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Abstract: In this study, NiMo catalysts that have different metal loadings in the range of ca. 28–106 µg cm−2

were electrodeposited on the Ti substrate followed by their decoration with a very low amount of Au-
crystallites in the range of ca. 1–5 µg cm−2 using the galvanic displacement method. The catalytic
performance for hydrogen evolution reaction (HER) was evaluated on the NiMo/Ti and Au(NiMo)/Ti
catalysts in an alkaline medium. It was found that among the investigated NiMo/Ti and Au(NiMo)/Ti
catalysts, the Au(NiMo)/Ti-3 catalyst with the Au loading of 5.2 µg cm−2 gives the lowest overpotential of
252 mV for the HER to reach a current density of 10 mA·cm−2. The current densities for HER increase ca.
1.1–2.7 and ca. 1.1–2.2 times on the NiMo/Ti and Au(NiMo)/Ti catalysts, respectively, at−0.424 V, with an
increase in temperature from 25 ◦C to 75 ◦C.

Keywords: gold; nickel; molybdenum; electrodeposition; galvanic displacement; hydrogen
evolution reaction

1. Introduction

Although fossil fuels, such as coal, oil, and natural gas, are the main energy sources and
are widely used to meet energy needs, the increasing emissions of pollutants, carbon dioxide
(CO2), and other greenhouse gases require the development of sustainable technologies to
meet ever-increasing energy needs. Among various candidates to fulfill energy demands,
hydrogen (H2) can be a potential substitute fuel for effective energy production and storage.
H2 is a clean, economical renewable energy source and an excellent energy storage medium
with excellent energy conversion efficiency, higher gravimetric energy density than gasoline
(120 vs. 44 MJ kg−1), eco-friendliness, and zero carbon dioxide emission [1–4]. H2, an
important chemical feedstock widely used in petroleum refining and ammonia synthesis,
is industrially produced via coal gasification and steam reforming reaction under harsh
conditions, resulting in the emission of greenhouse gases and micro-pollutants [5,6]. Among
the various available methods, electrocatalytic water splitting is one of the most promising
alternatives for H2 production that gained intense research interest in the last decades, as
electricity-driven water splitting generates green H2.

It is well-known that H2 production by electrocatalytic water splitting in alkaline
media is limited by the sluggish hydrogen evolution reaction (HER) kinetics and enormous
electricity consumption. The HER mechanism of electrocatalytic water splitting includes
three main steps, i.e., Volmer, Heyrovsky, and Tafel reactions, as shown below, in alkaline
media [7]:

Volmer reaction: H2O + e− → H* + OH− (1)

Heyrovsky reaction: H* + H2O+ e−→ H2 + OH− (2)

Tafel reaction: H* + H*→ H2 (3)

Overall reaction: 2H2O + 2e− → H2 + 2OH− (4)
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The sluggish HER kinetics in alkaline media is mainly due to the fact that in the
Volmer reaction, the proton source comes from the water molecule instead of H3O+ in
the acid electrolyte, which involves additional energy to break the H–O–H bond [7]. To
date, platinum (Pt) is the most effective and benchmark electrocatalyst for HER to achieve
the lowest overpotential in both acidic and alkaline mediums, but unfortunately, because
of the high production costs and the scarcity of resources, the use of Pt or other noble
metals for electrodes for the water splitting process is not economically feasible [8,9]. In this
context, it is the pursuit of most researchers to find an efficient, cost-effective and stable non-
noble metal electrocatalyst for alkaline media to accelerate the Volmer step. Recent studies
demonstrated that a number of non-noble transition metal-based materials, including
nickel, molybdenum [10–16], cobalt [17–19], iron [20,21], tungsten [22,23], and transition
metal compounds (TMCs), such as carbides [23–25], phosphide [26–28], nitrides [29], and
sulfides [30], were investigated as electrocatalysts for HER to achieve excellent chemical
stability due to their low cost and sufficient corrosion resistance under alkaline media.
Additionally, low-cost transition metals, especially nickel-based electrocatalysts, received
noticeable attention as supercapacitor electrodes and bifunctional electrocatalysts due to
their abundant reserves, intrinsic high catalytic activity, excellent corrosion resistance, and
high electrical conductivity [31]. A number of methods, such as spontaneous galvanic
displacement [32], electrochemical deposition [13,33,34], hydrothermal synthesis, etc., were
developed to explore and enhance the HER activity of Ni-based bi- and tri-metallic alloy
catalysts Ni-M (M = Fe, Co, Mn, Mo, Cr, etc.) and Ni-M bimetallic oxides (BOs).

According to Engel–Brewer valence bond theory, whenever metals of the left half
of the transition series (such as Ni and Co) are alloyed with metals of the right half of
the transition series metals (Mo or, W), a synergistic effect can be anticipated in terms
of hydrogen evolution activity [35]. The synergistic effect between Mo and Ni in the
effect of hydrogen binding energy (HBE) is noteworthy, as the HBE between Ni and
H is slightly weaker, whereas it is stronger enough between Mo and H. Therefore, the
HBE can be controlled to a relatively moderate value by chemically coupling Ni and Mo,
which can contribute to balancing the thermodynamics between hydrogen adsorption and
desorption [36]. Moreover, enhanced HER activity demonstrated by a self-supported Ni–
Mo–P ternary alloy coating on a three-dimensional (3D) Ni foam substrate (Ni–Mo–P/NF)
were reported at a current density of −10 mA·cm−2 at a small overpotential of −63 mV in
1 M KOH electrolyte [13]. Heterostructured Ni–Mo–N composite nanoparticles, decorated
on nitrogen-doped reduced graphene oxide (Ni–Mo–N/NG), also reported an excellent
HER electrocatalytic activity with zero onset potential and 46.6 and 159.8 mV overpotentials
for 10 and 100 mA·cm−2, respectively, in 1 M potassium hydroxide (KOH) solution [14].

This study presents a simple and low-cost procedure to fabricate efficient catalysts for
HER. Three-dimensional (3D) binary Ni-Mo catalysts with different total metal loadings
supported on a titanium (Ti) surface (denoted as NiMo/Ti) were prepared via the elec-
trodeposition method, whereas for the decoration of the prepared NiMo/Ti catalysts with
a small amount of Au crystallites, the galvanic displacement method was used.

2. Materials and Methods
2.1. Chemicals

Titanium foil (99.7% purity) and HAuCl4 (99.995%) were purchased from Sigma-
Aldrich (Saint Louis, MO, USA) Supply. H2SO4 (96%), HCl (35–38%), nickel sulfate hex-
ahydrate (NiSO4·6H2O, >98%), sodium molybdate dihydrate (Na2MoO4·2H2O, >99.5%),
and NaOH (98.8%) were purchased from Chempur Company (Karlsruhe, Germany). Ultra-
pure water with a resistivity of 18.2 MΩ·cm−1 was used for preparing the solutions. All
chemicals were of analytical grade and used directly without further purification.

2.2. Fabrication of Catalysts

The catalysts were prepared by a facile, two-step process that involves electrodeposi-
tion of Ni2+ and Mo6+ ion on the surface of the Ti electrode, followed by a spontaneous
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Au displacement from the Au (III)-containing solution. Before the deposition of the NiMo
catalysts, the Ti plates were pretreated in diluted H2SO4 (1:1 vol) at 70 ◦C for 3 s. NiMo
catalysts were electroplated on the Ti surface (1 × 1 cm) from a bath containing 0.03 M
Na2MoO4 along with 0.1, 0.2, and 1.0 M NiSO4 in an acidic condition (1.5 M H2SO4 and
1 M HCl). The chronopotentiometry was used for the NiMo coatings deposition on the Ti
surface. The plating of coatings was carried out at the current of 0.1 mA and 1 mA for 3 min
at each current. The Au crystallites were deposited on the prepared NiMo/Ti electrodes
by their immersion into 1 mM HAuCl4 + 0.1 M HCl solution for 10 s. After plating, the
samples were taken out, thoroughly rinsed with deionized water, and air-dried at room
temperature.

2.3. Characterization of Catalysts

The morphology and composition of the prepared catalysts were investigated by
scanning electron microscopy (SEM) TM 4000 Plus (HITACHI, Tokyo, Japan).

XRD patterns of pure Ti sheet, Ni-Mo/Ti, and Au-Ni-Mo/Ti catalysts were measured
using an X-ray diffractometer D2 PHASER (Bruker, Karlsruhe, Germany). The measure-
ments were conducted in the 2θ range of 10–90◦.

The metal loadings were determined by inductively coupled plasma optical emission
spectrometry (ICP–OES) analysis. The ICP–OES spectra were recorded using an Optima
7000DV spectrometer (Perkin Elmer, Waltham, MA, USA) at wavelengths of λNi 231.604 nm,
λMo 202.031 nm, and λAu 267.595 nm.

2.4. Electrochemical Measurements

A conventional three-electrode electrochemical cell was used for electrochemical
measurements. The fabricated NiMo/Ti and Au(NiMo)/Ti catalysts were employed as
working electrodes, a Pt sheet was used as a counter electrode, and a calomel electrode was
used as a reference. All potentials in this work were converted to the reversible hydrogen
electrode (RHE) scale using the following Equation (5):

ERHE = ESCE + 0.242 V + 0.059 V × pHsolution. (5)

Current densities were calculated using the electrodes’ geometric area of 2 cm2. Linear
sweep voltammograms were recorded in a 1 M NaOH solution and always deaerated by
argon (Ar) for 20 min prior to measurements. HER polarization curves were recorded
from the open circuit potential (OCP) to −0.42 V (vs. RHE) at a polarization rate of
10 mV·s−1. Polarization curves were recorded at several temperatures from 25 to 75 ◦C, and
temperatures were set with a water jacket connected to a LAUDA Alpha RA 8 thermostat.
Stability was studied by recording chronoamperometry (CA) curves for HER at a potential
of −0.22 V (vs. RHE) for half an hour. All electrochemical measurements were performed
with a Metrohm Autolab potentiostat (PGSTAT302, Utrecht, The Netherlands) using the
Electrochemical Software (Nova 2.1.4).

3. Results

In this study, we investigated the electrocatalytic activity of prepared 3D binary
NiMo/Ti and ternary Au(NiMo)/Ti catalysts for HER. These catalysts were deposited
on the Ti surface (1 × 1 cm) using an electrochemical bath. The optimal conditions for
different 3D binary catalyst depositions were determined and are given in Table 1. The
electrochemical deposition was carried out by applying the constant current of 0.1 mA
and 1 mA for 3 min at each current. The Au crystallites were deposited on the prepared
NiMo/Ti electrodes by their immersion into 1 mM HAuCl4 + 0.1 M HCl solution for 10 s at
room temperature.
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Table 1. Composition of the electrochemical bath.

Catalysts
Concentration in Mol dm−3

Ni2+ Mo6+

NiMo/Ti-1 0.1 0.03

NiMo/Ti-2 0.2 0.03

NiMo/Ti-3 1.0 0.03

The morphology and composition of the prepared catalysts were studied by SEM.
Figure 1 shows SEM images of the prepared different compositions 3D NiMo/Ti and
Au(NiMo)/Ti catalysts. The low magnification SEM image of the 3D NiMo/Ti-3 catalyst
(Figure 1c) proves the formation of many cedar leaf-like Ni-Mo alloy structures in a large
area, in which leaf-like Ni-Mo alloy is uniformly dispersed on the Ti foil. These cedar
leaf-like structures still retain much space among the leaves, forming a porous morphology
that can be expected to facilitate electrolyte penetration. Many nanoparticles can be seen in
Figure 1c, and they irregularly stack together, forming a cedar leaf-like structure. When
Au crystallites were deposited on the prepared NiMo/Ti-3 electrode by being immersed
into 1 mM HAuCl4 + 0.1 M HCl solution for 10 s, the porous leaf-like alloy structure was
immediately covered with a tiny globular surface (Figure 1f). The mass of the elements
(metal loadings) on the Ti substrate surface was determined by ICP–OES analysis (Table 2).

Table 2. The metal loading in the catalysts was determined by ICP-OES analysis and metal mass
weight ratio.

Catalyst Ni Loadings
(µgNicm−2)

Mo Loadings
(µgMocm−2)

Auloadings
(µgAucm−2)

Total Metal Loading
(µgmetalcm−2)

Mass Weight Ratio
Mo:Ni Au:NiMo

NiMo/Ti-1 23.4 4.9 28.3 1:4.78
NiMo/Ti-2 29.6 5.3 34.9 1:5.58
NiMo/Ti-3 99.5 6.7 106.2 1:14.85

Au(NiMo)/Ti-1 18.3 4.4 1.2 23.9 1:4.16 1:18.92
Au(NiMo)/Ti-2 25.4 4.6 1.7 31.7 1:5.52 1:17.65
Au(NiMo)/Ti-3 81.4 6.0 5.2 92.6 1:13.57 1:16.81

It can be seen that the formed 3D binary NiMo/Ti catalysts contained ca. 82.8–93.7 wt.%
of Ni, whereas those 3D ternaries Au(NiMo)/Ti catalysts possessed 76.6–87.9 wt.% of Ni.
The total metal loadings (µgmetalcm−2) in the prepared catalysts are quite different and vary
from 23.9 up to 106.2 µgmetalcm−2. It should be noted that Ni and Mo amounts increase in
the NiMo coatings by increasing the Ni2+ concentration in the plating solution, whereas
the Mo amount was kept the same. Calculated Mo:Ni and Au:NiMo mass weight ratios are
given in Table 2.

As seen from the data in Table 2, mass weight ratios Mo:Ni for NiMo/Ti increase due
to the rise of Ni2+ concentration in the plating solution. A similar phenomenon is observed
in the case of Au crystallite-modified NiMo/Ti catalysts. Mass ratios Mo:Ni also increase
with the increase in the Ni2+ concentration in the plating solution (Table 2). Moreover,
Au loadings in the AuNiMo/Ti-1, AuNiMo/Ti-2, and AuNiMo/Ti-3 catalysts increased
while the deposition times of Au crystallites were the same—10 s. The mass ratio Au:NiMo
slightly decreases. The increased Ni amount in the catalysts allows for achieving a higher
Au loading in the ones.

Figure 2 shows XRD patterns for a pure Ti sheet (lower curve) and NiMo/Ti-3 and
Au(NiMo)/Ti-3 catalysts (upper curves). Symbols indicate the positions of the XRD peaks
of Ti (ICDD card no 00-044-1294).
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Figure 1. SEM views of NiMo/Ti (a–c) and Au(NiMo)/Ti (d–f) catalysts mentioned in Table 2. (c) The
inset represents a photo of a cedar leaf.

The lowest XRD pattern (a) in Figure 2 contains sharp XRD peaks of the Ti sheet
corresponding to the hexagonal structure of Ti. In the case of NiMo/Ti-3 and Au(NiMo)/Ti-
3 catalysts, XRD peaks corresponding to Mo (110) and Mo (200) are shifted towards higher
diffraction angles with respect to the positions of Mo presented in ICDD card no 00-044-1120.
Additionally, the body-centered cubic lattice parameter decreases from 3.147 to 3.093 Å.
This is the result of the formation of a solid solution of Ni (ICDD # 00-004-0850) with a small
amount of Mo and Mo-Ni solid solution. There are no visible changes in the XRD patterns
for NiMo/Ti-3 and Au(Ni-Mo)/Ti-3 (Figure 2, b,c curves) as the Au (ICDD # 00-004-0784)
peaks can be amorphous or crystalline with low intensity.

The electrocatalytic properties of the prepared catalysts were investigated by recording
LSVs in 1.0 M NaOH solution at a potential scan rate of 10 mV·s–1 in a potential range from
open-circuit potential (OCP) up to −0.42 V (vs. RHE) for HER, at several temperatures
from 25 up to 75 ◦C (Figure 3). Ternary Au(NiMo)/Ti-3 coating exhibited the highest
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current density (j), followed by Au(NiMo)/Ti-2 and Au(NiMo)/Ti-1, and the fabricated
binary (NiMo/Ti) catalysts exhibited notably lower current density, in mutual comparison
for HER (Figure 3). For those binary NiMo/Ti catalysts, the current density increases ca.
1.2–2.7 times with an increase in temperature from 25 up to 75 ◦C, whereas fabricated 3D
ternary Au(NiMo)/Ti catalysts exhibit ca. 1.1–2.2 times higher current density for HER.
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Figure 2. XRD patterns of Ti sheet (a), Ni-Mo/Ti-3 (b), and Au(Ni-Mo)/Ti-3 (c) catalysts.

The electrocatalytic properties of the prepared catalysts were investigated by recording
LSVs in 1.0 M NaOH solution at a potential scan rate of 10 mV·s–1 in a potential range from
open-circuit potential (OCP) up to −0.42 V (vs. RHE) for HER, at several temperatures
from 25 up to 75 ◦C (Figure 3). Ternary Au(NiMo)/Ti-3 coating exhibited the highest
current density (j), followed by Au(NiMo)/Ti-2 and Au(NiMo)/Ti-1, and the fabricated
binary (NiMo/Ti) catalysts exhibited notably lower current density, in mutual comparison
for HER (Figure 3). For those binary NiMo/Ti catalysts, the current density increases ca.
1.2–2.7 times with an increase in temperature from 25 up to 75 ◦C, whereas fabricated 3D
ternary Au(NiMo)/Ti catalysts exhibit ca. 1.1–2.2 times higher current density for HER.

For instance, the current densities of −49.84, −40.73, and −36.58 mA·cm−2 were
reached at −0.424 V (vs. RHE) using Au-decorated ternary Au(NiMo)/Ti-3, Au(NiMo)/Ti-
2, and Au(NiMo)/Ti-1 catalysts, and relatively lower −34.81, −26.5, and −21.75 mA·cm−2

current densities were recorded at the same potential via using 3D binary NiMo/Ti-3,
NiMo/Ti-2, and NiMo/Ti-1 catalysts at 25 ◦C, respectively (Figure 4a,b, Table 3). Overpo-
tentials (vs. RHE) to reach the current density of 10 mA·cm−2 (η10) were found in a gradual
increasing order for both Au(NiMo)/Ti and NiMo/Ti catalysts as follows:

Au(NiMo)/Ti-3 (−252 mV) < Au(NiMo)/Ti-2 (−298 mV) < Au(NiMo)/Ti-1 (−308 mV)
NiMo/Ti-3 (−288 mV) < NiMo/Ti-2 (−344 mV) < NiMo/Ti-1 (−349 mV).
It was determined that mass weight ratios Mo:Ni for NiMo/Ti catalysts increase

due to the increased Ni2+ concentration in the plating solution (Table 2). A higher mass–
weight ratio Mo:Ni induces a more pronounced activity of the NiMo/Ti-3 catalyst for HER.
Additionally, the increased amount of Ni in the NiMo/Ti catalysts allows for achieving
higher Au loading in the Au(NiMo)/Ti catalysts. This is the main factor that influences
the lowering overpotential at Au(NiMo)/Ti catalysts compared with NiMo/Ti catalysts.
The higher activity of Au crystallite-modified NiMo/Ti catalysts may be related with the
synergetic effect of Au, Ni, and Mo [35].

HER polarization curves were then further used for constructing the Tafel plots and
calculating the Tafel slope. Tafel slope values of 99.6, 100.5, and 130.4 mV·dec−1 were found
for HER at NiMo/Ti-1, NiMo/Ti-2, and NiMo/Ti-3 catalysts, respectively. For those 3D
ternary Au(NiMo)/Ti catalysts, Tafel slope values of 143.8, 98.7, and 131.2 mV·dec−1 were
determined at Au(NiMo)/Ti-1, Au(NiMo)/Ti-2, and Au(NiMo)/Ti-3 catalysts, respectively
(Figure 4a’,b’, Table 3). The determination of the Tafel slope explores the HER kinetics
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by measuring the increase in current density with the increase in overpotential, whereas
the exchange current density (j0) reflects the electrode’s intrinsic activity for HER. The
exchange current density (j0) was calculated for HER at all six catalysts by extrapolating
the Tafel plots, η vs. log j. Thus, the j0 value of 0.144, 0.011, 0.076, 0.075, 0.006, and
0.005 mA·cm−2 were calculated for Au(NiMo)/Ti-3, Au(NiMo)/Ti-2, Au(NiMo)/Ti-1,
NiMo/Ti-3, NiMo/Ti-2, and NiMo/Ti-1 catalysts, respectively (Table 3). It is worth noting
that the j0 value determined for HER at the Au(NiMo)/Ti-3 coating was ca. 2–28 times
higher than that determined for the rest of the studied catalysts.
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Figure 3. HER polarization curves of 3D NiMo/Ti (a–c) and Au(NiMo)/Ti (d–f) catalysts in 1 M
NaOH solution at a 10 mV·s−1 potential scan rate and a temperature range (25–75 ◦C).

Table 3. Electrochemical performance of the tested catalysts toward HER in alkaline media.

Catalysts
j (mA·cm−2) in Different Temperatures (◦C) at −0.424 V Tafel Slope

(mV·dec−1)
η10 *
(mV)

j0
(mA·cm−2)25 35 45 55 65 75

NiMo/Ti-1 −21.75 −27.25 −32.14 −35.99 −37.83 −38.91 99.6 −349 0.005

NiMo/Ti-2 −26.5 −31.94 −39.72 −49.53 −55.44 −61.05 100.5 −344 0.006

NiMo/Ti-3 −34.81 −51.09 −61.63 −72.42 −83.62 −95.19 130.4 −288 0.075

Au(NiMo)/Ti-1 −36.58 −39.32 −47.04 −54.93 −61.86 −68.68 143.8 −308 0.076

Au(NiMo)/Ti-2 −40.73 −46.19 −58.55 −68.86 −79.8 −89.45 98.7 −298 0.011

Au(NiMo)/Ti-3 −49.84 −56.38 −68 −78.81 −91.6 −102.86 131.2 −252 0.144

* Overpotential at 10 mA cm−2.
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Figure 4. HER polarization curves of 3D NiMo/Ti (a) and Au(NiMo)/Ti (b) catalysts in 1 M NaOH
solution at a potential scan rate of 10 mV·s−1 and 25 ◦C temperature and corresponding Tafel
plots (a’,b’).

Another crucial criterion for an advanced electrode material is its electrochemical stabil-
ity. Chronoamperometric measurements with all six catalysts were carried out in 1 M NaOH
at −0.22 V for 2 h. Initially, in the first 50–200 s, a decrease in current density was observed
for all investigated catalysts. However, after approximately 500 s, the current densities
settled down and remained apparently parallel throughout the experiments. CA results
confirm the result of LSV analysis in terms of the ternary Au(NiMo)/Ti-3 catalyst, giving
the highest current density during HER (−10.36 mA·cm−2 at 50 s) (Figure 5). A more than
2.5 times lower current density was obtained with Au(NiMo)/Ti-2 (−3.81 mA·cm−2) and
ca. 5 times lower with Au(NiMo)/Ti-1 catalysts (−2.02 mA·cm−2). In the case of the binary
NiMo/Ti-3 catalyst, a comparatively lower current density was recorded (−6.13 mA·cm−2

at 50 s) along with a 3–5 times lower value for NiMo/Ti-2 (−2.06 mA·cm−2) and NiMo/Ti-1
(−1.23 mA·cm−2) catalysts.
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A comparison of HER parameters generated using herein-tested NiMo/Ti and
Au(NiMo)/Ti catalysts in an alkaline medium with some electrodes reported in the litera-
ture is given in Table 4.

Table 4. The electrochemical performance of herein tested catalysts towards HER in alkaline media
and compared with that of transition metal-based electrodes reported in the literature.

Catalyst Overpotential
η10 ** (mV)

Tafel Slope
(mV·dec−1)

Temperature
(◦C) Electrolyte Ref.

Au(NiMo)/Ti-3 −252 131.2 25 1 M NaOH This work

NiMo/Ti-3 −288 130.4 25 1 M NaOH This work

Au(NiMo)/Ti-2 −298 98.7 25 1 M NaOH This work

NiMo/Ti-2 −344 100.5 25 1 M NaOH This work

Au(NiMo)/Ti-1 −308 143.8 25 1 M NaOH This work

NiMo/Ti-1 −349 99.6 25 1 M NaOH This work

Ni-Mo-O MCFs −222.8 141.6 - 1 M KOH [33]

NiFeCMo-30 −254 163.9 - 30% KOH [34]

NiS2/MoS2 HNW −204 65 - 1 M KOH [37]

Ni–Cr–Mo–Fe,
Ni–Cr–Mo,
Ni–Cr alloy

−232
−249
−255

57.7
61.1
62.3

25 1 M KOH [38]

Ni–Mo/WC 1,
Ni–Mo/WC 2,
Ni–Mo/WC 3

−411
−262
−134

208
153
163

25 1 M KOH [39]

Ni/TM-360 s −205 104 - 1 M KOH [40]

NiCu0.57/Ni3S2/TM,
Ni/Ni3S2/TM

−239
−441

86
195 - 1 M KOH [41]

Ni3Te2-Ni foam
Ni3Te2-Au glass

Ni3Te2-Hydrothermal

−212
−237
−304

126.2
73.1
94.2

- 1 M KOH [42]

NiTe2-nanosheet −256 98 - 1 M KOH [43]



Materials 2022, 15, 7901 10 of 12

Table 4. Cont.

Catalyst Overpotential
η10 ** (mV)

Tafel Slope
(mV·dec−1)

Temperature
(◦C) Electrolyte Ref.

NiTeNR/NF −248 185 - 1 M KOH [44]

NiTe2 −520 188.3 - 1 M KOH [45]

MCFs—mesoporous composite films, HNW—hybrid nanowire, WC—tungsten carbide, TM—Ti mesh, and
NR/NF—nanorods/Ni foam. ** Overpotential at 10 mA·cm−2.

4. Conclusions

In summary, NiMo and Au(NiMo) catalysts supported on a titanium surface were
studied as electrocatalysts for HER in an alkaline medium. NiMo/Ti catalysts with different
total metal loadings in the range of ca. 28–106 µg cm−2 were prepared using a simple
and low-cost metal electrodeposition method. The decoration of the prepared NiMo/Ti
catalysts with a small amount of Au-crystallites in the range of ca. 1–5 µg cm−2 was carried
out using the galvanic displacement method.

It was determined that, among the investigated catalysts, the Au(NiMo)/Ti-3 catalyst
with the Au loading of 5.2 µg cm−2 exhibits the highest current density, as well as exchange
current density during HER in a 1 M NaOH solution. Moreover, the Au(NiMo)/Ti-3
catalyst also displays excellent HER performance with an overpotential of 252 mV at a
current density of 10 mA·cm−2.
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