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Abstract: In recent decades, a variety of organizational sectors have demanded and researched green
structural materials. Concrete is the most extensively used manmade material. Given the adverse
environmental effect of cement manufacturing, research has focused on minimizing environmental
impact and cement-based product costs. Metakaolin (MK) as an additive or partial cement replace-
ment is a key subject of concrete research. Developing predictive machine learning (ML) models is
crucial as environmental challenges rise. Since cement-based materials have few ML approaches,
it is important to develop strategies to enhance their mechanical properties. This article analyses
ML techniques for forecasting MK concrete compressive strength (fc’). Three different individual
and ensemble ML predictive models are presented in detail, namely decision tree (DT), multilayer
perceptron neural network (MLPNN), and random forest (RF), along with the most effective factors,
allowing for efficient investigation and prediction of the fc’ of MK concrete. The authors used a
database of MK concrete mechanical features for model generalization, a key aspect of any prediction
or simulation effort. The database includes 551 data points with relevant model parameters for
computing MK concrete’s fc’. The database contains cement, metakaolin, coarse and fine aggregate,
water, silica fume, superplasticizer, and age, which affect concrete’s fc’ but were seldom considered
critical input characteristics in the past. Finally, the performance of the models is assessed to pick and
deploy the best predicted model for MK concrete mechanical characteristics. K-fold cross validation
was employed to avoid overfitting issues of the models. Additionally, ML approaches were utilized
to combine SHapley Additive exPlanations (SHAP) data to better understand the MK mix design
non-linear behaviour and how each input parameter’s weighting influences the total contribution.
Results depict that DT AdaBoost and modified bagging are the best ML algorithms for predicting
MK concrete fc’ with R2 = 0.92. Moreover, according to SHAP analysis, age impacts MK concrete
fc’ the most, followed by coarse aggregate and superplasticizer. Silica fume affects MK concrete’s fc’
least. ML algorithms estimate MK concrete’s mechanical characteristics to promote sustainability.

Keywords: metakaolin; SHAP analysis; bagging; boosting; decision tree; multilayer perceptron
neural network; random forest

1. Introduction

Throughout the previous decades, there has been a strong demand and concern for
investigation to develop green structural materials to meet the increasing need from public
and private sectors. Concrete continues to be the most widely utilized manmade substance
on the planet. Given the considerable environmental impact of cement production, research
has concentrated on both reducing the impact on the environment and cost reductions for

Materials 2022, 15, 7764. https://doi.org/10.3390/ma15217764 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15217764
https://doi.org/10.3390/ma15217764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-7994-4642
https://orcid.org/0000-0001-6524-4389
https://orcid.org/0000-0002-1668-7607
https://orcid.org/0000-0002-9451-3696
https://orcid.org/0000-0003-1662-5526
https://doi.org/10.3390/ma15217764
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15217764?type=check_update&version=3


Materials 2022, 15, 7764 2 of 27

cement-based products [1–3]. The utilization of metakaolin (MK) as an additive or partial
substitute for cement is a major area of research in the manufacture of concrete materials.

MK is an alternative to cement that is manufactured by calcining kaolin clays at ele-
vated temperatures ranging from 700 ◦C to 900 ◦C. As a cement replacement in concrete
structures, MK has been employed as a 10% to 50% replacement, depending on the specific
application [4–7]. It has been shown that MK enhances the mechanical and durability
properties when used in place of Portland cement [8–10]. The pozzolanic reaction, MK
aggregate’s fineness, and the accelerated cement hydration all contribute to an increase
in concrete’s compressive strength (fc’) during the early curing phases [11]. Additionally,
cement manufacture generates a substantial amount of carbon dioxide (CO2) emissions;
this new trend of replacing metakaolin for cement in concrete is part of a comprehensive ap-
proach to environmental sustainability. Addition of MK in concrete has various advantages
as depicted in Figure 1.
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Figure 1. Advantages of metakaolin in concrete.

The cost, labour, and time consuming complexity of laboratory-based mixture opti-
misation might be replaced by computational modelling techniques [12]. To determine
the optimum concrete mixtures, these approaches generate objective functions from the
concrete components and their properties, and then use optimization techniques to de-
termine the best concrete mixtures. Previously, goal functions for linear and nonlinear
models were individually created. Due to the very nonlinear connections between concrete
qualities and input parameters, the relationships of such models cannot be precisely estab-
lished. Therefore, researchers are using machine learning (ML) techniques for predicting
concrete properties.

Creating a concrete mix with MK in it complicates the determination of the concrete’s
fc’ using an analytical formula, as opposed to a standard concrete, which has fewer mix
parameters than cement MK specimen. This is mostly because of the enormous number
of constituents and the fc’ very nonlinear behaviour in regard to the mix parameters. To
this purpose, when basic equations cannot directly connect the input and output values,
machine learning (ML) techniques frequently give important alternatives in the context
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of engineering problem solving [13–22]. Owing to the intricate nonlinear interactions
amongst independent and dependent variables, such techniques can be accomplished with
a sufficient level of accuracy if a comprehensive library of sufficient experimental data
points is accessible in the area of computational engineering structures and materials. Thus,
a wide range of innovative approaches to a wide range of technological problems may be
put into practice.

Until now, the literature has primarily focused on the use of ML techniques such
as artificial neural network (ANN) in the field of materials science without ensemble
learners [23–26]. These algorithms were utilized to predict the fc’ and elasticity modulus of
materials composed of cement [26–29]. The literature has comprehensive and extensive
publications on the use of ANNs in the modelling of concrete materials [30–35]. Fuzzy
logic algorithms and genetic algorithms approaches have also been utilized in the recent
decade in place of ANN models to describe the mechanical properties of cement-based
materials [36–41].

Since cement-based materials have a limited number of ML methods, it is vital to
investigate if other ML techniques may be used to improve their mechanical characteristics.
Thus, the present work investigates ML approaches application for predicting the fc’ of MK
concrete. Three different individual and ensemble ML predictive models are presented in
detail, namely decision tree (DT), multilayer perceptron neural network (MLPNN), and
random forest (RF), together with the factors that are most effective, allowing for efficient
investigation and prediction of the fc’ of cement-based concrete. The authors employed a
comprehensive database of MK concrete mechanical characteristics for model generalisation
since it is an essential part of any prediction or simulation work. The reported database
contains 551 data points with highly effective input parameters for calculating the fc’ of MK
concrete. The database includes a value for cement, metakaolin, coarse and fine aggregate,
water, silica fume, superplasticizer, and age, which have a considerable effect on the fc’ of
concrete and have rarely been treated as vital input parameters in the past. The trained
and created model has produced a holistic map of concrete fc’. Finally, the performance
capabilities of the offered models are evaluated in order to select and implement the most
predictive model for addressing the mechanical properties of MK concrete.

There has been a surge in increased interest in large-scale production of sustainable,
low-priced, and high-performance construction materials that are also robust in adverse
ecological circumstances over the previous few decades. One of the world’s most common
construction materials—cement-based concrete—required the incorporation of more com-
ponents and additives than previously used concrete because of environmental concerns.
However, the high number of mixture factors and their substantially nonlinear relationship
to the mechanical characteristics of concrete, such as the fc’, challenge the analytical meth-
ods for numerically estimating the concrete fc’. To this purpose, unconventional methods
become a critical instrument for resolving the afore-mentioned complicated optimisation
problem. In this perspective, the most widely used ML techniques, such as, DT, MLPNN,
and RF, have been suggested for estimating the fc’ of concrete, a critical parameter for the
reliable design in structure. Among the proposed ML models, the optimal predictive model
has shown to be extremely successful, demonstrating trustworthy projections and, most
importantly, showing its highly non-linear mechanical properties.

Additionally, there seems to be a research gap in the study of MK fc’ and its influence
on raw materials. It was, thus, necessary to investigate the influence of MK containing
concrete’s input parameters/raw components on its anticipated compressive strength
using a post hoc model-agnostic approach known as SHapley Additive exPlanations
(SHAP) [42,43]. Machine learning (ML) techniques were used to integrate SHAP data
in order to get a better understanding of the multifarious non-linear behaviour of the
MK design mix for the strength parameter and how each input parameter’s weighting
affects the overall contribution. ML approaches may be used to accurately forecast concrete
kinds, as previously stated. The experimental setting requires a significant investment
in terms of labour, time, and resources to do this. Data modelling and the discovery of
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interconnected independent components, as well as a rapid reduction in input matrix size
are, thus, urgently required. Concrete construction materials may be accurately predicted
using machine learning approaches. The use of ML methods may be justified as an
alternate strategy to calculating MK fc’ in order to save on both time and money spent on
experiments. We used both a stand-alone ML model and an ensemble of ML models in our
investigation. Additionally, statistical tests were used to evaluate the models, and their
results were compared. Later, a model with precise MK prediction was suggested based
on the performance of several statistical factors. In order to get a thorough understanding
of mix design in order to achieve MK concrete strength, this research also explained how
input factors contributed and how ML models were integrated. Explainable ML techniques
and features significance for considerable characteristics of the structure were found to be
linked in the study’s overall findings.

2. Data Description

Currently accessible literature has been used to get the data needed to simulate
concrete’s fc’ utilising MK [44–55]. The predicted output compressive strength data consists
of eight input parameters, which include cement, MK, fine and coarse aggregate, water,
age of concrete, superplasticizer, and silica fume. Type of cement is not considered as
an input parameter, as only one type of cement (Type-I) is utilized for modelling the ML
algorithms. Cement and metakaolin are two constituents that are prevalent among those
selected for the database. Additionally, attempts were made to choose articles that share
common components (admixtures, superplasticizers, etc.). The authors tried to choose
publications based on criteria related to materials that are widely used in concrete and
make important contributions to concrete’s mechanical characteristics. Further, similar
material in varied arrangements is required for modelling ML algorithms. Except for age
in days, all characteristics are measured in kilograms/m3. Descriptive statistics are a set of
descriptive coefficients that provide a result that may be applied to the whole population
or to a sample of the population. In descriptive statistics, measures of central tendency
and measures of variability are used (spread). However, variance, standard deviation,
maximum and minimum variables, kurtosis, and skewness are all indices of variability.
Tables 1 and 2 and Figure 2 provide the variation in data used to run the models. Various
information is reflected in the descriptive analysis’s outcomes, which are derived from the
data of all the input variables. Additionally, the table displays the ranges, maximum, and
lowest values of each model variable. Nonetheless, the other parameters of the study, such
as mean, mode, standard deviation, and the total of all data points for each variable, also
reveal the important values. Figure 2 depicts the relative frequency distribution of each
parameter utilised in the mixes. A relative frequency distribution illustrates the percentage
of total observations that correspond to each value or class of values. It has tight ties to a
probability distribution, which is often used in statistics. Figure 2 depicts the link of input
parameters by displaying the relative frequency distribution of data items. Each chosen
parameter has a significant impact on the concrete’s strength characteristics. In addition,
Table 1 displays the lowest and highest variable values including 551 datasets, and Table 2
provides a data analysis check with the variance, range, standard deviation, and mean.
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Table 1. Metakaolin concrete compressive strength model input and output variable ranges.

Parameters
Acronym Min Max

Input Parameters

Cement C 30 512
Fine aggregate FA 300 1146

Coarse aggregate CA 0 1154
Water W 12 220.30

Silica fume SF 0 75
Metakaolin MK 0 256

Superplasticizer SP 0 43
Age Age 1 180

Output variable

Compressive strength fc’ 9.84 131.30

Table 2. Statistical description of Metakaolin concrete variables.

Parameters Cement Fine
Aggregate

Coarse
Aggregate Water Silica Fume Metakaolin Superplasticizer Age (Days)

Statistical description

Mean 396.64 737.24 853.09 161.71 4.05 45.48 2.90 37.29
Std error 3.72 7.79 15.47 1.53 0.55 2.16 0.33 1.93
Median 400 711 1037 163.40 0 40 0 28
Std. dev 87.28 182.93 363.13 36.00 13.02 50.59 7.73 45.34
Variance 7617.40 33,463.99 131,866.26 1295.65 169.49 2559.62 59.80 2056
Kurtosis 3.57 0.37 1.42 4.18 13.68 4.43 16.38 3.13
Skewness −1.34 0.52 −1.75 −1.58 3.68 1.85 3.92 1.90
Range 482.00 846 1154 208.30 75 256 43 179
Min 30 300 0 12 0 0 0 1
Max 512 1146 1154 220.30 75 256 43 180
Sum 218,548.70 406,217 470,050.80 89,099.50 2232.15 25,060.77 1597.30 20549
Count 551 551 551 551 551 551 551 551

Training dataset

Mean 395.18 738.49 841.41 161.06 4.09 45.50 2.66 37.85
Std error 4.19 8.86 17.83 1.74 0.63 2.39 0.35 2.20
Median 400 711 1037 163.40 0 40 0 28
Std. dev 87.97 185.84 374.05 36.54 13.24 50.03 7.38 46.20
Variance 7738.04 34,538.02 139,915.86 1334.83 175.26 2503 54.44 2134.15
Kurtosis 3.65 0.33 1.04 4.08 13.61 4.56 18.52 2.92
Skewness −1.38 0.52 −1.66 −1.57 3.69 1.86 4.13 1.86
Range 482 846 1154 208.30 75 256 43 179
Min 30 300 0 12 0 0 0 1
Max 512 1146 1154 220.30 75 256 43 180
Sum 173,881.30 324,936.00 370,219.70 70,868.40 1798.72 20019.51 1171.52 16656
Count 440 440 440 440 440 440 440 440

Testing Dataset

Mean 402.41 732.26 899.38 164.24 3.90 45.42 3.84 35.07
Std error 8.03 16.29 29.75 3.21 1.15 5.03 0.85 3.98
Median 400 708 1037 163.40 0 40 0 28
Std. dev 84.64 171.61 313.42 33.81 12.16 53 8.98 41.92
Variance 7163.11 29,450.55 98,231.83 1142.93 147.97 2808.83 80.63 1756.94
Kurtosis 3.30 0.59 3.85 4.79 14.25 4.19 11.32 4.29
Skewness −1.16 0.54 −2.25 −1.62 3.64 1.85 3.31 2.06
Range 434.50 846 1149 192.40 75 256 43 179
Min 77.50 300 0 27.90 0 0 0 1
Max 512 1146 1149 220.30 75 256 43 180
Sum 44,667.40 81,281.00 99,831.10 18,231.09 433.43 5041.26 425.78 3893
Count 111 111 111 111 111 111 111 111
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3. Methodology

ML techniques are being used in a variety of fields to anticipate and understand
the behaviour of materials. In this work, ML-based techniques comprising of the DT,
MLPNN, and RF are employed for forecasting the fc’ of MK concrete. The selection of
these methods is based on their prevalence and reliability in the forecast of outcomes in
comparable studies, as well as their significance as the top data mining algorithms. In
addition, an ensemble algorithm was afterwards employed to simulate the concrete fc’.
Figure 3 displays the technique flow chat for ensemble learning.
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3.1. Machine Learning Methods

It has been shown that artificial intelligence (AI) is a more effective modelling method-
ology than traditional methods. AI has a number of advantages for addressing ambiguous
difficulties and is an excellent method for handling such complicated situations. It is
possible to identify engineering design parameters using AI-based methods when testing is
not possible, resulting in significantly reducing the workload of human testers. In addition,
AI could expedite decision making, decrease error, and improve processing efficacy [56].
Recently, a rise of interest in the application of artificial intelligence to all scientific fields has
been observed, sparking a range of goals and aspirations. The field of civil engineering has
experienced a significant increase for utilizing different AI methods all over its numerous
fields. ML, reinforcement learning, and deep learning (DL) are three AI approaches that
are proving to be a new category of creative approaches to structural engineering problems.
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ML is a fast-expanding area of AI that is often used in the construction sector for predicting
behaviour of material. One project aims to investigate inclusion of social elements into multi
criteria infrastructure assessment strategies, with inclusion of social factors into the assess-
ment of infrastructure’s long-term viability using multi-criteria assessment techniques [57].
In the framework of structural design, exhaustive study on evolutionary computation,
an area of artificial intelligence, was conducted [58]. Yin et al. [59] explored AI uses in
geotechnical engineering. A study was done to determine the state of high-rise building
optimization. [60]. In order to synthesise concepts in the developing field of AI applications
in civil engineering, this study was done. This list contains a broad variety of methods:
Fuzzy systems (FS), neural networks, expert systems (ES), reasoning, categorization, and
learning are only a few examples of evolutionary computing [61].

In spite of the fact that the referenced review papers discussed the use of AI in civil
engineering, they mostly concentrated on the usage of old approaches and did not cover
latest methods using ensemble techniques. Figure 3 shows an estimation of the fc’ of MK
concrete using ML approaches including DT, MLPNN, and RF. These algorithms were
selected on the basis of their broad usage in relevant research and their reputation as the
finest data prediction algorithms available. In addition, ensemble techniques are employed
to predict the concrete modelling strength. In terms of computational speed and processing
time, ML models are fairly significant. Compared to conventional models, the rate of error
is almost non-existent. A comparison is made among individual and ensemble models in
this research. SHAP analysis is performed to find the optimum dosage and contribution of
each input parameter towards fc’. Moreover, positive and negative impacts of each input
parameter and their effect on other parameters are also studied.

3.1.1. Decision Tree-Based Machine Learning

In DT, any number of nodes can be connected to any number of branches, and each
node can have an infinite number of branches. Leaves are the nodes that do not have
any outgoing ends, whereas inner nodes are those that do. Using an interior node for
a specific event, the case utilized for classification or regression can be partitioned into
multiple classes. During the learning process, the input variables play an important role.
The algorithm that generates the DT from provided instances serves as the stimulant for the
DT. By reducing the fitness function, the implemented algorithm calculates the optimal DT.
A regression model is used because there are no classes in the dataset selected for this study,
so the independent variables are used instead of the target variable. For each variable, the
dataset is broken up into many subsets. The error among the anticipated and the actual
values of the pre-specified relation is determined at every split point by the algorithm. The
variable having least values of fitness function is selected as the split point after comparing
the inaccuracies in the split point across the variable quantity. Repeatedly, this technique is
carried out.

In the DT architecture, independent variables are partitioned into homogenous zones
by decision rules that recursively split them [62]. DT is primarily concerned with the
investigation of a system for making decisions that are suitable for predicting a result given
a collection of inputs. DT is referred to as a regression tree or a classification tree, depending
on whether the target variables are continuous or discrete [63]. Numerous studies have
demonstrated the effectiveness of DT in a variety of real-world situations for the aim of
prediction and/or categorization [64].

The primary advantage of DT is its ability to simulate complex interactions between
existent variables. Through consideration of how data are distributed, DT models are
capable of combining both continuous and categorical variables without making any
stringent assumptions [65]. Additionally, developing a DT is straightforward, and the
resulting models are easily interpretable. Additionally, when it comes to determining the
relative relevance of input characteristics, DT is an excellent choice [66].

DT modelling includes two phases: tree creation and tree pruning [67]. Stage one starts
with DT’s root node being identified as the independent variables with the highest perfor-
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mance gain. Following that, according to root values, the training dataset is partitioned
into subsets and sub-nodes are created. When the input variables are discrete, a sub-node
of the tree is constructed for each conceivable value, whereas in some circumstances, the
threshold-finding step results in the generation of two sub-nodes [68]. Following that,
each sub-gain node’s share is calculated, and the technique is recurring till all samples in a
certain node are classified as belonging to the same class. They are then referred to as “leaf
nodes,” and their values are designated as the values of the classes they belong to. A flow
chart of DT is shown in Figure 4.
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3.1.2. Artificial Neural Network-Based Machine Learning

A multilayer perceptron neural network (MLPNN), a network-based DM computing
approach, is employed in this research with individual base learner and ensemble base
learner methods to model and forecast MK concrete. An ANN program mimics the structure
of a biological nervous system’s neurons [69]. Parallel linkages provide the basis of ANNs.
In order to transmit the weighted inputs from neurons, these cells use an activation function
to transmit the weighted outputs. It is possible to have one or more multi-layers in these
activities. Use of the multilayer perceptron network is widespread in brain activity. The
perceptual response is created among the number of input parameters and the number
of output parameters. There are three types of layers in a network: input, hidden, and
output. Between the input and output layers, there is a hidden layer that may have a huge
network of hidden layers. The perceptron can handle all of its issues with a single layer,
but it is more efficient and helpful to have several hidden layers [70]. Figure 5 depicts a
typical neural network design. With the exception of neurons in the input layer, all neurons
in a layer perform linear addition and bias computations. Non-linear functions are then
calculated in the hidden layers by neutrons A sigmoid function is a word used to describe
a non-linear function [71]. This research paper models ANNs using a feed-forward multi-
layer perceptron (MLPNN) network. To discover the highest-performing MLPNN, hidden
layers and neuron pairs of varied numbers are meticulously selected [72]. In the hidden
layer, the link between input and output variables may also be determined using a linear
activation function and a nonlinear transit function. In addition, the data extracted from
the published literature are separated into training and testing sets. This is conducted to
reduce the influence of data overfitting, since overfitting is an intractable issue in machine
learning. Randomly, 80 percent of the data is used for training the models and 20 percent
for testing the trained models, as recommended by the literature [73].
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3.2. Bagging and Boosting for Ensemble Approaches

ML classification and prediction accuracy may be improved using ensemble ap-
proaches. By combining and accumulating several weaker predictive models, such tech-
niques frequently support decrease training data over-fitting problems (component sub-
models). Training data may be manipulated to create various sub-model/classifier com-
ponents (i.e., 1 to M) that help a learner. Furthermore, the best predictive model may
be generated by merging limiting sub-models using averaging combination processes.
Bootstrap resampling and benefit collection are two common methods for modelling en-
sembles that make use of bagging. The first training set substitute’s component replicates
the bagging procedure. In product models, specific data samples might appear numerous
times, while others do not. An average is computed from the output of each component
model. As with the bagging method, this strategy builds a cumulative model that yields
several components with more accuracy as compared to the individual model. A weighted
average of dependent sub-models is used to set sub-models in the final model, which
is referred to as “boosting”. AdaBoost [74] is a rapid ensemble learning algorithm that
picks multiple classifier examples repeatedly by distributing weights adaptively across
training cases. This approach linearly combines the chosen classifier instances to form an
ensemble. Even when a large number of base classifier instances are included in a model,
AdaBoost ensembles seldom display an overfitting issue [75]. It is possible to diminish loss
function by fitting to a staged additive model. This indicates that a cost function that is
not differentiable and is not smoothed has been optimized; it can best be described using
an exponential loss function [75]. It is, therefore, possible to employ AdaBoost to tackle a
number of classification problems with impressive results. DT, MLPNN, and RF are used in
conjunction with ensemble learners to envisage the strength of consistently used concrete
in this study.

3.3. Ensemble Learner’s Parameter Tuning

Models of the tuning parameters that are employed in the ensemble methods might
consist of (i) factors connected with the optimum model learners’ number and (ii) rate
of learning and other attributes that have a significant influence on ensemble algorithms.
In this research, twenty sub-models were generated for each ensemble base learner. The
component sub-models ranged in size from 10 to 200, and the optimum constructs were
selected on the basis of the large values of determination coefficient. Figure 6 illustrates
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the link between performance of ensemble model and the number of component sub-
models. As shown in Figure 6a,b, the assembling model with bagging and boosting yields a
significant determination coefficient in the estimation terms. As demonstrated in Figure 6a,
the 140th sub-model of DT with bagging as an ensemble of other sub-models provides a
stronger relationship than the other sub-models of DT with bagging. Similarly, the 30th
sub-model of MLPNN with bagging provides a significant higher correlation coefficient as
compared to MLPNN bagging other sub-models. Similarly, as depicted in Figure 6b, the
50th DT AdaBoost and the 180th MLPNN AdaBoost sub-model provide the best results
when compared to their other sub-models. Preliminary analysis indicates that the usage of
ensemble modelling improves the efficiency of both models.
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3.4. Random Forest Regression Based Machine Learning

The RF model is a regression and classification strategy that has piqued the curiosity
of a number of different researchers [76]. The main difference between DT and RF is that
one tree is created in DT, but several trees are built in RF, and unlike data are randomly
picked and distributed to all the trees in the forest. Each tree’s data are organised into
columns and rows, with a variety of column and row sizes to choose from [77]. Each stage
of a tree’s development is detailed below:

1. The equivalent of two-thirds of the entire dataset is chosen for each tree at random.
Bagging is the term used to describe this practise. Predictor variables are picked, and
node splitting is done based on the best possible node split on these variables.

2. The remaining data are used to estimate the out-of-bag error for each and every tree.
To get the most accurate estimation of the out-of-bag error rate, errors from each tree
are then added together.

3. Every tree in the RF algorithm provides a regression, but the model prioritizes the
forest that receives the most votes over all of the individual trees in the forest. The
votes might be either zeros or ones. As a prediction probability, the fraction of 1s
achieved is provided.

3.5. 10 K Fold Method for Cross Validation

For training and holdout data, the k fold approach for cross validation is often em-
ployed to decrease arbitrary sampling prejudice. A stratified 10-fold cross-validation
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strategy was used in this work to evaluate model performance by dividing the input data
into ten distinct subsets. Each of the 10 rounds of model construction and validation uses a
different sample of data to test and train the model. As indicated in Figure 7, in order to
validate the adequacy of the model, the test subset is utilised. The accuracy of algorithm is
calculated as the mean of the 10 models’ accuracy scores after 10 rounds of validation.
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3.6. Evaluation Criteria for Models

Statistical errors for example root mean squared logarithmic error (RMSLE), square
value (R2), mean absolute error root (MAE), and root mean square error (RMSE) are used
to assess model performance on a training or testing set. R2 is also called the determination
coefficient and is used to evaluate a model’s ability to predict. Concrete’s mechanical
characteristics may now be predicted with greater accuracy due to advances in artificial
intelligence modelling methods. The models are assessed statistically by calculating error
metrics in this research. There are a variety of measures that might help us better understand
the model’s inaccuracy. In addition, the model’s performance may be assessed using the
variance coefficient and standard deviation. According to the coefficient of determination,
the model’s correctness and validity may be confirmed. Models with R2 values ranging
from 0.65 to 0.75 indicate promising results, whereas models with R2 values lower than
0.50 reveal disappointing outcomes. Equation (1) can be used to determine R2. The units
used in MAE are the same as the ones used in the output. It is possible for a model with a
value of MAE that falls within a certain limit to have large errors at some points in time.
In order to calculate MAE, Equation (2) is used. RMSE is the under root of the average of
squared differences between estimates and measurements. Error squared is calculated by
summing the squared errors. This method gives a greater weight to outliers and significant
exceptions than other methods, which results in bigger squared differences in certain cases
and lower squared differences in others. Using RMSE, the model’s average estimation error
given an input can be calculated. Improved models have fewer root mean squared errors
of variation. The lower the value of RMSE, the less accurate the model is in predicting the
data. Equation (3) is used to determine RMSE. Relative imprecision amongst forecasted
and actual values is taken into account by RMSLE. It is the difference between the expected
value and the actual value, expressed as a logarithmic scale. RMSLE is calculated using
Equation (4).
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4. Model Result
4.1. Decision Tree Model Outcomes

As seen in Figure 8, the DT is modelled using various ensemble techniques including
bagging and boosting. The actual prediction from individual base learner DT produces a
high relationship with predicted values having a R2 = 0.868, as seen in Figure 8a. Figure 8b
depicts the error distribution of an individual DT model. Figure 8b indicates that the testing
set has an average inaccuracy value of 5.79 MPa. In addition, 82.88 percent of the data
exhibit error below 10 MPa, and 11.7% of the data exhibit error between 10–15 MPa. In
contrast, each domain of 15–20 MPa, 20–25 MPa, and 35–40 MPa contains 1.8 percent data
error, with a maximum and minimum error of 35.3 MPa and 0.085 MPa, respectively, as
illustrated in Figure 8b. Individually, DT provide accurate predictions; but, if the DT is an
ensemble of several methodologies, it yields a more precise outcome, as seen in Figure 8c–f.
Bagging ensemble yields a conclusive and favourable result with R2 = 0.879 and minimal
testing data error. The data indicate an inaccuracy of 84.685% below 10 MPa, 9% between
10 and 15 MPa, and 3.6% between 15 and20 MPa. As shown in Figure 8d, only 1.8% of
the data fall between 20 and 25 MPa and 0.9% between 30 and 35 MPa, with a maximum
and minimum error of about 33.06 MPa 0.029 MPa, respectively. Similar to individual DT
and bagging DT algorithms, boosting with AdaBoost produces models with a significant
correlation. As seen in Figure 8e–f, this is because of the influence that a strong learner has
on the aspect of prediction. A DT AdaBoost ensemble model has a R2 equal to 0.924. The
error distribution is minimised by applying AdaBoost with a DT, with an average error
of 4.12 MPa, a maximum and minimum error of 34.578 MPa, and 0.065 MPa, respectively.
Approximately 92.79%of the data is below 10 MPa, with 6.3% between 10 and 15 MPa and
0.9% between 30 and 35 MPa. Table 3 presents the statistical information pertaining to DT
with bagging and boosting ensemble learners.

Table 3. DT model statistical evaluation of errors.

Statistical Analysis DT DT-Bagging DT-AdaBoost

Average 5.79 7.29 7.05
Minimum 0.08 0.11 0.07
Maximum 35.3 34.74 31.31

No. of data points below 10 MPa 92 94 103
No. of data points between 10 and 20 MPa 15 14 07
No. of data points between 20 and 30 MPa 02 02 00
No. of data points between 30 and 40 MPa 02 01 01

No. of data points testing points 111 111 111
Average below 10 MPa 82.88 84.68 92.79

Average in range of 10 to 20 MPa 13.51 12.61 6.31
Average in range of 20 to 30 MPa 1.80 3.60 00
Average in range of 30 to 40 MPa 1.80 2.70 0.90

4.2. MLPNN Model Outcomes

In the field of ML and AI, neural networks fall under the rubric of supervised learning,
and its implementation yields a rigid correlation between prediction and target response.
As illustrated in Figure 9, MLPNN is also modelled utilising ensemble learner’s methods,
similar to the DT. Figure 9a depicts the actual projection of MK concrete with R2 = 0.724
with its error distribution as seen in Figure 9b. MLPNN error distribution indicates that
a test set has an average error of 8.70 MPa, with lowest and highest errors of 0.044 MPa
and 35.15 MPa, respectively. However, MLPNN ensemble model reduces the distribution
of average error with a rise in the R2 of around 0.767 for bagging and 0.825 for boosting,
respectively. The average error for MLPNN-bagging and AdaBoost boosting is 7.29 MPa
and 7.05 MPa, respectively, as seen in Figure 9c–f. In addition, a major portion of testing
set error is below 10 MPa, with 72.97%, 77.48%, and 74.77% of the data, respectively, for
the individual, bagging, and AdaBoost MLPNN models. These ensemble-model outputs
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also demonstrate a rise in R2 by exhibiting less inaccuracy than the real output. Table 4
illustrates the statistical evaluation of testing data via MLPNN ensemble modelling.
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Table 4. MLPNN model statistical evaluation of errors.

Statistical Analysis MLPNN MLPNN-Bagging MLPNN-AdaBoost

Average 8.70 7.29 7.05
Minimum 0.04 0.11 0.07
Maximum 35.15 34.74 31.31

No. of data points below 10 MPa 81 86 83
No. of data points between 10 and 20 MPa 20 18 23
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4.3. Random Forest Model Outcomes

Within the framework of the ensemble ML approach, RF represents a hybrid type of
bagging and random feature selection, which is a technique for the production of prediction
models that is both efficient and easy to use. Figure 10 depicts the prediction accuracy of the
RF method for MK concrete. As it is an ensemble model, it exhibits a stubborn R2 = 0.929
correlation with the target values. In addition, the RF model’s prediction may also be tested
using an error distribution with an average error of 3.52 MPa. In addition, 90.99 percent of
the results indicate that the error falls under 10 MPa, demonstrating the precision of the
non-linear estimation of the normal concrete’s strength as shown in Figure 10b.
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4.4. K-Fold Results

The model’s required accuracy is essential to its assessment. To verify the accuracy
of prediction models, this validation is necessary. The K fold validation test is employed
to validate the correctness of data using data shuffles. Randomly sampling the training
data set introduces bias, hence this strategy is used to reduce it. This technique divides
the samples evenly into 10 subgroups of the experimental data. One of the 10 subsets is
utilised for validation, while the other nine are employed to shape up the strong learner.
The procedure is done 10 times and then averaged. In general, it is commonly accepted
that the 10-fold cross validation approach accurately reflects the model’s generalisation
and dependability [79]. The validation test of all the ensemble models is presented in
Figures 11 and 12. All models exhibit a moderate to high correlational link. In addition, the
outcomes of cross-validation may be evaluated based on various errors, such as R2, MAE,
RMSE, and RMSLE, as shown in Figure 11 for DT and MLPNN and Figure 12 for RF. It
displays the validation representation in each 10-fold. Although variations were noticed, it
retained a high degree of precision, as seen in Figures 11 and 12. For example, the lowest and
highest R2 values for all models are between 0.46 and 0.65 and 0.81 and 0.91, respectively.
As demonstrated in Figure 11c–h for DT and MLPNN, MAE, RMSE, and RMSLE are also
used to evaluate the accuracy of models with respect to cross-validation. Figure 11c depicts
the average MAE value for DT with ensemble bagging and ensemble boosting using 10-fold
validation as 11.97 MPa and 9.0 MPa, respectively. Figure 11e reveals that the RMSE offers
an average error of about 14.6 MPa and 11.84 MPa for ensemble bagging and ensemble
boosting using AdaBoost, respectively. Figure 11g displays RMSLE average errors of
0.106 MPa and 0.07 MPa for DT bagging and boosting, respectively. Figure 11d–f shows
that the average MAE, RMSE, and RMSLE for the MLPNN bagging model are 11.06 MPa,
14.92 MPa, and 0.1 MPa, respectively. For the k fold validation of the MLPNN AdaBoost
model, values of 12.03 MPa, 15.07 MPa, and 0.08 MPa were found. This demonstrates
the precision of models using K-fold cross validation. Figure 12 demonstrates strong
association for modified learner model with decreased error for MAE, RMSE, and RMSLE,
with average errors of 8.94 MPa, 11.02 MPa, and 0.07 MPa, respectively.
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4.5. Model Evaluation and Discussion Based on Statistical Metrics

Comparing the ensemble approaches to the individual ML methods helped show
the ensemble algorithm’s potential in comparison to them as depicted in Figure 13. This
process is similar to that used for ensemble models, such as starting with a set of values and
then using a grid search to find the optimal values. Table 5 shows the target and validated
values for each metric. The ensemble ML models outcome have a linear trend, and their
projections are more like the ones that were tested, according to this study. Using DT, and
MLPNN, is a kind of individual learning, but using ML techniques such as bagging and
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boosting is a form of ensemble learning. High performance weak learners would gain
weight, though weak learners with poor performance will lose weight, since ensemble
learning is usually known to include several weak learners produced by individual ML
algorithms. Because of this, it is able to provide accurate projections. MAE, RMSE, RMSLE,
and R2 are used to evaluate individual and ensemble learners. An ensemble of learners
using bagging and boosting has a lower rate of error than an individual learner. A smaller
error margin exists between forecasts and outcomes when using ensemble models rather
than individual models alone.
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Table 5. Model’s statistical errors.

Approach Employed ML Methods MAE RMSE RMSLE R2

Individual Learner
DT 5.79072 8.34472 0.07261 0.868

MLPNN 8.70159 11.59452 0.10325 0.724

Ensemble Learner
Bagging

DT 5.57845 7.72089 0.06911 0.879
MLPNN 7.29168 10.21239 0.08721 0.767

Ensemble Learner
Boosting

DT 4.12636 5.93813 0.05303 0.924
MLPNN 7.04574 9.20414 0.08233 0.825

Modified Ensemble Random Forest 3.52232 5.89161 0.05179 0.929

4.6. SHAP Analysis

The values of all of the features that were taken into consideration for the MK concrete
fc’ prediction are outlined in the shape of a violin, as illustrated in Figure 14. The Shapley
value measures the mean marginal influence that can be attributed to each parameter
value over all viable permutations of the parameters. The attributes that have substantial
absolute Shapley values are regarded to have a considerable influence. In order to get the
global feature effects, the absolute Shapley values for each feature throughout the data



Materials 2022, 15, 7764 21 of 27

were averaged and ranked in decreasing significance as shown in Figure 14. Every single
datapoint on the plot indicates a Shapley value for distinct characteristics and occurrences.
The location on the x axis and the y axis is defined by the Shapley value and the feature
significance, respectively. Elevated places on the y axis represent higher effect of the
characteristics on the MK concrete fc’ prediction and the colour scale reflects the feature
relevance from low to high. Each dot in Figure 14 signifies an individual point from the
dataset. The location of points along the x axis represents the effect of each parameter value
on the fc’ prediction. When numerous dots fall in the same location along the x-axis, the
dots are stacked to illustrate the density. Age is the most influential parameter followed by
coarse aggregate, superplasticizer, water, and other input parameters. Silica fume has the
least impact on fc’ prediction of MK concrete as illustrated in Figure 14. Higher SHAP value
imply that the model forecasts higher fc’ value, and vice versa. For example, high value of
age (red) correlate with increased SHAP value, which suggest high fc’ value. Moreover,
each input parameter has positive or negative impact up to a certain limit. In Figure 14, red
colour shows high impact (negative or positive) while the blue colour depicts low impact
of the input feature on the predicted outcome. SHAP value at the right (greater than 0)
on the x-axis shows positive impact of respective input on the fc’. For instance, in the
case of input parameters like age and content of coarse aggregate, the positive effect of
these factors on MK fc’ can be noted from the right axis of the graph. Coarse aggregate
content depicts a constructive impact till optimum content, whereas above this content,
the adverse effect is shown on the left side (less than 0) on the x-axis. Super-plasticizer
is also key variable for predicting the fc’ of MK concrete. The effect of water on the
output fc’ of MK concrete is negative and increasing the water content will reduce the
fc’. MK and cement show the same trend. However, SF and fine aggregate tend to have
a high positive impact and a low negative impact on the fc’ prediction of MK concrete.
SHAP feature dependency graphs were deployed that are coloured by another interacting
feature to highlight how the features interact and effect the fc’ of MK concrete. This gives
greater information than standard partial dependency charts. The SHAP interaction plot
each considered feature is shown in Figure 15. As can be observed from Figure 15a, the
dependence and interaction show that high fc’ values for MK concrete can be achieved
when for 50 ≤ age ≤ 100 days when CA ≥ 700 kg/m3. Higher fc’ values for age ≤ 50 days
can be achieved for 50 ≤ CA ≤ 700 kg/m3. Figure 15b,d,e show that 120–200 kg/m3 of
water is required for CA in for different content of CA and FA to achieve higher values of
fc’. Moreover, Figure 15f,g illustrate the relation between two important constituents of
MK concrete: cement and metakaolin. Higher fc’ for MK concrete can be achieved for MK
in the range of 20–100 kg/m3 for concrete having density of 250–450 kg/m3. Additionally,
Figure 15h reveals that large quantity of silica fume can be used if early fc’ of MK concrete
is desired.
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5. Conclusions

The primary aim of this study was to assess the accuracy level achieved by various
ML approaches to predict MK concrete fc’. Datasets from the literature containing 551 data
points were used to train and test the models. The eight most influential constituents
of MK concrete including cement, metakaolin, coarse and aggregate, water, silica fume,
superplasticizer, and age were considered as input parameters. Individual and ensemble
learning models for predicting the fc’ of MK concrete were investigated in this study using
DT, MLPNN, and RF. Interaction of input parameters and effect of input parameters of fc’
were studied using SHAP dependency feature graphs. The results of the investigation led
the authors to the following conclusions:

1. Bagging and AdaBoost models outperform the individual models. As compared to
the standalone DT model, the ensemble DT model with boosting and RF demon-
strates a 7% improvement. Both techniques have a significant correlation with R2

equal to 0.92. Similarly, an improvement of 14 %, 6%, and 29% was observed in
MLPNN AdaBoost, MLPNN bagging, and RF model, respectively, when compared
with individual DT model;

2. Statistical measures using MAE, RMSE, RMSLE, and R2 were also performed. Ensem-
ble learner DT bagging and boosting depicts a smaller error of about 4%, and 29% for
MAE, 8% and 29% for RMSE, 5% and 27% for RMSLE, respectively, when compared
to the individual DT model. Similarly, enhancements of 16% and 19% in MAE, 12%
and 21% in RMSE, and 16% and 20% in RMSLE were observed for MLPNN bagging
and AdaBoost models, respectively, when compared to the individual base learner
DT model;
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3. RF shows improvements of 60%, 49%, and 50% in MAE, RMSE, and RMSLE when
compared to the MLPNN individual model. Similarly, improvements of 39%, 29%,
and 29% for the RF model, in MAE, RMSE and RMSLE, were observed in comparison
to DT individual model;

4. The validity of models using R2, MAE, RMSE, and RMSLE were tested using k-fold
cross-validation. Fewer inaccuracies with strong correlations were examined;

5. The DT AdaBoost model and the modified bagging model are the best techniques for
forecasting MK concrete fc’ among all of the ML approaches;

6. Age has the greatest impact on calculating MK concrete fc’, followed by coarse
aggregate and superplasticizer, according to the SHAP assessment. However, silica
fume has the least impact on the fc’ of MK concrete. SHAP dependency feature graphs
can illustrate the relationship between input parameters for various ranges;

7. Sensitivity analyses depicted that FA contributed moderately to the development of
the fc’ models and fsts models. Moreover, cement, SF, CA, and age played vital roles
in the development of fc’ models. Tensile strength models showed to be affected least
by water and CA;

These ML algorithms can accurately predict the mechanical characteristics of concrete.
These models can be utilized to predict the mechanical characteristics of similar databases
containing metakaolin with high accuracy. Moreover, SHAP analysis provides an insight
to readers regarding the input parameters contribution towards the outcome, and inter-
dependency of the input parameters. This will enable the readers to carefully select the
input variables for modelling the behaviour of metakaolin concrete. Additionally, ML
algorithms employed in this study may provide a sustainable way for the mix design of MK
concrete. Traditionally, this process demands lengthy trials in laboratories and a significant
number of raw materials in addition to a great deal of manpower.

6. Limitations and Directions for Future Work

Despite the fact that the efforts made in this research has significant limitations, it may
still be regarded a data mining-based research. Completeness of dataset is essential for
the efficacy of models’ prediction. The range of datasets used for this study was restricted
to 551 data points. In addition, the corrosive and flexural concrete behaviour at extreme
temperatures was not considered in this work. Indeed, good database management and
testing are essential from a technical standpoint. To simulate high-strength concrete, this
research included an extensive variety of data with eight variables. Further, it is suggested
that a new dataset of concrete at increased temperatures that encompasses numerous
environmental factors such as temperature, durability, and corrosion be investigated.
Experimental testing data for testing of models are recommended for more accuracy. Given
that concrete plays such an important role in the ecosystem, its effects under various
situations should be investigated utilising various deep machine learning methods.
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