
the experimental data yielded an accuracy of 30.26%. It can be seen that the relatively low
accuracy is caused by fluctuating trends of P-wave velocity measurements, especially for
concrete specimens exposed at lower temperatures (≤300 ◦C).
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3.2. Coherence of Ultrasonic Pulse Waves

Figure 10 presents the coherence values of the ultrasonic signals from concrete speci-
mens from different temperatures with the specimens exposed to the room temperature
condition (=20 ◦C in this study). The average value of coherence ranges from 0.155 to
0.373 across different mix designs and different temperatures. The COV varies from 25.93%
to 44.29% with the highest COV found with the temperature of 600 ◦C. The coherence
between the ultrasonic wave signals was compared against the condition under the normal
temperature condition. The difference in averaged signal coherence is most noticeable
when the signal is studied on the tail end part of the signal and averaged between 10
kHz to 40 kHz. In general, at least for Mixes 1 and 2, the coherence between the signals
was high between 20 ◦C and 100 ◦C with values equal to 0.541 and 0.611, respectively.
However, for the remaining temperature conditions, the values decreased considerably
but still fluctuated with values in the range of 0.110 to 0.223. As for Mix 3, the results for
the coherence are inconclusive. The low average coherence value for non-fire-damaged
specimens suggests that the signal is more dispersed inside the specimen, which could be
attributed to the formation of cracks and voids as the temperature increases. Signals from
fire-damaged specimens will have a relatively low coherence compared to signals from
solid specimens, which have less scattering due to the lack of voids or fissures.
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Figure 10. Variation of coherence with increasing temperatures and their corresponding classes. Note
that DC means damage class of concrete.

From these results and observations, it can be assumed that nonlinear UPV parameters
have the potential to be used for analyzing data collected from fire-damaged concrete. In
contrast with P-wave velocity, the use of coherence exhibited good detection of differences
in parameter values between the exposure to room temperature and lower elevated temper-
atures. There is a clear decrease in coherence in this range of temperatures. However, this
observation is only true until 200 ◦C. There are fluctuating values between coherence after
this temperature. In this study, an approximate formula that relates the coherence and the
corresponding temperature was established by a non-linear regression analysis as follows,

coh = 0.5135 + 1.928 × 10−6T2 − 0.0016T for 0 ◦C ≤ T ≤ 410 ◦C (10)

where coh is the coherence value and T is temperature. Equation (10) was used to classify
the specific condition class of fire-damaged concrete cylinders based on the coherence
measurements. For this parameter, six classes were also established from the ranges of
temperatures—class 1 for coherence when the temperature is T < 50 ◦C (coh > 0.438),
class 2 for 50 ◦C ≤ T < 150 ◦C (0.316 < coh ≤ 0.438), class 3 for 150 ◦C ≤ T < 250 ◦C
(0.234 < coh ≤ 0.316), class 4 for 250 ◦C ≤ T < 350 ◦C (0.189 < coh ≤ 0.234), class 5 for
350 ◦C ≤ T (coh ≤ 0.189). This classification system is also visualized in Figure 10. Figure 11
shows the confusion matrix from the results of classifying after using Equation (10) in
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predicting the corresponding temperature and consequently classifying to specific classes.
This method of using the equations derived from the coherence values of the experimental
data yielded an accuracy of 32.31%. From this figure, it can be observed that the coherence
values of concrete specimens exposed at any temperature still give fluctuating values of
predicted temperature.
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3.3. Machine Learning of Ultrasonic Pulse Waves
3.3.1. Effect of Preprocessing Parameters

It is important to determine the appropriate data format for the input layer of the
machining learning process. This section compares the performance of machine learning
with some important parameters for preprocessing of ultrasonic pulse waves obtained from
thermally-damaged concrete with various severity levels. The main parameters considered
in this study include the time window (signal length), the sampling rate of signals, and
types of input data (time series signal, spectral entropy, and instantaneous frequency). In
this study, accuracy was used as a performance measure of the classification models.

Figure 12a shows the comparison of the accuracy using time series with various signal
lengths as the input of machine learning. For this analysis, the tail end of the signal was
cut off. This is also done to minimize the noise in the signal which is normally found at
the tail end. Five different signal lengths were considered in this study, 9 ms, 7.5 ms, 5 ms,
3.5 ms, and 1.5 ms. The length of the time signal dictates the number of features, or data
points, to be included in training the classification model. In this study, time series with a
length of 9 ms gives 90,000 features, 7.5 ms gives 75,000 features, 5 ms gives 50,000 features,
3.5 ms gives 35,000 features, and 1.5 ms gives 15,000 features. The sampling frequency of
the time series was constant at 10 MHz, the default value from the laboratory equipment
used in this study. As can be seen from the graph, signal length had a different effect on the
accuracy of different models. For SVM and KNN, the accuracy of the model was stable,
at 76% and 52%, regardless of the signal lengths used, until the signal length of 5 ms, and
then suddenly decreases to 64% and 52% as the length decreased to 0.75 ms and 0.3 ms,
respectively. The results show that the length of ultrasonic signals should be sufficiently
long to ensure the stable performance of SVM and KNN. It can be inferred that the later
part of the ultrasonic signals includes useful information for characterizing early damage
of concrete exposed to fire. In contrast, the use of GNB and DT resulted in the best accuracy
when the signal length was 3.5 ms. For the machine learning of ultrasonic pulse waves from
fire-damage concrete cylinders, a signal length of 5.0 ms was determined to be optimal for
the SVM and KNN, whereas for GNB and DT, the optimal signal length was determined to
be 3.5 ms.
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Figure 12b shows the comparison of accuracy using time series with various sampling
rates. A total of six different sampling rates were considered for the analysis: 10 MHz,
which is the default sampling rate of the equipment used, 5 MHz, 1 MHz, 500 kHz, 250 kHz,
and 125 kHz. The ultrasonic pulse wave signals were preprocessed to reflect the lower
sampling rates. This study used time series with lengths of 5 ms and 3.5 ms as discussed
in the preceding section. As can be seen from the graph, the accuracy of the model did
not significantly change when using different sampling rates for SVM and KNN for both
time windows used, with an accuracy equal to 76%. From these interpretations, it could
be said that using even the lowest sampling rate of 125 kHz is enough for analyzing time
signals in machine learning to classify concrete specimens for fire damage. This result is
informative on the selection of optimum devices for collecting ultrasonic pulse waves for
machine learning.

In addition, the effect of the use of frequency domain signals (e.g., spectral entropy and
instantaneous frequency) was investigated to find the optimum data format for the input
of machine learning. Figure 13 shows the comparison of the overall accuracy of using three
different combinations of frequency domain signals (spectral entropy only, instantaneous
frequency only, and a combination of both) along with four different machine leaning
algorithms. The frequency domain signals were obtained from the fast Fourier transform
of the time series with a sampling rate of 125 kHz and signal length of 5 ms. The average
overall accuracy of using the combination of spectral entropy and instantaneous frequency
is 65.96% while that of using spectral entropy only is 62.95%, and that of using instanta-
neous frequency only is 64.46%. Overall, the use of spectral entropy and instantaneous
frequency did not significantly improve the accuracy of the classification of the fire damage
compared to using time series data as the input of machine learning. To recall, the use of
the ultrasonic waveform (time signal) yielded the highest overall accuracy of 76% when the
SVM algorithm was used. The highest overall accuracy that was obtained from frequency
domain signals was 71.08% and this is from using the spectral entropy from the sampling
rate of 125 kHz with the SVM algorithm. For comparison, another analysis with feature
extraction was done when using the default sampling rate of 10 MHz and it still yielded an
overall accuracy of 71.08%. For practicality during field inspections or testing, choosing the
smallest sampling rate was appropriate since the accuracy was still the same. From these
observations, the use of spectral entropy and instantaneous frequency did not improve the
accuracy of machine learning classification. Furthermore, conversion of the time domain
signal to the frequency domain to extract other features will add another step that may
affect the reliability of the final data set since the number of features (or data points) will be
reduced. In addition, the computational cost for preprocessing might be affected. In this
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study, a small dataset was used and the added time for preprocessing was not noticeable,
but for larger datasets, this might be significant.
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3.3.2. Performance Evaluation

In this section, the accuracy of the utilized classification algorithms and the different
input data was analyzed in identifying the differences between concretes fired at 100 ◦C,
200 ◦C, and 300 ◦C—temperatures representing early fire damage in concrete specimens.
The analysis for performance evaluation in this section was based on machine learning of
the preprocessed ultrasonic pulse wave signals with a length of 5 ms and sampling rate of
125 kHz, as determined in the previous section.

Figure 14 shows the confusion matrix from using different machine learning classi-
fication algorithms. Table 4 shows the accuracy and F1-score from the machine learning
classification algorithms using the UPV time series. F1-score and accuracy are the most
common metrics that can be used for comparison of the algorithms in classifying each
target temperature [77–79]. SVM and KNN can identify the early damage, at least with
the exposure to 200 ◦C at an F1-score of 80% and 85.7%, respectively, even when using
the lowest sampling rate of 125 kHz. GNB can identify the damage at 600 ◦C with 80%
accuracy but does not result in satisfactory accuracy levels for the damage classification at
lower temperatures. From the same table, the accuracy of machine learning in detecting
the damage from early exposure to fire is also relatively high for SVM and KNN. Over-
all, machine learning algorithms show potential in detecting early thermal damage with
accuracy ranging from 68% to 92%. From Figure 11, it can be observed that SVM and
KNN are both consistent in classifying the ultrasonic wave signals with the appropriate
target temperature, regardless of the time window and sampling rate. GNB seemed the
most inconsistent when the time window of the signal was decreased while DT showed
an inconsistent accuracy when the sampling rate was decreased. From these observations,
SVM is the most promising machine learning method that can be used for classifying
ultrasonic waves for thermal damage.

Table 4. Accuracy and F1-score of different ML algorithms in classifying the UPV signals using
sampling rate equal to 125 kHz and time window equal to 5 ms.

Classes
Accuracy F1-Score

SVM KNN GNB DT SVM KNN GNB DT

T20 0.920 0.800 0.840 0.680 0.667 0.286 0.333 0.333
T100 0.920 0.800 0.840 0.800 0.667 0.444 0.333 0.444
T200 0.920 0.960 0.760 0.840 0.800 0.857 0.250 0.000
T300 0.920 0.920 0.680 0.760 0.800 0.800 0.333 0.250
T400 0.920 0.760 0.840 0.720 0.800 0.500 0.500 0.222
T600 0.920 0.800 0.920 0.750 0.750 0.000 0.800 0.250
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3.3.3. Comparison of Prediction Models

Comparing the three methods, an additional metric, Cohen’s Kappa or Kappa, was
added to the overall accuracy and F1-score. Kappa compares the observed accuracy with an
expected accuracy (random chance). In addition to evaluating a single classifier, the Kappa
statistic is also used to compare classifiers. It also considers agreement with a random
classifier, which means that if there is an already established thermal damage classifier
or when another random classifier would be used, Kappa calculates the “agreement”
between the machine learning classifier and a random classifier. Kappa also considers
the imbalance in class distribution. Detailed discussion about Kappa can be read in the
study of Cohen [80]. Figure 15 shows the evaluation metrics of using P-wave velocity,
coherence, and two machine learning algorithms, SVM and KNN. For the use of machine
learning algorithms, the following input data were used—input data of time series with a
signal length of 5 ms and sampling rate of 125 kHz. Based on this comparison, it can be
seen that using six classes, the best method to be used for classifying thermal damage is
by utilizing machine learning with an accuracy of 76.0% and 52.0% from SVM and KNN,
respectively. As discussed in Sections 3.2 and 3.3, conventional methods of analyzing data
from ultrasonic wave signals were conducted. Their results were converted to classification
analysis for comparison with machine learning thermal damage classification. The use
of these conventional methods from P-wave velocity and coherence yielded accuracies of
30.26% and 32.31%, respectively. It is admitted that there is still room for improvement in the
performance of machine learning. However, the comparison analysis clearly demonstrates
the potential of using machine learning of ultrasonic pulse waves to evaluate the early fire
damage of concrete with far improved accuracy compared with conventional ultrasonic
wave analysis methods.
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of concrete.

It should be noted that there are many factors that can affect the results of this study,
especially the intrinsic properties of concrete such as density, porosity, and microcracks that
might develop when the concretes were exposed to high temperatures. External factors
should also be considered such as humidity and temperature at the time of measurement,
and coupling conditions. The study took precautions in dealing with external factors,
such as the calculation of delay time to deal with the coupling condition and ensuring
a consistent laboratory environment for constant humidity and temperature. As for the
effects of intrinsic properties, it will be best to investigate these factors in a future study.

4. Conclusions

This study investigated the effect of thermal damage on the ultrasonic wave velocities
of concrete. The focus was specifically on early damage detection. Conventional analysis
for the UPV was done considering the linear and nonlinear parameters. Moreover, the use
of machine learning, with deep learning as a supplement in improving machine learning
analysis, was proposed and explored. The following conclusions were observed:

1. In general, early thermal damage (20~300 ◦C) of concrete, cannot be assessed accu-
rately by the wave velocity values as they fluctuate within this range of temperatures.
The behavior of the mixes differs as all mixes increased their P-wave values by 0.1%
to 10.44% after exposure to 100 ◦C and dropped continuously until 600 ◦C by 48.46%
to 65.80%.

2. Coherence was used as the nonlinear UPV parameter. Significant changes were
observed in the concrete after exposure to 100 ◦C. However, between exposures from
200 ◦C to 600 ◦C, the values fluctuate in the range of 0.110 to 0.223 and reliable
observations cannot be concluded for these thermally-damaged specimens.

3. Machine learning shows potential in classifying thermal damage in concrete with
significantly improved performance, with an accuracy of 76.0% than those of the
conventional methods using P-wave velocity and coherence, with accuracies of 30.23%
and 32.31%.

4. The optimal performance of the classification was obtained using a support vector
machine (SVM) compared to the other three algorithms in this study (K-nearest
Neighbor, Gaussian Naïve Bayes, and Decision Tree). The optimum input type of
machine learning using SVM was determined to be a time series signal with a signal
length of 5 ms and a sampling rate of 125 kHz.

5. This study focused only on the effects of elevated temperature on the ultrasonic wave
properties of concrete cylinders in the laboratory. To draw more general conclusions,
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more studies considering the effects of concrete intrinsic properties (microcracks
and/or porosity) and reinforcing steel in concrete (diameter and spacing of reinforc-
ing steel and clear cover), are still needed to further investigate the practicality of
machine learning classification in various structural elements under more realistic
fire scenarios.
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