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Abstract: Concrete is well known for its compression resistance, making it suitable for any kind of
construction. Several research studies show that the addition of carbon nanostructures to concrete
allows for construction materials with both a higher resistance and durability, while having less
porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of
long cylindrical molecules with a nanoscale diameter. In this work, molecular dynamics (MD)
simulations have been carried out, to study the effect of pristine or carboxyl functionalized CNTs
inserted into a tobermorite crystal on the mechanical properties (elastic modulus and interfacial shear
strength) of the resulting composites. The results show that the addition of the nanostructure to
the tobermorite crystal increases the elastic modulus and the interfacial shear strength, observing a
positive relation between the mechanical properties and the atomic interactions established between
the tobermorite crystal and the CNT surface. In addition, functionalized CNTs present enhanced
mechanical properties.

Keywords: cement; carbon nanotubes; molecular dynamics; mechanical properties; pull-out; interfacial
shear strength

1. Introduction

Recent years have witnessed an increasing interest in cement composites with the
incorporation of different types of carbon nanotubes (CNTs) [1–4]. These are long cylindrical
carbon molecules found by Iijima in 1995 [5]. They look like a layer of graphene rolled
up on itself. Different authors [6,7] highlighted their excellent electrical, chemical and
mechanical properties, which have revolutionized composite materials, microelectronics,
biomedical applications and energy storage [8–10]. CNTs are characterized by a high
elastic modulus as well as tensile strength [11], which makes them a very suitable option to
reinforce materials such as cement. Therefore, it is possible to obtain composite materials
with improvement in both tensile and compression strengths, as well as better durability,
since crack propagation is inhibited [12–17].

Although most studies on cement reinforced with CNTs have been carried out only
on a laboratory scale, some works attempted to extend the use of these materials to
the large scale. The most critical point of the problem is the production of CNTs with
controllable size and length. Due to great advances in material science, CNTs have already
been mass produced in orders of several to several tens of kilograms per hour [18,19].
Large-scale production of CNT-cement composites has also been reported by several
authors. Silva et al. [20] patented a method to produce CNTs embedded in a cement
matrix in a continuous and large-scale stage. The authors state that this process could
produce several tons per day and thus, be appropriate for the conventional cement industry.
Jianguo et al. [21] developed a method to disperse CNTs in a cement matrix, appropriate
for large-scale application. Jianlin et al. [22] described the fabrication of an intelligent
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concrete reinforced with CNTs and graphene oxide, suitable for production in industrial
plants. As a conclusion, it can be said that the fabrication of CNT-cement composites is
not yet completely implemented on an industrial scale. However, an increasing number of
studies describing the mass production process of these materials is observed.

Despite the huge interest in CNTs as a reinforcement, there are certain problems to
disperse them homogeneously in the cement matrix. This remains an obstacle to design
new materials with enhanced properties. CNTs tend to agglomerate and form bundles due
to Van der Waals interactions. Hence, dispersion in the cement matrix seems difficult and
strong adhesion is not favored. Different methods have been tested to improve the disper-
sion of CNTs in the cement matrix. Some of these methods are based on ultrasonication
combined with a functionalizing agent, which modifies the CNT surface to ensure a better
dispersion [23]. Amid these methods, the addition of carboxyl groups to the CNT structure
must be mentioned, since it boosts hydrophilic features and chemical bonding between
CNTs and cement, causing improved adhesion between components [24,25].

Properties of both pure and carbon-reinforced cement have been studied by different
authors in the literature using molecular dynamics techniques (MD). Murray et al. [26] sim-
ulated tensile and compression behavior of hydrated calcium silicate (C-S-H), which is the
main component of Portland cement. Fu et al. [27] evaluated the mechanical properties of
hydrated calcium silicate structures based on tobermorite 11 Å, through tensile-compression
cycles with LAMMPS software. In addition, Huang et al. [28] analyzed the influence of the
Ca/Si ratio and temperature on the uniaxial mechanical properties of C-S-H gel.

The mechanical properties of cement reinforced with carbon nanostructures were
calculated by several authors. Sánchez et al. [29] and Hou et al. [30] studied the influence of
functionalization on the interaction between graphene oxide and tobermorite through MD.
In both cases, the authors observed an increase in the adhesion energy when functionalizing
the graphene oxide surface with different functional groups. The effect of quirality and
the CNT diameter on the mechanical properties of the tobermorite 11 Å was analyzed by
Lushnikova et al. [31], as well as the mechanical properties for plain and CNT reinforced
cement [32]. The enhancement of mechanical properties of reinforced cement with carbon
nanotubes is also found in different papers by other authors [33–36].

Experimental measurement of the interfacial shear strength (ISS) in a composite can
be carried out through methods, such as macromechanical, fragmentation, pull-out, micro-
droplet, push-out and push-in tests [37–42]. These methods encounter several technical
difficulties and, to the best of our knowledge, they have not been applied to the study of
CNTs-cement interfaces. Another way to characterize these interfaces is to calculate the ISS
through MD techniques. There are several such studies applied to composite materials with
a polymeric matrix [43,44]. However, ISS simulations are scarce for nanocarbon-cement
compounds and most of them have been applied to graphene and its derivatives [45,46].

In our previous research, the interaction between tobermorite and different CNTs
was studied through experimental techniques, MD and the finite element method [47,48],
obtaining quite promising results. These studies show the relation between the function-
alization of the CNT surface, concentration and the type of CNT (single- or multi-wall)
and the mechanical properties of the material; and agree with those previously found by
Zhao et al. [49].

The present work presents a study of the mechanical properties of a tobermorite 11 Å
crystal (elastic modulus E and ISS), with pristine CNT or functionalized CNTs with varying
numbers of carboxyl groups. The MD results show that the incorporation of CNTs enhances
the mechanical properties of the tobermorite and the improvement relates to the degree
of functionalization of the CNT surface. The larger the number of carboxyl groups on the
CNT surface, the higher the values obtained for E and ISS. These results are a consequence
of better interactions that are established at the cement–CNT interface.
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2. Materials and Methods
2.1. Model Systems

With the aim of analyzing the effect of the addition of pristine and functionalized
single-walled CNTs (SWCNTs) on the mechanical properties of tobermorite 11 Å, different
crystalline models were used. A SWCNT (2,2) was inserted in one of the interstices of
the tobermorite crystal, as shown in Figures 1 and 2. It was decided to work with a
SWCNT (2,2) due to its small diameter (2.71 Å), which does not cause much distortion on
the tobermorite structure.
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Figure 3 depicts the different pristine and functionalized CNTs that were used to 
calculate the mechanical properties. 
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Figure 2. Side (left) and top (right) view of the models used for calculating ISS, showing an embedded
pristine SWCNT (2,2) in a tobermorite matrix. The picture on the right depicts the pulling out process.
Red: oxygen, Yellow: silicon, Green: calcium, White: hydrogen, Grey: carbon.

When calculating the ISS, the pulling out of the CNT must be done in a certain
direction, pulling it out from the crystalline structure until it does not interact with it
anymore. Therefore, the length of the cell has been increased to 500 Å (see Figure 2) in the
pulling-out direction in order to simulate the pull-out process and avoid the interaction
with the surrounding cells and the crystal.

Figure 3 depicts the different pristine and functionalized CNTs that were used to
calculate the mechanical properties.
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Geometrical features of the models used to calculate the mechanical properties are
listed in Table 1.

Table 1. Models used to calculate mechanical properties.

Mechanical Property Lattice Parameter (Å) SWCNT SWCNT Length (Å)

Young’s Modulus (E)
Poisson’s Ratio (ν)
Shear Modulus (G)
Bulk Modulus (K)

a = 20.205
b = 36.920
c = 44.974

Pristine
2 COOH
4 COOH

10.16

Interfacial Shear
Strength (τ)

a = 500
b = 29.540
c = 44.974

Pristine
4 COOH
6 COOH

17.24

2.2. Calculation Method

The Forcite Module of Materials Studio Software [50] was used to calculate mechanical
properties. Within the Forcite Module, the NPT ensemble was selected (N: number of
particles, P: pressure, T: temperature), with both a constant temperature (298 K with a Nose-
Hoover thermostat [51]) and pressure (1 × 10−4 GPa with a Berendsen barostat [52]). The
MD simulation was carried out for 6000 ps simulation time and 1 fs as a time interval. The
chosen times were enough to achieve the equilibrium in the potential energy of the system.

The forcefield used to calculate the interaction between the cement and the CNT
was the condensed-phase optimized molecular potential for atomistic simulation stud-
ies forcefield (COMPASSII) [53]; a forcefield based on ab initio calculations that allows
describing the structure and properties of molecules and condensed phase systems in a
wide range of temperature and pressure values. COMPASSII has been successfully ap-
plied in the simulation of systems containing CNTs and different materials derived from
cement [37,54–59].

To calculate the mechanical properties (E, ν, G and K), the elastic method was used,
in which the response to an applied strain is derived from the second derivative of the
potential energy with respect to strain. The relaxation of the system under applied strain
is determined from the Hessian matrix. This method was applied to the last 10 frames of
the MD trajectory and the elastic constants, K and G, were averaged over all frames. The
mentioned method has been used by other authors, who obtained results comparable to
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the experimental values of the mechanical properties of both the C-S-H gel and polymers
reinforced with CNTs [54,57,59]. Using the Voigt-Reuss-Hill (VRH) approximation [60], it
is possible to compute E and ν, with the following equations, respectively:

E =
9·K·G

3·K + G
(1)

ν =
3·K − 2·G

2·(3·K + G)
(2)

The Gou et al. [61] equation was used in order to calculate the ISS. They defined
the pullout energy, Epullout, as the energy difference between the fully embedded CNT
configuration and the complete pullout configuration. In turn, Epullout can be related to the
ISS through the following equation:

τi =
Epullout

π·r·L2 (3)

where r and L are the radius and length of the CNT, respectively.

3. Results and Discussion
3.1. Mechanical Properties

Table 2 shows the values obtained for bulk modulus (K), shear modulus (G), Young’s
modulus (E) and Poisson’s ratio (ν), which were calculated using Equations (1) and (2).

Table 2. Mechanical properties.

Composition E (GPa) ν K (GPa) G (GPa)

T 57.98 0.26 40.24 23.03
T + CNT 60.56 0.22 36.52 24.74

T + CNT + 2COOH 76.74 0.27 55.18 30.13
T + CNT + 4COOH 83.03 0.29 65.79 32.21

Several authors have calculated tobermorite modules by MD, obtaining similar results.
B. Bhuvaneshwari [55] computed all the modules for the three types of tobermorite (9 Å,
11 Å and 14 Å) and jennite, obtaining very similar values to those presented in this work.
M. Arar [62] also reported similar results.

On the other hand, other authors have studied the mechanical behavior of tober-
morite when adding pristine [63,64] and functionalized [65–68] CNTs, showing that the
tensile strength of C-S-H reinforced with CNT (functionalized and non-functionalized) is
significantly enhanced in the CNT direction, when compared to pure C-S-H.

To better understand the results:
Figure 4 represents the E obtained for each structure. It can be clearly seen that E

increases when adding pristine and functionalized SWCNTs. In addition, functionalized
CNTs perform better. The enhancement seems to be a consequence of the interaction
between the tobermorite and the functionalized CNT thanks to the added functional
groups. The larger the number of carboxyl groups, the higher the elastic modulus.

It is important to mention that the experimental values seem to be lower than the
computed values. Velez et al. [69] measured the elastic modulus of different clinkers
contained in the cement as a function of porosity and found out higher values for those
materials with null porosity. Jennings [70] proposed a colloidal model for the cement
structure, which consists of globular C-S-H particles. Depending on the compaction level of
the cement, it is possible to obtain two different structures: high-density C-S-H (HD C-S-H)
and low-density C-S-H (LD C-S-H), with a greater average porosity for the second one.
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There exists a simple method to compute E as a function of porosity using the equation
proposed by Knudsen and Helmuth [71]:

E = Eo·e−3.4·p (4)

where Eo is the elastic modulus in the absence of porosity, p is the porosity and 3.4 represents
a coefficient obtained from many experimental measurements [69].
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Figure 4. Young’s modulus for all models.

Table 3 shows the value of E as a function of the average porosity for HD (0.26) and LD
(0.36) structures. As it is possible to appreciate, an increase in porosity causes a significant
decrease in E. In addition, our values for tobermorite are similar to those measured by
Arar [62], who obtained 15 GPa and 25 GPa for LD and HD, respectively. Moreover,
González et al. [72] measured 32.2 GPa for HD and 16.3 GPa for LD, while Fu et al. [27]
attained 31.45 GPa (HD) and 18.11 GPa (LD). The experimental values for HD and LD were
measured by Constantinides [73] and Keinde [74] using nanoindentation techniques, who
obtained 21.7 GPa for LD and 29 GPa for HD.

Table 3. Young’s modulus and porosity.

Composition E (GPa) E (GPa)
p = 0.26

E (GPa)
p = 0.36

T 57.98 23.95 17.05
T + CNT 60.56 25.02 17.81

T + CNT + 2COOH 76.74 31.70 22.56
T + CNT + 4COOH 83.08 34.33 24.43

3.2. Interfacial Shear Strength (ISS)

Table 4 shows the values obtained for ISS and non-bond energy for pristine CNTs and
CNTs functionalized with four and six COOH groups. Moreover, the ∆Enon-bond, which rep-
resents the difference between the non-bond energies of the structures without and with the
CNT inside the crystal (Epulled-out configuration non-bond − Efully embedded configuration non-bond),
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is also shown in this Table. The structures with functionalized CNTs show higher ISS and
ISS is increased for CNT with larger number of COOH groups. Since there is no chemical
bonding at the interface between the CNT and the tobermorite, the interaction between
both is mainly dominated by Van der Waals and electrostatic forces. When the CNT is
removed from the structure, these interactions disappear and a decrease in the non-bonding
energy is observed. The values of ∆Enon-bond are positive as Enon-bond is negative. CNTs
with polar groups, such as COOH, show better values (more negative) of the Enon-bond,
because the interaction with the tobermorite structure is enhanced, which, in turn, increases
ISS [37,75,76].

Table 4. ISS and non-bond energy.

System ISS (MPa) ∆Enon-bond (kJ/mol)

Tobermorite + pristine CNT 220.99 18744.32
Tobermorite + CNT 4-COOH 280.85 23819.51
Tobermorite + CNT 6-COOH 491.07 41651.72

As is seen from Table 4, there is a positive relation between Enon-bond and ISS.

3.3. Hydrogen Bonds (H-Bonds)

CNTs functionalized with COOH groups can establish H bonds with oxygen atoms in
the tobermorite. Geometry requisites that have been used to define the presence of a H bond
are: the distance between H from the donor group (D) and O from the acceptor group (A)
is lower than 2.5 Å and the angle DHA is higher than 90◦. Several authors [29,37,43,64,77]
have found a positive relation between the mechanical properties of a cement matrix
reinforced with carbon nanostructures and interactions, chemical bonds or non-bond
interactions, which are established at the interface of the materials.

The number of H bonds (NHb) established between the CNT and the tobermorite
(for the models used to compute E) and the average length of those bonds can be seen in
Table 5. Bond lengths between the CNT and the matrix are slightly larger for the structures
containing pristine CNTs.

Table 5. Number of H bonds and their average length (E models).

Structure NHb Distance Hb (Å)

T + CNT 0 1.95 *
T + CNT + 2 COOH 2.6 1.83
T + CNT + 4 COOH 9.6 1.82

* close contact.

The results for the models used for the pull-out process are listed in Table 6.

Table 6. Number of H bonds and their average length (pull-out models).

Structure NHb D (Å)

Tobermorite + pristine CNT 0 2.06 *
Tobermorite + CNT 4-COOH 6 1.81
Tobermorite + CNT 6-COOH 10 1.79

* close contact.

As an example, Figure 5 shows the H bonds, as black dashed lines, which are created
between the tobermorite and the CNT functionalized with four COOH groups.
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Figure 5. H bonds (black dash lines) between the tobermorite and a CNT functionalized with 4 COOH
groups. Red: oxygen, Yellow: silicon, White: hydrogen, Grey: carbon.

According to our above results, the larger the functionalization degree, the better the
ISS and E values. The values in Tables 5 and 6 show that a larger number of carboxyl
groups allows for more H bonds at the interface and, consequently, a more favorable
non-bond energy.

4. Conclusions

After carrying out MD simulations to study the mechanical properties of a tobermorite
matrix, with either a pristine or a functionalized CNT with different concentrations of
carboxyl groups, the following conclusions can be highlighted:

• Young’s modulus of tobermorite is enhanced when incorporating nanotubes in its
composition;

• Young’s modulus presents higher values when the concentration of carboxyl groups
in the CNT is increased. This means that compounds with functionalized nanotubes
show better mechanical properties, if compared to pristine nanotubes;

• The obtained values for E are significantly higher than those obtained by other authors
with experimental techniques, since it is not possible to simulate the porosity of the
cement matrix. When correcting the values with the equation proposed by Knudsen
and Helmuth [66], it is possible to obtain values with an order of magnitude very
similar to other authors, keeping the tendency of a higher E as a function of the number
of functional groups; and

• The functionalization of CNT with carboxyl groups promotes the formation of a H-
bond network with tobermorite. The larger the number of functional groups, the
more H bonds established at the interphase, causing enhanced adhesion and thus,
improving mechanical properties.
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