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Abstract: Medical face masks help to reduce the transmission of pathogens, however, the number 
of infections caused by antimicrobial-resistant pathogens continues to increase. The aim of this 
study was to investigate the antimicrobial effect of an experimental medical mask layer coated with 
copper oxide using an environmentally friendly non-thermal physical vapour deposition approach. 
Pure CuO nanoparticles were successfully deposited on the middle layer of a face mask. The parti-
cles were distributed in different size clusters (starting from less than 100 nm dots going up to about 
1 µm cluster-like structures). The CuO clusters did not form uniform films, which could negatively 
influence airflow during use of the mask. We investigated the antimicrobial properties of the exper-
imental mask layer coated with CuO NPs using 17 clinical and zoonotic strains of gram-negative, 
gram-positive, spore-forming bacteria and yeasts, during direct and indirect contact with the mask 
surface. The effectiveness of the coated mask layer depended on the deposition duration of CuO. 
The optimal time for deposition was 30 min, which ensured a bactericidal effect for both gram-
positive and gram-negative bacteria, including antimicrobial-resistant strains, using 150 W power. 
The CuO NPs had little or no effect on Candida spp. yeasts. copper. 
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1. Introduction 
Continuing COVID-19 pandemics and a reducing supply of new antibiotics mean 

that scientists have to rethink alternative measures to help against antimicrobial re-
sistance, which is likely to have caused a third more deaths than COVID-19 in 2020 [1]. 
The development of new antimicrobials is currently avoided due to scientific, regulatory 
and financial issues [2]. As the number of bacteria resistant to conventional antibiotics 
grows, alternatives are being investigated, including antibodies, probiotics, bacterio-
phages and antimicrobial peptides [3]. Prophylaxis, such as wearing masks, as high-
lighted in the WHO 2022 guidelines, is one of the key measures used to reduce the trans-
mission of the COVID-19 virus [4]. Medical (surgical) face masks are a type of personal 
protective equipment used to prevent the spread of respiratory infections caused by vi-
ruses and bacteria. Masks are trouble-free, easily available, low-priced and clearly effi-
cient [5].  

Although medical masks are recognised as an effective measure against the trans-
mission of infectious agents, their efficiency is not an absolute [6,7]. The middle filter layer 
of the three mask layers is the most important, as it protects from particles or droplets 
carrying viruses and bacteria [8]. The antimicrobial treatment of medical masks was pre-
viously explored in order to increase their efficacy [8]. Such treatment could enable the 
reuse of face masks and at the same time reduce the potential for disease transmission [9]. 
Antimicrobial systems have already been investigated, including nanoparticles of metal 
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oxides, graphene-based materials, salt compounds (N-halamine-based quaternary ammo-
nium compounds), and different naturally-derived antimicrobial agents [9,10]. Potential 
systems include nanoparticles of metal, graphene oxides [11] and plant extracts [12]. 

Nanoparticles of metal oxides act on the potential of the cell membrane in binding 
the cell walls and releasing metal ions. Such interactions can disrupt the membrane of 
bacteria and increase oxidative stress, which can damage bacterial proteins [13]. Liquid is 
thus released from the hyaloplasm [14]. Metal oxides are also characterised by their ability 
to anchor the wall and further release cationic ions into the solution [15]. As the concen-
tration increases, such cationic ions have a high affinity for the functional groups of the 
bacterial cell wall, thus disrupting their biological functions and causing the death of the 
microorganism [13]. The multiple action of metal oxides is potentially a good alternative 
to antimicrobials [16], which often are ineffective, particularly for the pathogens of noso-
comial infections caused by multi-resistant strains of Staphylococcus, Enterococcus, 
Klebsiella, Enterobacter, Escherichia, Acinetobacter and Pseudomonas [17,18]. 

There are various transition metal oxides such as Ag2O [19,20], CuO [21,22], Fe2O3 
[23,24], TiO2 [25,26] or ZnO [27,28], which have relatively strong antimicrobial properties 
characterised by idiosyncratic bacteriostatic mechanisms. Among others, CuO is recog-
nised as a good choice due to its combination of antibacterial efficiency, chemical stability, 
being a cost-effective material, and because CuO nanoparticles (NPs) do not cause side 
effects or skin sensitization [29]. CuO is a II-VI group element with good semiconducting 
property—p-type conductivity with a direct band gap of about 1.74 eV at room tempera-
ture. CuO produces reactive oxygen species (ROS) during bacteria or virus inactivation. 
In bactericidal and bacteriostatic pathways, CuO involves metallic ions and copper-con-
taining materials, inhibiting contaminants by causing oxidative stress, resulting in mem-
brane damage and disrupting protein binding [30]. Alagarasan and co-authors demon-
strated that cotton fabrics impregnated with CuO NPs demonstrated a bacterial reduction 
of more than 90%, which was sustainable even after 20 washing cycles. Various bacteria, 
namely Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens and Bacillus subtilis, 
as well as Candida albicans, were used during their experiments [29]. Roman and co-au-
thors synthesised CuO NPs onto cotton textiles using the exhaust-dyeing method [30]. It 
was reported that this structure resulted in between 89.7 and 99.7% bacterial reduction 
against Escherichia coli. Abulikemu et al. demonstrated a more than 99.55% deactivation 
of human coronavirus 229 E in 30 min with commercially available CuO NP suspensions, 
confirming the particles’ efficiency as a fast antiviral material [31]. 

There are some techniques, generally chemical-based methods, for impregnating 
CuO nanoparticles onto fabrics including the sonication method [32], chemical precipita-
tion [33], the exhaust-dyeing method [34], and others [29,35–37]. Chemical-based meth-
ods, however, normally involve the following: (i) several steps, which could prolong the 
total synthesis time; (ii) using various additional materials or solutions, which could affect 
the emergence of impurities in the synthesised material; and (iii) environmental issues, as 
various solid or liquid wastes can be produced during material synthesis. 

This research used the non-thermal physical vapour deposition (PVD) technique in 
order to overcome the above issues. PVD is recognised as a versatile, one-step, environ-
mentally friendly process, in which the synthesised materials are characterised by high 
purity and good adherence on substrate material [38,39]. To our current knowledge, no 
article has reported the use of this technique for CuO NP deposition on a middle filter 
layer in medical masks. 

The aim of this study was to investigate the antimicrobial effect of an experimental 
medical mask layer coated with copper oxide using an environmentally friendly non-ther-
mal physical vapour deposition approach. 
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2. Materials and Methods 
2.1. Coating of the Middle Mask Layer and Glass Slide with CuO Nanoparticles 

CuO nanoparticles were deposited on the surface of the middle mask layer (dimensions: 
12 cm × 15 cm) using a physical vapour deposition system. The middle layer was chosen to 
minimize direct contact of CuO with human skin and limit the possibility of inhaling particles 
due to the known toxicity of CuO. Two samples of the mask layers were placed in a vacuum 
chamber with a Cu electrode between them during deposition (Figure 1). A pulsed-DC 
power source (P = 150 W) was used for plasma generation. During the deposition process, 
oxygen was supplied into the vacuum chamber to maintain a constant pressure of 40 Pa 
for the CuO NPs. The distance between the Cu electrode (dimensions 12 cm × 15 cm; 
99.99% purity) and the sample was 5 cm. CuO NPs were deposited for 15, 30, 60 and 120 
min. The mask material was not favourable for the direct observation of bacterial grown, so 
glass slides were also used as the substrate for a better microscope resolution. 

 
Figure 1. Experimental set up of CuO synthesis on the middle mask layer. 

2.2. Chemical and Structural Characterisation of the Deposited CuO Nanoparticles 
Surface views of CuO-coated mask fabric and bacteria grown on the glass substrates 

were investigated by scanning electron microscope (SEM, Hitachi S-3400 N, Tokyo, Japan) 
using a secondary electron detector. Elemental mapping of the middle mask layers with 
CuO nanoparticles was performed using energy-dispersive X-ray spectroscopy (EDS, 
Bruker Quad 5040, Hamburg, Germany). The crystal phase of the CuO was identified by 
an X-ray diffractometer (XRD, Bruker D8, Hamburg, Germany) operating with Cu Kα ra-
diation in the 2θ range between 20° and 70°. 

2.3. Strains of Microorganisms 
Seventeen reference, clinical and zoonotic strains of gram-negative and gram-posi-

tive bacteria and yeasts were used. The susceptibility testing of microorganisms, previ-
ously isolated at the Microbiology and Virology Institute of the Lithuanian University of 
Health Sciences, was performed according to the EUCAST guidelines [40]. The strains had 
the following resistances to antibiotics: Enterobacter cloaceae (E. cloacae) (resistance: ampi-
cillin, sulfamethoxazole/trimethoprim, gentamicin, cefoxitin), Klebsiella pneumoniae (K. 
pneumoniae) (resistance: ampicillin), Salmonella enterica (S. enterica) (resistance: none), 
Citrobacter freundii (C. freundii) (resistance: ampicillin, ciprofloxacin, cefoxitin, amoxicil-
lin/clavulanic acid), Pasteurella multocida (P. multocida) (resistance: ampicillin; SXT—sulfa-
methoxazole/trimethoprim, tetracycline, ampicillin, ciprofloxacin), Acinetobacter baumanii 
(A. baumanii) (resistance: gentamicin, ciprofloxaicin, amikacin, imipenem, meropenem), 
Staphylococcus haemolyticus (S. haemolyticus) (resistance: penicillin, erythromycin, cefoxitin, 
ciprofloxacin), Enterococcus faecium (E. faecium) (resistance: penicillin, tetracycline, quinu-
pristin/dalfopristin) and Candida tropicalis (C. tropicalis) (antifungal resistance: amphoteri-
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cin B, ketokonazole, miconazole, fluconazole). The ATCC strains tested included Esche-
richia coli ATCC 25922, Proteus mirabilis ATCC 25933, Pseudomonas aeruginosa ATCC 27853, 
Aeromonas hydrophila DSM 112649, Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 
11778, Enterococcus faecalis ATCC 29212 and Candida albicans ATCC 10231. 

2.4. Assessment of Antimicrobial Activity 
The experimental mask’s middle layer was coated with CuO NPs for deposition 

times of 15 min, 30 min, 60 min and 120 min. The material was cut into squares of 10 mm 
× 10 mm using sterile scissors and then placed into an empty sterile Petri dish. Before the 
experiment, the cut squares also were tested for sterility using thioglycollate medium 
(CM0173, Thermo Fisher, Scientific, Basingstoke, UK). Bacteria and yeast cultures were 
diluted with sterile saline up to a 0.5 McFarland Unit density (~1.5 × 108 CFU/mL), and 30 
µL of each culture was placed onto the surface of ready-prepared material squares coated 
with CuO. The suspension was spread evenly using a plastic bacteriological loop. After 
20 min of incubation at room temperature, the sample for inoculation (1 µL) was taken 
from the surface of the mask layer squares using a sterile plastic bacteriological loop (1 
µL). The sample was then inoculated onto either Mueller Hinton Agar II (Thermo Fisher, 
city, UK) or Sabouraud Dextrose Agar (for fungi, Thermo Fisher, Basingstoke, UK). Incu-
bation time was up to 48 h at +35 °C for each culture, except for the yeasts and Aeromonas 
hydrophila, +25 °C, with the researchers constantly checking on the microbial growth of the 
cultures. After incubation of bacterial cultures, the growth was evaluated by counting the 
number of bacterial colonies. The intensity of the growth was evaluated according to the 
“3+” system (Table 1). In the absence of growth, the intensity was evaluated as “0”, growth 
from 1 to 10 colonies (106–107 L)—“+”, 11 to 100 colonies (107–108 L)—“++”, and ˃100 col-
onies (˃108 L)—“+++”. The same experiment was repeated three times. The course of the 
experiment is presented in Figure 2. 

Table 1. Evaluation of microbial growth based on their ability to form colonies after exposure to 
CuO nanoparticles. 

Intensity of Growth Measured by the 
Number of Bacterial Colonies 

Growth Level Using “3+” System 

No growth 0 
1 to 10 + or 1 

11 to 100 ++ or 2 
˃100 +++ or 3 

For control purposes, the middle layer of a 3-ply medical mask (XianTao Hong Tai 
Health & Safety Protective Co., Ltd., Xiantao, China) was used and tested in the same way 
as the experimental mask layer with CuO. 

 
Figure 2. Preparation of microorganisms for the evaluation after direct contact with CuO nanoparticles. 

The second part of the experiment was performed to investigate whether the micro-
organisms could survive in close but not direct contact with CuO-coated mask material. 
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Suspensions of microorganisms of 0.5-McFarland density (~1.5 × 108 CFU/mL) were pre-
pared, and CuO-coated mask squares (1 cm × 1 cm) were placed into the tubes (containing 
2 mL of the suspension), mixed using tube mixer for 5 sec, and placed into a thermostat at 
+35 °C overnight. A total of 1 µL of bacterial suspension was inoculated onto Mueller 
Hinton Agar (Thermo Fisher, Basingstoke, UK) and incubated at +35 °C for 48 h (+25 °C 
for yeasts and A. hydrophila). The colonies on the agar surface were counted. The growth 
was scored using the “3+” system according to the number of colonies. The course of the 
experiment is presented in Figure 3. 

 
Figure 3. Preparation of microbes for evaluation after indirect contact with CuO nanoparticles. 

2.5. Visual Evaluation of the Direct Contact of Microorganisms with CuO Nanoparticles 
Bacterial suspensions of 1 µL of 0.5-McFarland-unit-density gram-positive (S. au-

reus), gram-negative (E. coli) and spore-forming bacteria (B. cereus) were transferred onto 
CuO-coated glass slides (deposition time 120 min) and kept at ambient temperature for 5 
min until the suspension dried. Then, the smears were fixed using 2.5% (w/v) glutaralde-
hyde in 0.05 M sodium cacodylate buffer (Sigma-Aldrich, Burlington, MA, USA) at 4 °C 
for 2 h followed by fixing with 1% of osmium tetroxide in cacodylate buffer (Sigma-Al-
drich, Burlington, MA, USA) for 60 min at 4 °C. The fixed samples were prepared for 
electron microscopy by dehydration using ethanol solutions of 25% (v/v), 50%, 70%, 95% 
and 100% for 10 min each. The same smears were performed on glass slides without coat-
ing for control purposes. 

2.6. Statistical Analysis 
Statistical analysis was performed using the R statistical package, version 3.6.2 (R-

project.org; accessed on 1 September 2022). Results were considered statistically signifi-
cant when p < 0.05. 

3. Results 
3.1. Structural Analysis 

XRD analysis was performed to confirm the crystalline structure of the as-deposited 
CuO NPs. The surface of the mask layer was inconvenient for the direct XRD measure-
ments, therefore, the CuO nanoparticles were deposited on a flat quartz substrate under 
the same conditions and the XRD data were collected from the flat quartz sample (Figure 
4). The XRD pattern correlated well with the monoclinic copper (II) oxide structure (CuO, 
JCPDS card number 04-015-5869). The characteristic diffraction peaks of CuO at 2Θ = 
35.49° and 38.48° corresponded to the (−111) and (111) crystal planes, respectively. 
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Figure 4. XRD pattern of CuO nanoparticles deposited on quartz at 150 W for 120 min. 

The size of the crystallites was calculated using the Scherrer equation and it was 
found that the average size of the crystallites was 31 nm, which corresponded to nano-
scale crystallites. 

3.2. The Measurements of Elemental Mapping and Concentration 
The elemental mapping and concentration were measured using the EDS technique 

and the results obtained after 120 min of deposition are presented in Figure 5. An ele-
mental composition measurement revealed that the middle layer of the mask consisted of 
around 89 at.% carbon, 10 at.% oxygen and up to 1at.% of copper after CuO deposition. 
This indicated a relatively slow CuO deposition process using 150 W power. Our primary 
experiments also showed that only a small increment in deposition power led to the mid-
dle layer of the mask overheating and the deposited structure starting to crack. A power 
rating of 150 W for the CuO deposition process was therefore selected. 

 
Figure 5. Elemental mapping views of samples deposited for 120 min. 

Elemental mapping was performed in order to understand the Cu particles’ distribu-
tion on the surface of the middle layer of the mask. The results showed that Cu was dis-
tributed relatively uniformly over the whole surface of the mask, avoiding particle ag-
glomeration and the formation of uniform, continuous thin films, which can negatively 
impact the mask pore size by covering it with CuO film. A more precise analysis of the 
Cu particle distribution on the mask material showed (Figure 6) that the Cu particles were 
distributed in the form of different clusters. The size of the clusters varied a lot, starting 
from less than 100 nm dots going up to about 1 µm cluster-like structures. 
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Figure 6. Cu particle distribution on mask surface. SEM images of the middle mask layer on 
the left. EDS elemental mapping showing Cu particles distribution on the right. 

This result confirmed that the CuO was uniformly deposited on mask material sur-
face and did not cover the pores with a uniform film, which could prevent air flow during 
the use of the mask. 

3.3. Antimicrobial Activity of Coated Material 
All of the bacterial strains were able to grow on the nutrient media after direct inoc-

ulation of the cultures taken from the control, i.e., the medical mask surface containing no 
antimicrobial materials. The antimicrobial activity of the CuO on the bacteria depended 
on the deposition time of the CuO (15 min, 30 min, 60 min and 120 min) on the mask layer. 
All the microbial cultures survived with a deposition time of 15 min during the direct 
contact experiment, however, different species grew unequally. The growth of some cul-
tures was evaluated as 3+, whereas that of others was evaluated as “++” or “+” (Figure 7). 
There were no differences in the growth rates between gram-positive and gram-negative 
bacteria. The bactericidal effect was much more powerful with an exposure of 30 min; 
only a single microorganism (Candida tropicalis) grew as “3+”, whereas four bacterial 
strains were fully inactivated, and the rest were partially inactivated (“+” or “++”). A 
longer exposure time had a better bactericidal effect; nine strains of microorganisms were 
fully inactivated within a 60 min exposure, whereas 14 out of 17 strains were fully inacti-
vated with a deposition of 120 min. The bactericidal effect was therefore directly depend-
ent on the duration of CuO deposition on the mask layer (p < 0.05). The experiment 
demonstrated that the yeasts (C. albicans and C. tropicalis) were not affected by the CuO 
nanoparticles, and those strains had the same ability to grow after direct exposure to CuO 
as on the control mask layer without metal oxide. Only a single bacterial species (E. fae-
cium) was able to survive (“+”) after direct contact with the CuO during the longest dep-
osition (120 min). 
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Figure 7. Antimicrobial potential of Cu oxide coatings with direct inoculation onto the mask layer. 
1—E. cloacae, 2—E. coli, 3—K. pneumoniae, 4—P. mirabilis, 5—S. enterica, 6—C. freundii, 7—A. hydroph-
ila, 8—A. baumannii, 9—P. aeruginosa, 10—P. multocida, 11—S. aureus, 12—S. haemolyticus, 13—E. fae-
calis, 14—E. faecium, 15—B. cereus, 16—C. albicans, 17—C. tropicalis. 

Figure 8 demonstrates the growth ability of the microorganisms after a prolonged 
period with indirect contact with the experimental mask layer, i.e., when the layer square 
was placed into a bacterial suspension. The results demonstrated that the mask layer 
coated with CuO had an excellent bactericidal effect on all the tested cultures, except for 
S. enterica, when the CuO deposition time was not less than 30 min. S. enterica was inacti-
vated only when the CuO exposition time was at least 120 min. A deposition time of 15 
min was effective on all the test cultures, except for K. pneumoniae, S. enterica, P. multocide, 
E. faecium and the yeasts. Overall, indirect exposure to the CuO-coated mask material had 
a very low effect on the yeasts, and they were able to survive after the longest deposition 
(120 min) of CuO on the mask layer. 

 
Figure 8. Antimicrobial potential of CuO coatings with indirect exposure to microorganisms. 1—E. 
cloacae, 2—E. coli, 3—K. pneumoniae, 4—P. mirabilis, 5—S. enterica, 6—C. freundii, 7—A. hydrophila, 8—
A. baumannii, 9—P. aeruginosa, 10—P. multocida, 11—S. aureus, 12—S. haemolyticus, 13—E. faecalis, 
14—E. faecium, 15—B. cereus, 16—C. albicans, 17—C. tropicalis. 
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Figure 9 shows SEM micrograph images after the bacterial cultures were transferred 
onto a glass slide coated with CuO. The damaged bacterial cells are visible in the pictures 
after contact with the CuO NPs. 

 
Figure 9. SEM micrographs with non-treated (left) and copper-treated (right) bacterial images: A—
Escherichia coli ATCC 25922; B—Bacillus cereus ATCC 11778; C—Staphylococcus aureus ATCC 25923. 
Damaged cells are marked by arrows. 
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4. Discussion 
The results of this study demonstrated that CuO nanoparticles coated on medical 

mask layer could be effective against multiple pathogens. Bacterial inactivation, however, 
depended on the deposition time of the nanoparticles on the mask layer. The optimal bac-
tericidal action was reached when the mask layer was coated with a CuO deposition time 
of 120 min. In this case, a short contact time with bacteria (20 min on the mask material) 
was enough to kill them. The SEM micrographs demonstrated that some bacteria, partic-
ularly the gram-negative E. coli cells, were disrupted even after 5 min (during drying of 
the bacterial suspension on the glass surface) direct contact with the coating. There was 
also a good bactericidal effect with a smaller amount of CuO (deposition time from 30 min 
to 60 min) with more prolonged indirect contact (24 h) when the coated mask layer was 
placed in the bacterial suspension. 

Recent studies have demonstrated that CuO NPs have an antimicrobial effect on E. 
coli, S. aureus, Bacillus subtilis and P. aeruginosa [41], but there is a lack of information about 
its antimicrobial effects on a wider spectrum of bacterial or fungal species. Our results 
demonstrated very low or no antifungal effect on the yeasts, which supported data ob-
tained by other authors [42]. 

The surface layer of a surgical mask is hydrophobic and dry. Protection against mi-
croorganisms could be limited if the mask becomes wet with the wearer’s body fluids or 
respiratory droplets. Microorganisms can then penetrate this layer’s surface [43]. It is dif-
ficult to predict the contact of bacteria with the mask middle layer in field conditions as it 
may depend on the size of bacteria, breathing intensity and the density of mask layers. It 
should be assumed that antimicrobial action has to be fast, and therefore a higher concen-
tration of Cu oxide, which has a faster effect in a shorter time, should be considered for 
future applications. High concentrations of metal ions on the mask surface could lead to 
high exposure for the mask users however, as the copper oxide particles may be released 
from the surface and reach the respiratory system. For this reason, the next step should be 
evaluating the stability of Cu oxides on the mask layer, and this should include a safety 
risk assessment. Long studies have indicated that oral copper exposures are typically not 
a human health concern [44]. Copper is an essential microelement required by adults in 
amounts of 1 to 100 mg/day and it is found in high concentrations in the brain, liver and 
kidneys [45]. Overexposing doses of copper can induce toxicity symptoms, however, and 
intoxication by copper usually occurs through contaminated food and water sources. A 
study performed by Lai et al. demonstrated that CuO NPs can induce pulmonary fibrosis 
in mice [46]. In vitro studies have demonstrated that CuO NPs induce cytotoxic, genotoxic 
and oxidative stress responses in several cultured human lung epithelial cells and that the 
toxicity level is dose-dependent [47,48]. In vivo studies on the lung toxicity of CuO NPs 
are largely lacking [48]. Karlsson et al. showed that CuO NPs were much more toxic than 
CuO micrometer particles [49]. Different technologies have been investigated in order to 
increase the safety of nanoparticles. For example, the toxicity of CuO NPs to different cell 
lines was decreased when Fe-doped CuO NPs were used [50]. Special technologies are 
used to increase the binding of NPs on textiles, such as the one-pot modification technique 
(pad–dry–cure) using carboxymethyl chitosan as a binder and stabiliser [51]. Chitosan can 
be used to improve the adhesion of metal salts or NPs on cotton, linen, polyamide and 
aramid fabrics [52] in order to reduce exposure to the respiratory system. The biosynthesis 
of NPs using plant extracts is also promising as it enables biocompatible and water-solu-
ble NPs with good stability and improved antimicrobial and antioxidant properties to be 
obtained [53–55]. The green nanobiotechnological synthesis of NPs using biomolecules 
(proteins, enzymes, DNA and plant extracts) has become a rapidly developing research 
area. Green synthesis methods have overcome the disadvantages of traditional physical 
and chemical synthesis approaches, such as high cost, long time scales and toxicity [56,57]. 

We did not detect the clear dependence of the Cu oxide action on the type of bacteria 
in this experiment. The gram-positive, gram-negative and spore-forming bacteria re-
mained alive in shortest duration of Cu oxide exposure, but all were inactivated when the 
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mask layer was coated with a higher concentration (higher deposition) of CuO. The SEM 
micrographs demonstrated damage to the gram-negative bacteria (E. coli) and lesser dam-
age to the gram-positive ones. The experiments proved that both gram-negative and 
gram-positive bacteria, including spore-forming bacteria, were fully inactivated depend-
ing on the deposition time of CuO. During the experiment with direct contact with the 
mask layer, only a single species of bacteria—Enterococcus faecium—was able to survive 
after contact with the layer coated with the highest concentration of CuO. There might be 
a few reasons for its resistance to CuO, including intrinsic species resistance or acquired 
strain resistance (co-resistance or genes encoding resistance to heavy metals), and further 
experiments in this direction could help to answer this question. Studies performed by 
other authors have demonstrated that CuO particles are effective against both gram-pos-
itive and gram-negative bacteria, however, the effectiveness of CuO depends on the size 
of the particles. In a study performed by Azam et al., smaller particles demonstrated a 
higher activity, whereas the minimum inhibitory concentration of CuO NPs annealed at 
400 °C was the lowest for all the tested bacterial strains [21]. The data suggests that smaller 
copper oxide particles are more effective but also more toxic. This correlation should be 
considered in the different applications of copper oxide coatings. 

The inactivation mechanisms of bacteria by metal ions are different. As a typical ex-
ample, bare CuO NPs with a positive charge at neutral pH can effectively adhere to the 
negatively charged bacterial cell wall via electrostatic interactions and inhibit the physio-
logical functions necessary for cell metabolism [13]. The bactericidal mechanism of metal 
and metal oxide can also be associated with the production of reactive oxygen species, 
which includes superoxide radical anions, hydrogen peroxide anions and hydrogen per-
oxide, which interact with the cell walls of bacteria causing damage to the cell membrane 
and in turn inhibiting the further growth of cells with the leakage of internal cellular com-
ponents, leading to the death of bacteria [58]. The rupture of bacterial cell walls and leak-
age of cytoplasm, particularly in Escherichia coli as well as in some cells of Staphylococcus 
aureus, was visible in the micrographs taken in this study. This data supported previous 
findings that CuO acts against a wide range of bacteria by disrupting cell walls and dis-
torting helical DNA structures [59]. 

5. Conclusions 
Pure CuO nanoparticles were successfully deposited using an environmentally 

friendly non-thermal physical vapour deposition approach. The particles were distributed 
in different size clusters (starting from less than 100 nm dots going up to about 1 µm clus-
ter-like structures). The CuO clusters did not form uniform films, which could negatively 
influence airflow during use of the mask. 

The antimicrobial effect depended on the deposition time of the CuO NPs on the 
medical mask layer. The CuO NPs demonstrated a strong antibacterial effect on gram-
negative, gram-positive and spore-forming bacteria, including antimicrobial-resistant and 
wild bacterial isolates, when the deposition time using 150 W power was not less than 30 
min. The CuO NPs had little or no effect on Candida spp., independent of the duration of 
NP deposition. The SEM images demonstrated the disruption of cell membranes and cell 
lysis in the bacteria after their contact with CuO NPs. 
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