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Abstract: This study focused on the intelligent model for ore pulp density in the hydrometallurgical 

process. However, owing to the limitations of existing instruments and devices, the feed ore pulp 

density of thickener, a key hydrometallurgical equipment, cannot be accurately measured online. 

Therefore, aiming at the problem of accurately measuring the feed ore pulp density, we proposed a 

new intelligent model based on the long short-term memory (LSTM) and hybrid genetic algorithm 

(HGA). Specifically, the HGA refers to a novel optimization search algorithm model that can opti-

mize the hyperparameters and improve the modeling performance of the LSTM. Finally, the pro-

posed intelligent model was successfully applied to an actual thickener case in China. The intelligent 

model prediction results demonstrated that the hybrid model outperformed other models and sat-

isfied the measurement accuracy requirements in the factory well. 

Keywords: intelligent model; thickening process; ore pulp density; long short-term memory; hybrid 

genetic algorithm 

 

1. Introduction 

Hydrometallurgy is important in mineral resources. The hydrometallurgical process 

can deal with low-grade mines, complex ores, and generates fewer emissions to the envi-

ronment [1]. The thickening process is a typical process of hydrometallurgy. The optimized 

control technology for hydrometallurgical processing is of great applicational value for the 

efficient utilization of metal mineral resources [2]. Optimal control of the thickening process 

usually depends on quality variables, such as feed density [3], which are difficult to measure 

online because the density of the feeding ore usually fluctuates substantially due to the ex-

istence of nonlinearity [4]. However, there is no research on the application of real-time 

online measurement methods of thickener feed pulp density in the actual production pro-

cess [5]. 

To alleviate these problems, intelligent models have been used to predict wind flow 

around buildings by establishing inferential mathematical prediction models [6]. Owing 

to rapid response, accurate prediction results, and low maintenance costs, intelligent 

models have currently become one of the main methods for detecting quality variables in 

industrial processes, such as wind-induced pressure prediction [7], temperature predic-

tion for roller kiln [8], and surface crack detection [9]. 

Considering the wide implementation of distributed control systems and the massive 

amount of available data, soft sensors based on data-driven systems are receiving increas-

ing attention [10]. Typical data-driven modeling methods include many multivariate sta-

tistical and machine-learning methods [11–13]. Because of the limitations of the structures 

and parameters, some methods are limited to present strong nonlinearities and dynamics. 
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In the past decade, deep learning has drawn increasing attention in many fields, such as 

intelligent model applications [14], image classification [15], and process monitoring [16]. 

Compared with existing modeling methods, deep neural networks (DNNs) have a signif-

icant ability to express complex functions and learn the primary highlights of data [17]. 

The DNN model has shown excellent performance in processing complex and strongly 

nonlinear data for the development of intelligent industrial models. Most of these existing 

intelligent models are deep static models based on the assumptions of steady state, such 

as stacked auto-encoders (SAEs) [18] and deep belief networks (DBNs) [19]. Nevertheless, 

industrial processes are naturally dynamic, and the data series is sampled in real-time 

from a continuous process. Thus, to model such data sequences more accurately, the dy-

namic characteristics must also be considered; that is, the models must utilize past states 

and information to predict the present state. 

Recurrent neural networks (RNNs) are dynamic neural networks. They can suffer 

from gradient explosion and gradient disappearance because of the memory function of 

past information [20]. Thus, a long short-term memory (LSTM) network which adds gate 

units to retain short and long-term memories is proposed to deal with this problem [21]. 

Recently, Zhang set up an LSTM-based network in the zinc flotation circuit to estimate 

the tailings grade of the first rougher [22]. Pan proposed an intelligent model based on an 

LSTM network to estimate the oxygen content of boiler flue gas [23]. Wensi developed a 

soft sensor method based on an LSTM network structure to handle the strong dynamics 

and nonlinearity of the process and verified its power using a sulfur recovery unit bench-

mark [24]. 

To satisfy the measurement requirements, the intelligent model focuses on construct-

ing an accurate estimation. However, it is worth noting that LSTM network models have 

numerous hyperparameters that need to be continuously modified to obtain the most suit-

able results, such as the time window size and network structure [25]. Selecting the best 

hyperparameters is essential to optimize the validation errors, but it is extremely time-con-

suming. Therefore, the most commonly used method in hyperparameter estimation is the 

trial-and-error method based on heuristics. However, the limitations of computation level 

and time make it impossible to traverse the entire parameter space [26]. Thus, a new method 

is needed to optimize the verification error for both boosting accuracy and saving time, 

which can ensure the accuracy of the soft sensors in industrial processes. The genetic algo-

rithm (GA) is a classic global optimal method developed by imitating the natural biological 

evolution mechanism and has attracted much attention in hyperparameter optimization. 

Most recently, Alshwaheen proposed an LSTM-RNN model to forecast the deterioration of 

ICU patients and used a modified GA to optimize the observation window to increase the 

accuracy [27]. Danial developed both ANN and GA-based ANN techniques for the predic-

tion of AOP [28]. Zhang et al. combined a support vector machine (SVM) with GA to predict 

the moisture in oil-immersed insulations and obtained highly accurate results [29]. 

In this research, an intelligent model method based on LSTM and the hybrid genetic 

algorithm (HGA) was proposed to measure the feed ore pulp density in the thickener 

process. In particular, we applied the sequential quadratic programming (SQP) algorithm, 

which can perform fast and accurate local searches in GA and significantly increase the 

global searching ability of the algorithm. The GA-SQP, also called HGA, is used to opti-

mize the hyperparameters to determine the time window and the structure parameters of 

the LSTM network based on the lowest verification error, which can enhance the perfor-

mance of the LSTM. Finally, an intelligent modeling method was applied to a real thick-

ener in China. 

The contributions of this study: 

1. We introduced an intelligent model to resolve the difficulty encountered in measur-

ing the feed density in the thickener through online real-time detection in hydromet-

allurgy. 
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2. A novel intelligent modeling method combining SQP, GA, and LSTM was developed 

to address the nonlinear and dynamic background. The HGA algorithm was used to 

optimize the hyperparameters of the LSTM. 

3. From the perspective of actual cases, the results show that the method fulfills the 

measurement requirements in the factory. 

2. Methodology 

2.1. LSTM Network 

An RNN is a dynamic neural network with an internal connection that can utilize 

past information and past states for the present state estimation [30]. Figure 1 is the struc-

ture of the RNN in the time step. RNNs also have a hidden state vector or memory and 

generate an output. The RNN has difficulty learning long input sequences and can easily 

produce gradient explosion or disappearance. 

 

Figure 1. The simplified structure of RNN. 

LSTM, a variant of the RNN architecture, designs a unique LSTM unit that can pre-

serve past information and past states and learn sequential information with long-term 

dependencies. In Figure 2, the structure of the LSTM is presented, and the LSTM forward 

calculation formulas are as follows [21]: 

 = σ (  + )tf f t -1 t t -1 fW h ,x ,c b , (1)

 = σ ( , ,  + )ti i t -1 t t -1 iW h x c b , (2)

 ˆ ( )= tanh , ,  + tc c t -1 t t -1 cW h x c b , (3)

× × ˆ
t t t -1 t tc = f c   i c+ , (4)

 = σ ( , ,  + )to o t-1 t t -1 oW h x c b , (5)

 = tanht t th  o c , (6)

ˆ = ( + )ty y t yW h b , (7)

where σ and tanh represent the sigmoid and tanh activation functions, W and b represent 

the matrices of the weight parameter and the bias, respectively, and the subscripts “i”, “f”, 

“c”, “o”, and “y” represent the input-gate, forgetting-gate, update-gate, and output-gate, 

respectively. 

Through the calculation method, the long-term dependence on traditional RNN 

training can be overcome by the LSTM architecture effectively [31]. 
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Figure 2. Internal structure of LSTM. 

2.2. Hybrid Genetic Algorithm 

GA is an adaptive heuristic optimization algorithm based on a computational model 

simulating the natural evolution process and has been used to determine near-optimal 

solutions. The algorithm uses mathematics and computer simulation to transform the pro-

cess of problem-solving into a process of chromosome mutation and crossover in natural 

biological evolution mechanisms. Compared with some traditional optimization meth-

ods, the GA can usually obtain better optimization results more quickly when solving 

more complex system problems. However, the local search efficiency of a typical GA is 

low and time-consuming. With the stage of evolution, lower search efficiency and multi-

ple calculations are required to achieve the final convergence [32]. 

The SQP algorithm is an effective method for solving nonlinear optimization prob-

lems [33]. Compared with other methods, the SQP has high computational efficiency, 

good convergence, and strong boundary-searching ability. The nonlinear optimization 

problem is expressed as follows: 

min   ( )

  ( ) 0 ( 1,2,..., )

                 ( ) 0 ( 1,..., )

i p

i p

f x

subject to g x i m

g x i m m




 


  

, (8)

where ( )f x  represents the objective optimization function and ( )ig x  represents the 

boundary conditions. The subproblem is obtained by approximating the language func-

tion quadratically and linearizing the nonlinear constraints. 

1

( , ) ( )
m

i i
i

L x f x g 


  , (9)

where i  is a language factor. The Hessian matrix is approximated by the quasi-Newto-

nian. At each kx , the quadratic programming (QP) subproblem is obtained by linearizing 

the nonlinear constraints. 

1
min   ( )

2

  ( ) ( ) 0 ( 1,2,..., )

                 ( ) ( ) 0 ( 1,..., )

T T
K k

T
i k i k p

T
i k i k p

d H d f x d

subject to g x g x i m

g x g x i m m





   


    



. (10)

kx , k , and kH  are the approximations of the solution, multiplier, and Hessian of 

the language function, respectively. 
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The search direction 
kd  of the current iteration can be obtained using the above for-

mula, and an iteration point is calculated using the formula: 

k+1 k k kx  = x +a d . (11)

As a result, an HGA has been proposed by integrating the SQP algorithm and GA 

[34]. The HGA refers to a novel optimization search algorithm model, and the SQP can 

perform a fast and accurate local search in the GA to significantly increase the global 

search ability. First, using the excellent global search ability of the GA, all solutions in the 

solution space can be searched quickly, and some convergence values can be obtained 

without falling into the trap of local optimal solutions with rapid gradient descent. More-

over, the convergent result of each iteration can be the initial value of the SQP. Subse-

quently, the SQP search algorithm is used to implement a powerful local search designed 

to pursue a global optimal solution. Briefly, the HGA perfectly unites excellent global and 

fast local search capabilities. 

In Figure 3, the specific steps of the hybrid algorithm are listed below. First, we de-

termined a series of convergent populations that fulfilled the constraints through the GA 

and selected and retained suitable individuals to solve the initial value of the SQP. Second, 

we constructed a multiplier function to determine whether the prediction criteria were 

satisfied. When the prediction criteria were not met, the vector of the local search was 

identified, and the minimum point in the direction was continuously determined. 

 

Figure 3. Flowchart of hybrid genetic algorithm. 

3. Process Description 

This work focused on mineral processing and attempted to solve the dilemma of the 

online measurement of the feed density in a thickener for gold smelting in China, as shown 

in Figure 4. 
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Figure 4. Layout of the thickener. 

Under the flotation process, the ore slurry is concentrated by a thickener. In this 

work, to measure the feed concentration properly, we focused on the feed process. The 

slurry produced by the flotation process is merged into the slurry pump pool and then 

discharged from the slurry pump to the thickener for the thickening process. The slurry 

pipeline is equipped with a flow meter. The velocity of the feed slurry discharged into the 

thickener can be detected online but not the density. The feed slurry enters the thickener 

for settlement, and the slurry flows out from the bottom discharge port into the dehydra-

tion process. It is impossible to calculate the real-time output and cumulative output of 

the slurry, which makes it difficult to achieve optimal control of the production process. 

Because the feed density in the thickener is currently the key index for the thickening 

process, this study focused on the online measurement of the feed density. The process 

flow chart from flotation to thickening is shown in Figure 5. 

 

Figure 5. Process flow chart from flotation to thickening. 

4. Intelligent Model Based on HGA-LSTM 

The intelligent model modeling process based on the LSTM network is shown in Fig-

ure 6. 

 

Figure 6. Modeling process of the intelligent model. 
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4.1. Data Preprocessing 

The data were measured using local detection devices, which have gross errors and 

random errors. Therefore, raw data cleaning was necessary. 

The 3σ criterion was used to eliminate abnormal data in this study, as follows: 

The sample was set as 
1x , 

2x ,..., 
nx , and then the 3σ of the sample was calculated 

according to the following formulas. 

n

i
i=1

1
x = x

n
 , (12)

n
2

i
i=1

1
= (x - x)

n - 1
  . (13)

When data  dx 1 d n   satisfies Equation (13), the data are considered abnormal 

data or error data and should be removed. 

dx - x >3 . (14)

In addition, the normalized and de-normalization equations are expressed as: 

i min
i

max min

x - x
X =

x - x
, (15)

i i m ax m in m inx = X (x - x )+ x , (16)

m a xx  and m i nx  represent the maximum and minimum values of the sample set, 

iX  represents the normalized value, and 
ix  represents the de-normalized value. 

4.2. LSTM Network Training and Hyperparameter Optimization 

As mentioned above, hyperparameter optimization, including the time window and 

network structure parameters, can affect the results of the LSTM network. Therefore, this 

work adopted an HGA-LSTM network model. Usually, neural networks with better struc-

tures have advantages in updating weights, which also may lead to additional calcula-

tions and longer training and testing times. Thus, the structure parameters of the neural 

network must be suitable for the training set. In addition, because the LSTM network can 

make good use of the past time in the training process, selecting an appropriate sliding 

time window size results in a vast difference in the performance of the network. A win-

dow with a small size causes the model to ignore significant information, and that with a 

large size overuses the data during training. As a result, to achieve better performance of 

the intelligent model, it is necessary to identify the best parameters, especially the time 

window and the network structure. 

The learning process of the HGA-LSTM algorithm has two main stages. In the first 

stage, the learning involved designing and selecting reasonable LSTM network parame-

ters. Using the HGA method, the time window size, number of units per hidden layer, 

and number of hidden layers are calculated. Two activation functions are commonly used 

in the LSTM model: the tanh function, which is utilized as a state activation function of 

the input nodes and hidden nodes, and the sigmoid function is used for the gates. To 

improve the generalization ability of the LSTM model, dropout is necessary to effectively 

reduce data overfitting. Furthermore, a gradient-based “Adam” optimizer adjusts the in-

itialized random weight of the network, which is appropriate for problems with large-

scale parameters and data. 
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In the second stage, to evaluate the fitness of the HGA strategy, various optimization 

parameters were utilized. First, the population of chromosomes with a feasible solution 

was initialized with random values. Each chromosome[N] contains the hyperparameters 

in LSTM, i.e., [N] = [time windows, number of LSTM hidden-layers, number of fully con-

nected hidden-layers, number of units per hidden layer]. 

In addition, the initialized chromosomes were encoded in binary bits in this study, 

which represented the time window size, the number of hidden layers, and the number of 

units per hidden layer. Based on the selection, crossover, and mutation, the solution space 

was constantly searched to identify the optimal solution. In the fitness function, the perfor-

mance of this model is evaluated by the root mean square error (RMSE) and the average 

relative error (ARGE). The RMSE and ARGE were calculated using the following formulas: 

N
i i

i=1 i

y - pred

y
ARGE =

N


, 

(17)

N
2

i i
i=1

(y - pred )

RMSE =
N


. 

(18)

For population selection, this study used both the roulette wheel selection and the 

elitism policy such that chromosomes with higher fitness values had a higher probability 

of being selected, and the best chromosome in the current chromosome could always be 

selected. Meanwhile, the SQP algorithm was utilized to quadratically optimize the con-

vergence value of the GA; that is, the set convergence value was used as the SQP initial 

value, and a new fitness function was fitted such that the SQP could be used for an accu-

rate search to achieve a more accurate convergence. When selecting additional decision 

vectors of the GA to fit a new fitness function, bad initial vectors may be introduced into 

the result, and when fewer decision vectors are selected, the fitness function cannot be 

fitted more realistically. Therefore, we selected five decision vectors to fit the SQP fitness 

function through trial experiments. Finally, we discretized the decision vector obtained 

through the optimization of the SQP algorithm. 

min   ( )

  ( ) 0 ( 1,2,..., )

                 ( ) 0 ( 1,..., )

i p

i p

fitness x

subject to g x i m

g x i m m




 


  

, (19)

fitness(x)  represents the objective optimization fitted by the decision vector, that 

is, the RMSE of the LSTM test set, and 
ig (x )  

represents the boundary conditions or the 

limitation of the LSTM network structure and time window. The HGA-LSTM flow dia-

gram is shown in Figure 7. 
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Figure 7. Flow diagram of the HGA-LSTM algorithm. 

In Algorithm 1, the pseudo-code of the HGA-LSTM is shown. 

Algorithm 1 HGA–LSTM steps 

1. Divide the raw data into a test set and training set; 

2. Use the test data to evaluate the LSTM; 

3. Set GA parameters, and initialize population p randomly; 

4. Select the RMSE of LSTM in the testing set as the fitness function of GA; 

5. While the prediction criteria are not satisfied: 

  (a) Select befitting parents from the population; 

  (b) Generate a new population through crossover and mutation of chromosomes; 

  (c) Consider the individual chromosome that includes the time window, hidden lay-

ers, and number of hidden units per hidden layer into the LSTM to evaluate the fitness 

of the new population; 

  End  

6. Set the five fast convergence values 
0x  of output GA as the initial values of SQP, fit 

a modified fitness function, and set 0k = ; 

7. Calculate the quasi-Newton approximation matrix kH  of the language function us-

ing the BFGS method at kx ; 

8. Calculate the search direction 
kd , and select the appropriate step length parameter 

ka ; 

If satisfactory, stop; else set k +1 k k kx  = x + a d , k = k +1 , and return to step 7; 

9. Discrete and output the optimal solution of the SQP, which is the hyperparameter of 

the LSTM network;  

10. Use the well-trained LSTM network for soft sensor modeling, and evaluate the pre-

dicted results. 

5. Experimental Results 

5.1. Dataset Description 

In industrial applications, when the nature of the conveying feed slurry is stable, the 

pump runs stably, the power frequency of the pump motor is fixed, and the pipeline char-

acteristics are stable, there is a corresponding relationship between the feed density and 

the current, frequency, and velocity of flow [35]. Thus, the three related indicators were 

selected as the auxiliary variable set and are listed in Table 1. 
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Table 1. Auxiliary variables used in the soft sensing models. 

Variable Description 

1x  current of the pump 

2x  frequency of the pump 

3x  flow rate of the pump 

Raw data is collected at a sampling rate of one high-quality sample every 10 s in 24 

h from an actual thickener working in China. There were 8640 samples in the dataset, 

including one target variable and three process variables. The time series data of the var-

iables listed in Table 1 were selected as the input, and the feed density in the dataset served 

as the output. To develop the intelligent model, the initial 80% of the data is used to train 

the network; 20% of the data is used to test the performance of the method. 

5.2. Results Analysis 

The development work of the intelligent model was conducted on a computing 

server with an Intel(R) Xeon(R) CPU E5-2620 v4 @2.10 GHz (two processors) and NVIDIA 

GeForce RTX 2080 Ti. The software environment was Windows Server 2019, Tensorflow-

gpu 1.14.0, Python 3.7, and Keras 2.3.1. Taking full advantage of GPU computing, the 

LSTM training time for each epoch was less than 2mathrm{~s] with a total of 30 epochs. 

In view of the proposed HGA-LSTM model, a simulation on the abovementioned dataset 

was conducted. The experimental results and analysis are presented as follows: first, the 

output of the hyperparameter optimization from the HGA process is illustrated. Then, the 

prediction results of the HGA-LSTM are provided. Finally, we compare the performance 

of the proposed model with other models. 

In the experiment, the initial population size of the GA was set to 30, with a mutation 

rate of 0.1, a crossover rate of 50%, and the generations set to 20 as the stop condition. For 

the feed density prediction, the structure of the LSTM network and time windows were 

optimized using the GA and HGA, respectively. In both the GA and HGA, the hidden 

layer contains a fully connected layer and two LSTM layers. The other parameter config-

urations of the HGA-LSTM and GA-LSTM were consistent with those of the LSTM. In 

Table 2, the specific optimization outcomes are listed. 

Table 2. Specific optimization outcomes based on GA and HGA. 

Parameter GA-LSTM HGA-LSTM LSTM 

Time windows 11 11 10 

Number of LSTM hidden-layers 2 2 2 

Number of fully connected hidden-layers 1 1 1 

LSTM units on the first layer 94 88 90 

LSTM units on the second layer 55 53 60 

Fully connected units on the third layer 70 72 80 

In addition, a dropout is necessary for reducing data overfitting effectively, and thus, 

it improves the model generalization ability. Selecting a befitting dropout rate is crucial 

because if the dropout probability is very low, it leads to an underfitting phenomenon, 

while an excessively high dropout probability loses the benefits of adding layers. There-

fore, when the accuracy of the predicted outcome does not reach the required value, the 

outcome is refreshed continuously by updating the dropout to ensure the required pre-

diction accuracy. The results are presented in Figure 8. 
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Figure 8. Auxiliary variables used in the intelligent model. 

When the dropout probability reached 0.2, the RMSE of the predicted value of the 

feed density in the thickener was approximately 3.08, and there was a good match be-

tween the actual and predicted data. However, when the dropout probability increased 

or decreased, the RMSE significantly increased, and the mismatch became significant. In 

summary, the dropout probability was optimized in a trial-and-error manner using feed-

back from the predictive data. Finally, the model results of the feed ore density based on 

the HGA-LSTM, GA-LSTM, and LSTM were obtained, as presented in Figure 9. 

 

Figure 9. The predicted value of LSTM, GA-LSTM, and HGA-LSTM. 

The LSTM model was optimized through trial and error based on heuristics using 

the feedback of the predicted data. The performance of the LSTM, GA-LSTM, and HGA-

LSTM on the testing dataset is presented in Table 3. 

Table 3. Comparison results of LSTM, GA-LSTM, and HGA-LSTM. 

Method RMSE Improvement (%) ARGE Improvement (%) 

LSTM 3.83 - 0.119 - 

GA-LSTM 3.21 15.45 0.0839 26.5 

HGA-LSTM 3.08 19.5 0.0752 36.8 

As shown in Table 3, the HGA-LSTM model is significantly better than the GA-LSTM 

and LSTM models. The predicted RMSE values of the LSTM, GA-LSTM, and HGA-LSTM 

models were 3.83, 3.21, and 3.08, respectively, and the predicted result was enhanced by 
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15.45% and 19.5% compared to those of the GA-LSTM and LSTM models, respectively. 

The predicted ARGE values of the GA-LSTM and HGA-LSTM models were 0.0839 and 

0.0752, respectively, and the predicted outcome was enhanced by 26.5% and 36.8% com-

pared to those of the GA-LSTM and LSTM models, respectively. 

The outstanding performance derived from the HGA-LSTM model was probably be-

cause the architecture of the LSTM network and time window were optimized effectively 

by combining the excellent global and local searching capabilities. The results demon-

strate that the proper adjustment of parameters plays a critical role in achieving the de-

sired performance. Thus, the highly effective proposed method can be used to ascertain 

the optimal hyperparameters for intelligent models based on deep learning algorithms, 

and this work expresses the potential for its application in actual industrial cases. 

6. Conclusions 

In this study, an efficient and potentially intelligent model was proposed to deter-

mine the feed ore density in a thickener. The main strategy was to employ an LSTM func-

tion optimized by an HGA combining the SQP algorithm and GA. In this method, the 

HGA was used to search the appropriate hyperparameters of the LSTM to improve the 

modeling performance. Finally, the proposed intelligent model based on the HGA-LSTM 

was successfully applied to an actual thickener case. This work can be extended to other 

scenarios where online measurement of pulp concentration is required. 
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