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Abstract: The focus of this work is hydrogen storage in pristine cellulose, chitosan, and cellulose. Chi-
tosan doped with magnesium, titanium, and niobium is analyzed using spin unrestricted plane-wave
density functional theory implemented in the Dmol3 module. The results of this study demonstrate
that hydrogen interaction with pure cellulose and chitosan occurred in the gas phase, with an adsorp-
tion energy of Eb = 0.095 eV and 0.090 eV for cellulose and chitosan, respectively. Additionally, their
chemical stability was determined as Eb= 4.63 eV and Eb = 4.720 eV for pure cellulose and chitosan,
respectively, by evaluating their band gap. Furthermore, the presence of magnesium, titanium, and
niobium on cellulose and chitosan implied the transfer of an electron from metal to cellulose and
chitosan. Moreover, our calculations predict that cellulose doped with niobium is the most favorable
medium where 6H2 molecules are stored compared with molecules stored in niobium-doped chitosan
with Tmax = 818 K to release all H2 molecules. Furthermore, our findings showed that titanium-doped
cellulose has a storage capacity of five H2 molecules, compared to a storage capacity of four H2

molecules in titanium-doped chitosan. However, magnesium-doped cellulose and chitosan have
insufficient hydrogen storage capacity, with only two H2 molecules physisorbed in the gas phase.
These results suggest that niobium-doped cellulose and chitosan may play a crucial role in the search
for efficient and inexpensive hydrogen storage media.

Keywords: cellulose; chitosan; hydrogen storage; magnesium; titanium; niobium

1. Introduction

The increase in greenhouse gas emissions in the atmosphere accelerates global warm-
ing that threatens life on earth [1].Therefore, a smooth transition from fossil fuels to clean
and sustainable fuels is required. Owing to its high energy content per mass (142 KJ/g)
compared to petroleum (47 KJ/g), hydrogen is an optimum clean fuel; when used in fuel
cells to generate electricity, it produces water [2,3]. However, the use of H2 in the future
clean economy will still face many obstacles and require various problems to be addressed.
When generated, hydrogen has to be stored, and finding a safe and efficient hydrogen
storage medium is important for the future hydrogen-based economy. Many hydrogen
storage methods have been proposed to date. The most well-known method involves
storing gas H2 in high-pressure tanks [4,5]. However, compressing gaseous hydrogen in
the pressure range of 70–80 MPa in a tank creates an additional risk of hydrogen-related
embrittlement of the tank walls. Hydrogen can also be stored in cryogenic tanks, although
this method requires thermal insulation and cooling of hydrogen below the critical tem-
perature of 33 K. Significant energy is required to liquify H2, coupled with continuous
boil-off. Therefore, to find an alternative way of storing hydrogen, the U.S. Department of
Energy (DOE) initiated support for the extensive search for the materials for H2 storage
media in 2003. The criteria set by the DOE for materials for onboard hydrogen storage were
specified as (i) high storage capability, that is, 5.5 wt% and 40 g/L at ambient temperatures;
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(ii) rapid H2 release and recharge under moderate conditions; and (iii) long recycling life,
that is, more than 1000 recharge and discharge cycles [6]. However, reaching a high storage
capacity of 5.5 wt% and 40 g/L under ambient conditions, fast H2 release, and recharge
under moderate conditions is a difficult task. Therefore, to address these challenges, the
DEO set an ultimate goal of 6.5 wt% and 60 g/L by 2050 [3]. The following additional
criteria were set: an operating temperature (°C)in the range of [−40, 60], a minimum and
maximum delivery temperature of −40 and 85 °C, respectively, 1500 operational cycles,
delivery pressure in the range [5,6] (bar), and an onboard efficiency of 90% [3]. Furthermore,
the rate of charging and discharging was specified as 3–5 min, with a minimum cost of
USD 266/kg H2 [3]. Many materials have been examined and tested to date. There are
three ways that hydrogen can interact with the material: physisorption, chemisorption,
and the quasi-molecular form of Kubas interaction [2]. During physisorption, hydrogen
remains in the molecular form and binds weakly on the substrate, with binding energy in
the meV range. This weak binding implies that low temperature is sufficient to desorb the
H2. Such behavior is observed in the metal–organic framework [7–15] and in carbon-based
materials [16–19]. However, during chemisorption, hydrogen molecules dissociate into
atoms, and the atoms diffuse into the substrate and bind chemically with enthalpy energy
in the range of 2 to 4 eV [4]. This strong bonding makes hydrogen desorption difficult,
and the process takes place only at high temperatures. This type of bonding occurs in
light metal hydrides and chemical hydrides [20,21]. During the Kubas interaction, H2
bonds stretch without braking. The bonding strength is between that physisorption and
chemisorption in the range of [0.1–0.8 eV]. Such bonding occurs in nanostructure materi-
als and functionalized sorbent materials [20]. There are other requirements for material
performance, including the hydrogen storage medium. The material should also be non-
toxic, environmentally friendly, and widely available. Biopolymers, such as cellulose and
chitosan, satisfy such requirements and show potential for hydrogen storage. Cellulose
and chitosan are used in wastewater treatment. They are suitable sorbents for heavy
metals, dyes, and organic and emerging contaminants [22,23]. Udoetok et al. [24] pro-
posed chitosan/cellulose glutaraldehyde composite materials synthesized with variable
morphology and surface properties with varying levels of self-assembly and cross linking.
Their study revealed the structural and synergistic effects of the adsorption properties of
cellulose–chitosan composites, as well as their potential application for advanced water
treatment, nanomedicine, and drug delivery [24]. Cellulose has attracted attention because
it is recyclable and abundant. Furthermore, it can also be used for electronic component
applications and in energy devices [25,26]. Mokena et al. [27] summarized cellulose appli-
cations in sensors, as well as biomedical, wastewater treatment, and packaging industries.
Cellulose combined with graphene has a variety energy storage, electronic, biomedical,
optical, and catalysis applications [28]. In addition to cellulose, chitosan also can be used
in biomedical [29,30], water treatment [31,32], and environmental applications [33]. How-
ever, to the best of our knowledge, no study has been conducted on hydrogen storage in
cellulose and chitosan functionalized with magnesium, titanium, and niobium. Therefore,
highlighting the effectiveness of these composites for hydrogen storage is important in the
ongoing search for materials. In the present study, a density functional theory is used to
investigate hydrogen storage in pure cellulose and chitosan. The effect of magnesium-,
titanium-, and niobium-coated cellulose and chitosan is also tested to evaluate hydrogen
storage characteristics.

2. Computational Methods

We performed a first-principles calculation using spin unrestricted plane-wave
density functional theory with the self-consistent field method implemented in the
Dmol3 module [34,35]. We used generalized gradient approximation (GGA) with
Perdew–Burke–Ernzerhof (PBE) [36] to approximate the exchange-correlation effects on
electron−electron interactions. The semi-core-pseudopotentials represent the core electrons
as a single effective potential [37]. Double-numerical plus polarization (DNP) used as a
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basis set, included the vdW interaction (DFT-D), as proposed by Grimme [38]. Energy
minimization was achieved with a convergence tolerance energy of 10−5 Ha. The atomic
positions were relaxed such that the force acting on each atom was less than 0.002 Ha/Å.

3. Results and Discussion

We investigated the interaction between pure cellulose and transition metals (T.M.s),
such as titanium (Ti), magnesium (Mg), and niobium (Nb). Similar calculations were
performed for chitosan with the same metals. The strength of the interaction was measured
using the following equation:

Eb = E(A) + E(B) − E(AB) (1)

where E(A) is the total energy of transition metals in an isolated cubic cell of lattice
(a = b = c = 25 Å), E(B) is the ground energy of cellulose or chitosan, and E(AB) is the
total energy of cellulose or chitosan doped with the mentioned TMs. The optimized
structures of cellulose and chitosan are displayed in Figure 1.
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Figure 1. Optimized structures of pure cellulose and pristine chitosan, where red atoms are O, grey
atoms are carbon (C), blue atoms are N, and white atoms are H.

We also studied the frontier molecular orbitals to gain insight into the interaction of
pristine cellulose and chitosan with additives such as niobium, titanium, and magnesium.
Figure 2 depicts the highest occupied molecular orbital (HOMO) (Figure 2A) and the lowest
unoccupied molecular orbital (LUMO) (Figure 2B) for pristine cellulose. The same analysis
was performed on pristine chitosan, the highest occupied molecular orbital (HOMO)
(Figure 2C) and the lowest unoccupied molecular orbital (LUMO) (Figure 2D) or which are
also plotted in Figure 2. Furthermore, the energy band gap was determined according to
Equation (2).

Eg = ELUMO − EHOMO (2)

where ELUMO is the energy of the lowest unoccupied molecular orbital (LUMO), and
EHOMO is the energy of the highest occupied molecular orbital (HOMO).

The energy difference between HOMO and LUMO orbitals determines the chemical
stability of a molecule. These molecular frontiers were calculated using Dmol3 implemented
in the material studio.

In Equation (2), a low Eg value indicates the ability to donate electrons to the additive atoms.
Furthermore, the global chemical activity, hardness, and softness parameters were

investigated. The ionization energy is defined as I = −EHOMO, which is the minimum
energy required to remove an electron from a molecule in the gas phase. The electron
affinity is defined as A = −ELUMO, which is the energy increase that occurs when an elec-
tron is added to a molecule in the gas phase. The chemical hardness (α) is α = (I − A)/2,
measuring the inhibition activity of charge transfer within the molecule. The chemical
softness is represented by S = 1/2α. In addition, Mulliken electronegativity is defined as
(I + A)/2, which represents the ability of an atom in a molecule to attract electrons. Fi-
nally, the chemical potential and the maximum charge transfer parameter are defined as
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µ= − (I + A)/2 and Dn = (I + A)/2(I − A), respectively. These chemical parameters are
summarized in Table 1.
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Figure 2. Frontier molecular orbitals, (A,C) stand for HOMO for cellulose and chitosan respec-
tively, and (B,D) stand for LUMO for cellulose and chitosan respectively, the chemical hardness (α),
ionization energy (I), electron affinity (A) of pristine cellulose and chitosan.

The HOMO and LUMO energy levels are −16.899 eV and −12.269 eV, respectively,
for pristine cellulose compared to −5.918 eV and −1.196 eV for chitosan, as displayed in
Table 1. Moreover, the ionization energy, electronegativity, chemical potential, chemical
hardness, and chemical softness ranging between −14.584 eV and 16.899 eV for cellulose
compared to −3.557 eV to 5.918 eV for chitosan, as shown in Table 1. The maximum charge
transfer (Dn) is 3.149 eV and 1.507 eV for cellulose and chitosan, respectively. These results
indicate that cellulose and chitosan are highly stable. Because cellulose presents with six
carbon asymmetric and three oxygen atoms in a different state, it is important to search
for the most favorable adsorption site of magnesium, titanium, and niobium on cellulose.
Equation (1) shows that the most favorable site is the oxygen in the bridge position, as
shown in Figure 3, with an adsorption energy of 1.890 eV, 3.720 eV, and 3.726 eV for Mg,
Ti, and Nb, respectively. A similar investigation was performed on chitosan, with five
asymmetric carbons, four oxygens in different states, and one nitrogen type, as shown in
Figure 1. The favorable adsorption site of magnesium and titanium is the O_Bridge position,
with a binding energy of 1.547 eV and 5.450 eV for Mg and Ti, respectively. However, for
the niobium atom, the most favorable site is the N_Top site, as shown in Figure 3, with a
binding energy equal to 8.185 eV (Table 2). These high symmetry points are displayed in
Figure 3.
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Table 1. Chemical parameters of cellulose and chitosan: ionization energy, electron affinity, energy
gap, chemical potential, chemical hardness, chemical softness, and maximum charge transfer values.

Cellulose Parameters

EHOMO −16.899

ELUMO −12.269

Ionization energy (I) 16.899

Electron affinity (A) 12.269

Energy gap (Eg) 4.630

Electronegativity (α) 14.584

Chemical potential (µ) −14.584

Chemical hardness (β) 2.315

Chemical softness (S) 0.216

Maximum charge transfer (Dn) 3.149

Chitosan parameters

EHOMO −5.918

ELUMO −1.196

Ionization energy (I) 5.918

Electron affinity (A) 1.196

Energy gap (Eg) 4.721

Electronegativity (α) 3.557

Chemical potential (µ) −3.557

Chemical hardness (β) 2.361

Chemical softness (S) 0.212

Maximum charge transfer (Dn) 1.507
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Figure 3. The adsorption sites (O_Top, O_Hallow, O_Bridge, N_Top, O_Top1, and O_Top2) of
cellulose and chitosan.

The calculated enthalpy energy is summarized in Table 2. The interaction of pristine
cellulose with titanium is the most stable, with a binding energy of EbTC =3.720 eV and
an optimized distance of d_CelTi = 2.340 Å, followed by interaction between cellulose
and niobium, with EbNbCel = 3.572 eV and a final distance of d_CelNb = 2.312 Å. The
lowest binding energy is associated with the interaction of cellulose with magnesium, with
EbMg = 1.890 eV and a minimum distance of d_CelMg = 2.35 Å. A comparative study
was also performed on chitosan, for which the most favorable interaction occurs between
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chitosan and niobium, with an adsorption energy of EbNbch = 7.180 eV and a critical
distance of d_ChNb = 2.110 Å for the nearest atom of chitosan. The enthalpy reaction of
titanium with chitosan is EbTich = 5.450 eV, with a required length of 3.225 Å compared
to 3.720 eV in the case of titanium-doped cellulose (d_CelTi= 2.32 Å). Finally, magnesium
adsorption energy on chitosan is 1.547 eV, with an adsorption distance of 3.666 Å compared
to 1.890 eV and d_CelMg = 2.544 Å in the case of magnesium-doped cellulose. Binding
energy and bandgap energy were computed using Equations (1) and (2). These results are
summarized in Table 2.

Table 2. Equilibrium parameters (binding energy (Eb) and critical distance (d_F (Å))) and the bandgap
(Eg (eV)) of the interaction between pristine cellulose and chitosan with magnesium, titanium,
and niobium.

Substrate Eb (eV) d_F (Å) Eg (eV)

cellulose + Mg 1.890 2.544 2.46

cellulose + Ti 3.72 2.340 1.50

cellulose + Nb 3.726 2.3 0.25

pristine cellulose 4.630

pristine chitosan 4.720

chitosan + Mg 1.547 3.666 2.770

chitosan +Ti 5.450 3.255 1.570

chitosan + Nb 8.185 2.307 2.980

To investigate the binding process between pure cellulose or chitosan with magnesium,
titanium, and niobium, we studied the fluctuation of cellulose’s bandgap energy and
chitosan’s bandgap energy in the presence of the mentioned transition metals. We defined
the bandgap of the investigated materials using Equation (2).

The calculated values of the bandgap energy are presented in Table 2. Analysis of
the results reveals that the bandgaps of pure cellulose and chitosan are 4.630 and 4.720 eV,
respectively, in agreement with results reported in the literature [27,39–41].

When we doped cellulose with magnesium, titanium, and niobium, the energy gap
decreased from Eg= 4.630 eV to 1.250 eV. The same phenomenon was observed for chitosan
coated with Mg, Ti, and Nb, for which the bandgap changed from 4.720 eV pristine chitosan
to the lowest value of 1.570 eV. These results suggest that the decrease in the cellulose
and chitosan bandgap in the coated system could be related to a charge transfer from
the transition metal to the cellulose and chitosan. The same phenomenon was previously
observed by Mahmood et al. [42–46]. A similar phenomenon was observed in copper-
decorated, nitrogen-doped defective graphene nanoribbons, in which the presence of
copper decreased the bandgap from 3.399 eV to 3.352 eV [47].

3.1. Interaction of Hydrogen with Pristine Cellulose and Chitosan

To test the hydrogen storage capacity of cellulose and chitosan, we first investigated
the interaction of clean cellulose and chitosan with hydrogen. The strength of the interaction
of H2 with cellulose and chitosan was measured using the following equation:

Eads = E(S) + E(H2) − E(S+H2) (3)

where E(S) is the total energy of the substrate (cellulose or chitosan), E(H2) is the total
energy of isolated hydrogen, and E(S+H2) is the total interaction energy of cellulose or
chitosan with H2.

The interaction of hydrogen with cellulose and chitosan was determined using
Equation (3); the equilibrium parameters are summarized in Table 3.
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Table 3. Enthalpy energy of H2 with pure cellulose and chitosan.

Cellulose + H2 0.095

Cellulose + 2H2 0.083

Chitosan + H2 0.090

Chitosan +2H2 0.050

The results presented in Table 2 reveal a weak interaction (physisorption) between
hydrogen and cellulose and between H2 and chitosan. The calculated binding energy
between H2 and cellulose is 0.095 eV, compared to 0.090 eV for chitosan. These results
align with results previously reported in the literature [48]. Furthermore, by increasing the
number of H2 molecules in pure cellulose and chitosan to two, a decrease in the binding
energy is observed: Eb = 0.083 eV and Eb = 0.050 eV, for cellulose and chitosan, respectively.
The optimized structures are displayed in Figure 4.
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These results show that pure cellulose and pure chitosan are not favorable storage me-
dia alone. Therefore, to increase their adsorption capacity, we doped them with magnesium,
titanium, and niobium; these results are described in the following section.

3.2. Hydrogen Storage of Cellulose Coated with Magnesium, Niobium, and Titanium

Our hydrogen interaction results with pure cellulose and chitosan show that these
new materials are not efficient for hydrogen storage under ambient conditions. Therefore,
to enhance the hydrogen storage capacity, we functionalized the materials to increase
the active site of hydrogen adsorption. We investigated hydrogen storage on cellulose
functionalized with magnesium, niobium, and titanium. The optimized structures are
depicted in Figure 5.
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sive addition hydrogen molecules; red atoms are O, grey atoms are carbon (C), green atoms are Mg,
grey metallic atoms are Ti, forest green atoms are Nb, and white atoms are H.
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The strength of the binding between hydrogen and cellulose was calculated as follows:

Eads =
E(Cel+TMs) + E(nH2) − E((Cel+TMs)+nH2)

n
(4)

where E(Cel+TMs) is the total energy of cellulose doped with transition metals (TMs = Mg,
Nb, and Ti); E(nH2) is the total energy of nH2 molecules; and E((Cel+TMs)+nH2) is the total
energy of cellulose doped with Mg, Nb, and Ti with n H2 molecules adsorbed on its surface,
where n indicates the number of adsorbed H2 molecules. The adsorption energy was
computed using Equation (4); the equilibrium parameters are summarized in Table 4.

Table 4. Equilibrium parameters: binding energy (Eb), critical distance (d_TM-H (Å)), distance be-
tween hydrogen atoms, and desorption temperature (TD.) between cellulose doped with magnesium,
titanium, and niobium.

Number of H2
Molecules Eb (eV) d_H-H (Å) d_TM-H (Å) TD (K)

Cell + H2 + Nb 0.765 0.896 1.900 978

0.734 0.897 1.910 938

0.620 0.870 1.996 792

0.372 0.840 1.999 475

0.215 0.831 2.020 274

0.198 0.789 2.250 253

Cell + Ti + H2 0.640 0.850 1.920 818

0.515 0.858 1.895 658

0.376 0.831 1.997 480

0.256 0.807 2.010 327

0.120 0.792 2.231 153

Cell + Mg + H2 0.112 0.758 3.050 143

0.086 0.757 3.125 109

Cellulose coated with Nb atoms can store six H2 molecules in the quasi-molecular
form with a distance between H atoms in the range of 0.789 to 0.896 Å and a corresponding
binding distance in the range of 1.900 to 2.250 Å. Their corresponding adsorption energy
fluctuates in the range of 0.198–0.765 eV before reaching saturation, as shown in Table 4. To
better visualize the successive adsorption of hydrogen, Figure 6a shows the variation in
hydrogen binding energy with niobium-doped cellulose with varying numbers of adsorbed
hydrogen molecules. The change in adsorption energy with the number of hydrogen
molecules in titanium-doped cellulose is presented in Figure 6b. Figure 6a shows that the
binding energy decreases as the number of added H2 molecules increases. However, in
cellulose doped with titanium, the maximum storage capacity is five H2 molecules in the
quasi-molecular form, and the corresponding equilibrium parameters are d_H-H = [0.792 to
0.858 Å] and d_TM-H = [1.895–2.231 Å]. Furthermore, their corresponding binding energy
varies in the range of 0.120 eV to 0.640 eV. Magnesium-doped cellulose is not displayed in
Figure 4 because its storage capacity is poor. It can only adsorb two H2 molecules with the
following equilibrium parameters: d_H-H= [0.757–0.758 Å], d_TM-H = [3.050–3.125 Å],
and binding energy in the range of 0.086–0.112 eV, as shown in Table 3. These results for
cellulose are in agreement with previously reported results reported in the literature [49].
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To study the desorption process, we used the van’t Hoff equation [2,48,49], as ex-
pressed below, to evaluate the desorption temperature (TD):

TD =

(
Eads
KB

)((
∆S
R

− ln
(

P
Po

)))−1
(5)

where Eads is the binding energy, KB represents Boltzmann’s constant (8.61733 × 10−5 eV/K),
P denotes the pressure (reference pressure Po = 1 atm), R is the universal gas constant
(8.314 JK−1mol−1), and ∆S is the entropy change as H2 moves from the gas to the liquid
phase. Assume that P = 1 is the atmospheric pressure, and ∆S = 130.7 JK−1mol−1 [49,50].

The variation in the binding energy with respect to absorbed H2 in cellulose-doped
titanium is displayed in Figure 6c.

We determine the desorption temperature for the successive addition of H2 on cellulose
doped with niobium, titanium, and magnesium using Equation (5); the results are summa-
rized in Table 4. Cellulose-doped niobium and titanium are the most favorable for hydrogen
storage, as shown in Table 4. Therefore, to better understand the correlation between the
desorption temperature (TD) and the adsorption energy, Figure 6c,d shows the desorption
temperature as a function of the binding energy for the two most favorable composites
(cellulose doped with niobium and cellulose doped with titanium). Figure 6c,d shows
a linear relationship between the desorption temperature and the binding energy. The



Materials 2022, 15, 7573 10 of 15

temperature variation in titanium-doped cellulose is expressed as by TD = 1277 × Eb + 0.55.
In niobium-doped cellulose, the temperature varies: TD = 1277 × Eb − 0.071. The desorp-
tion temperature of the successive hydrogen addition in niobium-doped cellulose is in
the interval of 253–978 K, where the maximum temperature is (TD = 978 K) to release all
the adsorbed hydrogen at a atmospheric pressure of 1. However, in the case of titanium-
doped cellulose, the desorption temperature is within the range of 153–818 K, where
TD = 818 K is the maximum temperature required to release all the adsorbed hydrogen at
the standard pressure.

3.3. Hydrogen Storage on Chitosan Coated with Magnesium, Niobium, and Titanium

A comparative study was also performed on chitosan doped with magnesium, nio-
bium, and titanium as a hydrogen storage medium. The optimized structure of the chitosan
doped with magnesium, titanium, and niobium with the maximum H2 storage capacity
is shown in Figure 7. The first H2 molecule dissociation is noticeable in titanium- and
niobium-doped chitosan, with a binding energy of 0.615 eV for niobium-doped chitosan
(Ch_Nb) and 0.405 eV for titanium-doped chitosan (Ch_Ti). However, in magnesium-doped
chitosan (Ch_Mg), the first Ch_Mg adsorption energy is 0.142 eV.

Materials 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 7. Optimized structure of the interaction of magnesium-, titanium-, and niobium-doped 
chitosan with the successive addition of hydrogen molecules; red atoms are O, blue atoms are N, 
grey atoms are carbon (C), green atoms are Mg, grey metallic atoms are Ti, forest green atoms are 
Nb, and white atoms are H. 

The successive adsorption energy of hydrogen with chitosan functionalized with 
the metals was determined using Equation (3). The calculation results for the subsequent 
H2 additions are summarized in Table 5. 

Table 5. Successive hydrogen adsorption on chitosan coated with magnesium, titanium, and 
niobium, along with their corresponding binding distance (d_H-M), the distance between 
hydrogen atoms (d_H-H), and the desorption temperature (TD). 

Number of H2 

Molecules Binding Energy d_H-H (Å) d_H-M (Å) TD (K) 

Ch + Mg + H2 
0.142 0.752 3.141 99 
0.078 0.761 3.304 181 

 0.101 0.756 3.280 129 
Ch + Ti +H2 0.405 0.794 2.025 517 

2H2 0.225 0.790 2.068 287 
 0.132 0.799 2.011 168 
 0.099 0.787 2.076 126 

Ch + Nb + H2     
 0.615 0.816 2.012 786 
 0.525 0.825 1.995 671 
 0.341 0.823 2.020 436 
 0.280 0.835 2.045 358 
 0.107 0.800 2.890 136 

Table 5 shows that H2 interacted with magnesium-coated chitosan in the gas phase, 
with an adsorption energy of 0.142 eV for the first adsorbed H2 molecule, decreasing to 
0.078 eV for the second H2 molecule. In the case of magnesium-coated cellulose, the first 
adsorption energy of the first H2 molecule is  𝐸  = 0.112 eV and 0.086 eV for the second 
adsorption. Moreover, the corresponding equilibrium parameters of chitosan are as 
follow: critical distance (d_H-Mg): 3.141 Å for the first H2 molecule and 3.304 Å for the 
last added H2 molecule. The results can be compared to the equilibrium parameters for 
magnesium-doped cellulose, where d_H-Mg = 3.050 Å for the first adsorption and d_H-

Figure 7. Optimized structure of the interaction of magnesium-, titanium-, and niobium-doped
chitosan with the successive addition of hydrogen molecules; red atoms are O, blue atoms are N, grey
atoms are carbon (C), green atoms are Mg, grey metallic atoms are Ti, forest green atoms are Nb, and
white atoms are H.

The successive adsorption energy of hydrogen with chitosan functionalized with the
metals was determined using Equation (3). The calculation results for the subsequent H2
additions are summarized in Table 5.

Table 5. Successive hydrogen adsorption on chitosan coated with magnesium, titanium, and niobium,
along with their corresponding binding distance (d_H-M), the distance between hydrogen atoms
(d_H-H), and the desorption temperature (TD).

Number of H2 Molecules Binding Energy d_H-H (Å) d_H-M (Å) TD (K)

Ch + Mg + H2
0.142 0.752 3.141 99

0.078 0.761 3.304 181

0.101 0.756 3.280 129

Ch + Ti +H2 0.405 0.794 2.025 517
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Table 5. Cont.

Number of H2 Molecules Binding Energy d_H-H (Å) d_H-M (Å) TD (K)

2H2 0.225 0.790 2.068 287

0.132 0.799 2.011 168

0.099 0.787 2.076 126

Ch + Nb + H2

0.615 0.816 2.012 786

0.525 0.825 1.995 671

0.341 0.823 2.020 436

0.280 0.835 2.045 358

0.107 0.800 2.890 136

Table 5 shows that H2 interacted with magnesium-coated chitosan in the gas phase,
with an adsorption energy of 0.142 eV for the first adsorbed H2 molecule, decreasing
to 0.078 eV for the second H2 molecule. In the case of magnesium-coated cellulose, the
first adsorption energy of the first H2 molecule is Eb = 0.112 eV and 0.086 eV for the
second adsorption. Moreover, the corresponding equilibrium parameters of chitosan are
as follow: critical distance (d_H-Mg): 3.141 Å for the first H2 molecule and 3.304 Å for
the last added H2 molecule. The results can be compared to the equilibrium parameters
for magnesium-doped cellulose, where d_H-Mg = 3.050 Å for the first adsorption and
d_H-Mg = 3.125 Å for the second adsorption. The desorption temperature (TD) for these
two successive adsorptions is TD = 181 K and TD = 99 K, respectively, compared with
TD= 143 K and TD = 109 K in magnesium-doped cellulose.

To better, observe the correlation between the adsorption energy and the number
of added H2 molecules. The maximum hydrogen storage capacity for niobium-coated
chitosan is five hydrogen molecules, as shown in Figure 8, and the addition of the six
H2 molecules is not stable. This result indicates that niobium-doped chitosan can store
five H2 molecules in the quasi-molecular form before reaching saturation. Figure 8a,c
shows the binding energy for the successive H2 additions. The desorption temperature
(TD) of successive H2 adsorption varies in the energy interval of 136–786 K. However, in
the case of titanium-doped chitosan, the maximum storage capacity is three H2 molecules
in the quasi-molecular form, with binding energy in the range of 0.132–0.405 eV. A fourth
H2 molecule is in an unstable configuration, with an adsorption energy of 0.099 eV. The
corresponding desorption temperature for the successive addition of molecules varies in the
range of 168–517 K. To better understand the correlation between the adsorption energy and
the corresponding desorption temperature, Figure 8c shows the desorption temperature
changes (TD) with respect to the hydrogen binding energy for niobium-doped chitosan.
Figure 8d also displays the desorption temperature (TD) for different hydrogen adsorption
energy for titanium-doped chitosan. Furthermore, the relation between the desorption
temperature (TD) and the binding energy (Eb) is expressed by TD = 1290 × Eb − 1.46 in
niobium-doped chitosan and TD = 1280 × Eb − 0.3 in the case of titanium-doped chitosan.
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Figure 8. Physical and chemical parameters of the successive addition of H2 to chitosan.
Case (a) represents the variation in the binding energy with respect to the number of hydrogen
molecules (chitosan + Nb), case (b) represents the variation in the binding energy with respect to the
number of H2 molecules (chitosan + Ti), case (c) represents the variation in the desorption tempera-
ture with respect to the adsorption energy (chitosan + Nb), and case (d) represents the variation in
the desorption temperature with respect to the adsorption energy of H2 (chitosan + Ti).

4. Conclusions

In summary, the present study of hydrogen storage in pure cellulose and chitosan,
as well as cellulose and chitosan doped with magnesium, titanium, and niobium using
density functional theory highlights the mechanism of hydrogen storage. The results of this
investigation show that the interaction between hydrogen and pure cellulose and chitosan
takes place in the gas phase (physisorption). Additionally cellulose and chitosan coated
with magnesium, titanium, and niobium show exciting results. Our calculations predict
that cellulose doped with niobium is the most favorable medium, with a storage capacity
of six H2 molecules, adsorption energy in the range of 0.198–0.765 eV, with system release
of all the hydrogen at 978 K. Niobium-doped chitosan can accommodate five H2 molecules,
with binding energy in the range of 0.107–0.615 eV, whereas titanium-doped cellulose has a
storage capacity of four H2 molecules, with binding energy in the range of 0.120–0.640 eV
and a maximum desorption temperature of Tmax = 818 K, compared to a storage capacity
of four H2 molecules in the case of titanium-doped chitosan, with an adsorption range
of 0.099–0.405 eV and a maximum desorption temperature of Tmax = 517 K. However,
magnesium-doped cellulose and chitosan show an insufficient hydrogen storage capacity
of two H2 molecules physisorbed. These results demonstrate that niobium-doped cellulose
and chitosan might play an important role in the search for efficient and inexpensive
hydrogen storage media.
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