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Abstract: A beam model for thermal buckling analysis of a bimetallic box beam is presented. The
Euler–Bernoulli–Vlasov beam theory is employed considering large rotations but small strains. The
nonlinear stability analysis is performed using an updated Lagrangian formulation. In order to
account for the thermal effects of temperature-dependent (TD) and temperature-independent (TID)
materials, a uniform temperature rise through beam wall thickness is considered. The numerical
results for thin-walled box beams are presented to investigate the effects of different boundary
conditions, beam lengths and material thickness ratios on the critical buckling temperature and
post-buckling responses. The effectiveness and accuracy of the proposed model are verified by means
of comparison with a shell model. It is revealed that all of the abovementioned effects are invaluable
for buckling analysis of thin-walled beams under thermal load. Moreover, it is shown that the TD
solutions give lower values than the TID one, emphasizing the importance of TD materials in beams.

Keywords: thin-walled; FEM; thermal buckling analysis

1. Introduction

Thin-walled beams and structures are increasingly used in engineering branches, in
standalone forms and as a stiffeners for plate- and shell-like structures, due to their high
strength and light weight. However, these structures show susceptibility to local buckling
and buckling failure [1,2]. Buckling analysis and the post-buckling response of such weight-
optimized structures have been the topic of many research papers, such as [3–6], especially
in the field of composite materials [7–11].

If the thermal environment is considered, the stability of structures has received sig-
nificant attention in recent years: Duan et al. [12] performed thermal analysis of a beam
element, Saha and Ali [13] presented a post-buckling mathematical model of a slender
road under uniform temperature rise, while Cui and Hu [14] analyzed the thermal buck-
ling and vibration of a beam. Jeyaraj et al. [15] investigated experimental and theoretical
non-uniform heating of an isotropic beam. Burgreen and Mannit [16] and Burgreen and
Regal [17] analysed the thermal buckling of bimetallic beams. In the case of compos-
ite beams, Aydogdu [18] obtained critical buckling temperatures of composite beams,
Luan et al. [19] presented an analytical solution for buckling and vibration of FG beams,
Kiani and Eslami [20,21] investigated buckling analysis under different types of thermal
loads, while Giunta [22] analyzed FG beams under thermal/mechanical load using the
Carrera unified formulation. However, there are not many papers about thermal buckling
analyses of thin-walled structures: Libresceu [23] studied stability problems in a high-
temperature environment and Ziane et al. [24] studied analytical methods for buckling and
vibration responses of porous beams under thermomechanical loads.

In the present work, thermal buckling analysis of a thin-walled bimetallic box beam
and frame structures is presented. The material is assumed to be linear, elastic and isotropic.
The model is based on Euler–Bernoulli–Vlasov theory and on assumptions of large rotations
and small strains. It is also assumed that the cross-section is not deformed in its own plane
and that there are no shear strains in the middle surface. The nonlinear displacement field,
which includes nonlinear displacement terms due to large rotation effects, is implemented.
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Using the UL description, the element geometric stiffness is derived. As an incremen-
tal iterative solution scheme, the Newton–Raphson method is used. Furthermore, this
paper is a continuation of the research in which thermal buckling analysis of temperature-
independent materials was conducted [25], which has now been further expanded with
temperature-dependent materials’ properties. As far as the authors are aware, there is no
beam model solution for thermal buckling analysis of thin-walled beam-type structures
with temperature-dependent materials’ properties.

The numerical results for thin-walled box beams are presented to investigate the
effects of different boundary conditions, namely clamped–clamped, simply supported
and clamped–simply supported, beam lengths and material thickness ratios on the crit-
ical buckling temperature and post buckling responses. In order to demonstrate the
accuracy of the numerical algorithm, benchmark examples using shell FEM code were
developed. Numerical results show that the abovementioned effects have a huge impact
on the buckling analysis.

2. Materials and Methods
2.1. Kinematics

Two sets of coordinate systems related to the angle of orientation β are considered.
The first one is a Cartesian (z, x, y) coordinate system where the z-axis coincides with the
longitudinal beam that passes through the centroid O of each cross section, while the x-
and y-axes are principal axes. The second one is a contour coordinate system where the
s-axis is tangential to the middle surface directed along the contour line of the cross-section
while the n-axis is perpendicular to the s-axis.

The field of incremental displacement measures of a cross section are defined as [8]:

w0 = w0(z); us = us(z); vs = vs(z); ϕz = ϕz(z);
ϕx = ϕx(z) = − dvs

dz ; ϕy = ϕy(z) = dus
dz ; θ = θ(z) = − dϕz

dz (z),
(1)

where w0, us and vs are the rigid-body translations of the cross-section centroid in the z-, x-
and y-direction, respectively, while ϕz, ϕx and ϕy are the rigid-body rotations about the
aforementioned axis; θ is a warping parameter of the cross-section.

In the case of small rotations, the incremental displacement field consists of the first-
order displacement values:

uz(z, x, y) = w0(z)− y dvs
dz (z)− x dus

dz (z)− ω(x, y) dϕz
dz (z),

ux(z, x, y) = us(z)− (y − ys)ϕz(z)
uy(z, x, y) = vs(z) + (x − xs)ϕz(z),

(2)

where uz, ux and uy are the linear displacement increments of an arbitrary point on the cross-
section defined by the x and y coordinates and the warping function ω(x, y). When the
large rotations are considered, nonlinear displacement increments are expressed as follows:

ũz(z, x, y) = 0.5
[
−(x − xs)ϕz ϕx + (y − ys)ϕz ϕy

]
,

ũx(z, x, y) = 0.5
{
−ϕx ϕyy −

[
ϕ2

z + ϕy
2]x + xs ϕ2

z
}

,
ũy(z, x, y) = 0.5

{
−ϕx ϕyx −

[
ϕ2

z + ϕx
2]y + ys ϕ2

z
}

,
(3)

and should be added to those from Equation (2).
Considering the nonlinear displacement field, the Green–Lagrange strain tensor com-

ponents can be written as:

εij =
1
2

[
(ui + ũi),j +

(
uj + ũj

)
,i + (uk + ũk)i + (uk + ũk),j

]
∼= eij + ηij + ẽij,

2eij = ui,j + uj,i
2ηij = uk,i + uk,j
2ẽij = ũi,j + ũj,i

(4)
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where eij and ηij are the linear and nonlinear strain components corresponding to the
linear displacement, while ẽij is the linear strain component corresponding to the nonlinear
displacement due to the large rotations.

The contour mid-line displacement w, and v can be seen more detail in [26].
Due to the in-plane rigidity hypothesis of the cross-section, the non-zero strain compo-

nents are [7]:

ezz =
∂w
∂z

, ezs =
∂w
∂s

+
∂v
∂z

, (5)

ηzz =
1
2

[(
∂w
∂z

)2
+
(

∂u
∂z

)2
+
(

∂v
∂z

)2
]

,

ηzs =
∂w
∂z

∂w
∂s + ∂u

∂z
∂u
∂s +

∂v
∂z

∂v
∂s ,

(6)

ẽzz =
∂w
∂z

, ẽzs =
∂w
∂s

+
∂v
∂z

. (7)

The stress resultants of the beam can be defined as:

Fz =
∫
A

σzdnds,

Mx =
∫
A

σz(y − n cos β)dnds, My =
∫
A

σz(x + n sin β)dnds,

Mt =
∫
A

τsz

(
n + Fs

t

)
dnds, Mω =

∫
A

σz(ω − nq)dnds,

(8)

where Fz represents axial force, Mx and My are bending moments with respect to x- and
y-axis, respectively, Mt is the torsion moment and Mω is the warping moment (bimoment).
t is the thickness of the closed section contour and Fs is the St. Venant circuit flow [26].

2.2. Constitutive Equations

Consider a bimetallic beam made of two different metals. A beam wall with a core
thickness of Ti–6Al–4V λt on the outer surface and SUS304 in the inner part of cross-
section beam wall is shown in Figure 1. It is assumed that the layers of materials are
perfectly bonded.
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⎪⎫ − ⎩⎪⎨
⎪⎧𝑁௭்𝑀௬்𝑀௫்𝑀ఠ்0 ⎭⎪⎬

⎪⎫, (12) 
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Figure 1. Bimetallic beam wall.

If the thermo-elastic material properties are considered as a function of temperature T,
they can be calculated for each material, as described in [19,27]:

P(T) = P0

(
1 + P−1T−1 + P1T + P2T2 + P3T3

)
, (9)

where P represents Young’s modulus E and thermal expansion coefficient α, while P0,
P−1, P1, P2 and P3 are temperature-dependent coefficients listed in Table 1 for different
metals [28]. For simplicity, Poisson’s ratio ν is assumed to be constant, ν = 0.3.
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Table 1. Temperature dependent coefficients [19].

Material Properties P0 P1 P1 P2 P3

Ti–6Al–4V
E (Pa) 122.56 × 109 0.0 −4.586 × 10−4 0.0 0.0
α (1/K) 7.5788 × 10−6 0.0 6.638 × 10−4 –3.147 × 10−6 0.0

SUS304
E (Pa) 201.04 × 109 0.0 3.079 × 10−4 –6.534 × 10−7 0.0
α (1/K) 12.330 × 10−6 0.0 8.086 × 10−4 0.0 0.0

It is assumed that the temperature of the whole beam is uniform and increased from
the current ambient temperature T0 to the critical value in incremental steps of 1 ◦C. If
the axial displacements are prevented, the temperature at a point T(n, z) may be raised to
T + ∆T, in the way that the beam buckles. ∆T is the temperature rise. The temperature
that is read as the critical buckling temperature is the temperature difference compared to
the ambient temperature. The process can be described as quasi-adiabatic since the heat
exchange between the environment and the beam is neglected.

The stress–strain relations of the bimetallic beam can be written as:(
σz
τsz

)
=

(
E(n, z, T) 0

0 G(n, z, T)

)
·
(

ezz − α(n, z, T)∆T
γsz

)
, (10)

where

G(n, z) =
E(n, z, T)

2[1 + ν(n, z, T)]
. (11)

Using Equations (5), (10) and (11), the beam forces can be expressed in a matrix form as:
Fz
My
Mx
Mω

Mt

 =


R11 R12 R13 R14 0
R21 R22 R23 R24 0
R31 R32 R33 R34 0
R41 R42 R43 R44 0
0 0 0 0 R55




dw0/dz
−d2us/dz2

−d2vs/dz2

−d2 ϕz/dz2

2dϕz/dz

−


NT

z
MT

y
MT

x
MT

ω

0

, (12)

where Rij represents the thin-walled beam stiffness, as shown in Appendix A. NT
z , MT

x , MT
y

and MT
ω are thermal force and thermal moments, respectively:

NT
z =

∫
A

E(n, z, T)α(n, z, T)∆Tdnds;

MT
x =

∫
A

E(n, z, T)α(n, z, T)∆T(y − n cos β)dnds

MT
y =

∫
A

E(n, z, T)α(n, z, T)∆T(x + n sin β)dnds

MT
ω =

∫
A

E(n, z, T)α(n, z, T)∆T(ω − nq)dnds

(13)

2.3. Finite Element Formulation

A two-nodded beam element with 14 degrees of freedom is shown in Figure 2. The
nodal displacements and nodal force vectors are as follows:

(ue)T =
{

wA uA vA ϕzA ϕxA ϕyA wB uB vB ϕzB ϕxB ϕyB θA θB
}

(14)

(fe)T =
{

FzA FxA FyA MzA MxA MyA FzB FxB FyB MzB MxB MyB MωA MωB
}

(15)

where the superscript e denotes the eth finite element. It should be noted that nodal
displacement w and nodal forces Fz, Mx and My are defined in the centroid O, while other
nodal components are defined in the shear center.



Materials 2022, 15, 7537 5 of 12

Materials 2022, 15, x FOR PEER REVIEW 5 of 13 
 

 

𝑀௫் = න 𝐸(𝑛, 𝑧, 𝑇)𝛼(𝑛, 𝑧, 𝑇)∆𝑇(𝑦 − 𝑛 cos 𝛽)d𝑛d𝑠஺  

𝑀௬் = න 𝐸(𝑛, 𝑧, 𝑇)𝛼(𝑛, 𝑧, 𝑇)∆𝑇(𝑥 + 𝑛 sin 𝛽)d𝑛d𝑠஺  

𝑀ఠ்  = න 𝐸(𝑛, 𝑧, 𝑇)𝛼(𝑛, 𝑧, 𝑇)∆𝑇(𝜔 − 𝑛𝑞)d𝑛d𝑠஺  

2.3. Finite Element Formulation 
A two-nodded beam element with 14 degrees of freedom is shown in Figure 2. The 

nodal displacements and nodal force vectors are as follows: (u௘)் = ൛𝑤஺ 𝑢஺ 𝑣஺ 𝜑௭஺ 𝜑௫஺ 𝜑௬஺ 𝑤஻ 𝑢஻ 𝑣஻ 𝜑௭஻ 𝜑௫஻ 𝜑௬஻ 𝛳஺ 𝛳஻ൟ (14) (f ௘)் = ൛𝐹௭஺ 𝐹௫஺ 𝐹௬஺ 𝑀௭஺ 𝑀௫஺ 𝑀௬஺ 𝐹௭஻ 𝐹௫஻ 𝐹௬஻ 𝑀௭஻ 𝑀௫஻ 𝑀௬஻ 𝑀ఠ஺ 𝑀ఠ஻ൟ (15) 

where the superscript e denotes the eth finite element. It should be noted that nodal dis-
placement 𝑤 and nodal forces 𝐹௭, 𝑀௫ and 𝑀௬ are defined in the centroid 𝑂, while other 
nodal components are defined in the shear center. 

 
Figure 2. Nodal force vectors and displacements. 

Applying the principle of the virtual work, the incremental equilibrium equations of 
a beam element in linearized form are: 𝛿𝑈ா + 𝛿𝑈ீ = 𝛿ଶ𝑊 − 𝛿ଵ𝑊, (16) 

where the equations from the left side consist of incremental virtual elastic strain energy: 𝛿𝑈ா = න 𝐶௜௝௞௟ ଵ ଵ 𝑒௞௟ 𝛿ଵ 𝑒௜௝ଵ d𝑉ଵ௏ , (17) 

and the incremental virtual geometric potential: 𝛿𝑈ீ = න 𝑆௜௝ ଵ 𝛿ଵ 𝜂௜௝ଵ d𝑉ଵ௏ + න 𝑆௜௝ ଵ 𝛿ଵ 𝑒̃௜௝ଵ d𝑉௏ − න 𝑡௜ ଵ 𝛿𝑢෤௜ଵ d𝐴ఙ஺഑భ . (18) 

Figure 2. Nodal force vectors and displacements.

Applying the principle of the virtual work, the incremental equilibrium equations of a
beam element in linearized form are:

δUE + δUG = δ2W − δ1W, (16)

where the equations from the left side consist of incremental virtual elastic strain energy:

δUE =
∫

1V
1C ijkl 1 ekl δ1 eij

1 dV, (17)

and the incremental virtual geometric potential:

δUG =
∫

1V

1S ij δ1 ηij
1 dV +

∫
V

1S ij δ1 ẽij
1 dV −

∫
1 Aσ

1t i δũi
1 dAσ. (18)

On the right side of the equations, the terms represent the virtual work completed by
external forces at the end and at the beginning of the present increment:

δ2W =
∫

1 Aσ

2t i δui
1 dAσ,

δ1W =
∫

1V
1S ij δ1 eij

1 dV =
∫

1 Aσ

1t i δui
1 dAσ.

(19)

In these equations, Sij is the second Piola–Kirchoff stress tensor, ti denotes the surface
tractions, Cijkl presents the stress–strain tensor and the symbol δ indicates virtual quantities.
By applying the linear interpolation functions for w0 displacement and cubic interpolations
for ws, us and vs, one can obtain:

δUE =
∫
V

SijδeijdV = (δue)Tke
Eue, (20)

δUG =
∫
V

Sij
(
δηij + δẽij

)
dV −

∫
Aσ

tiδũidAσ = (δue)Tke
Gue (21)
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δW =
∫

Aσ

tiδuidAσ = (δue)Tfe (22)

where fe is the nodal force vector, ke
E is the elastic stiffness matrix and ke

G is the geometric
stiffness matrix of the beam element. Nonlinear equilibrium equations are solved using the
Newton–Raphson method as incremental iterative approach [29,30], and the explicit form
of the terms given in nonlinear components were described previously in [31].

3. Results and Discussion

In numerical examples, the thin-walled box beam with height h = 100 mm, width
b = 150 mm and thickness t = 10 mm is considered (Figure 3). For verification purposes,
the critical buckling temperatures were obtained by shell FEM commercial code [32]. In
order to simulate the bimetallic material, the beam walls were divided into two layers of
different metals with a variable thickness ratio λ. Note that for λ = 0, the beam wall is
fully SUS304, while as the index thickness ratio λ increases, the beam wall becomes fully
Ti-6Al-4V.

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

On the right side of the equations, the terms represent the virtual work completed by 
external forces at the end and at the beginning of the present increment: 𝛿ଶ𝑊 = න 𝑡௜ ଶ 𝛿𝑢௜ଵ d𝐴ఙ஺഑భ , 

𝛿ଵ𝑊 = න 𝑆௜௝ 𝛿ଵ ଵ 𝑒௜௝ଵ d𝑉௏భ = න 𝑡௜ ଵ 𝛿𝑢௜ଵ d𝐴ఙ஺഑భ . (19) 

In these equations, 𝑆௜௝ is the second Piola–Kirchoff stress tensor, 𝑡௜ denotes the sur-
face tractions, 𝐶௜௝௞௟ presents the stress–strain tensor and the symbol 𝛿 indicates virtual 
quantities. By applying the linear interpolation functions for 𝑤0 displacement and cubic 
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3.1. Box Beam

In the first example, the eigenvalue results of the box beam for different boundary
conditions, which are clamped–clamped (C-C), clamped–simply supported (C-S) and
simply supported (S-S), beam lengths of L1 = 6 m, L2 = 8 m and L3 = 10 m and different
material thickness ratios λ are given in Tables 2–4. Critical buckling temperatures are
given for the first two flexural buckling modes. As the thickness ratio λ increases, the
critical buckling temperatures increase as well due to the material properties of TI-6Al-
4V. Furthermore, longer beams obtain lower critical buckling temperatures. As expected,
clamped–clamped beams exhibit the highest eigenvalues for every beam length. Good
agreement of the present results and solutions derived from the 2D model for both flexural
buckling modes is achieved.
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Table 2. Critical buckling temperatures of the beam L1 = 6 m for different boundary conditions and
material thickness ratios.

λ

BC Mode Method 0 0.2 0.4 0.5 0.6 0.8 1

C-C
Y

Present 128.87 135.26 145.83 153.64 164.09 199.19 284.51
Shell 130.22 138.77 151.18 159.72 170.71 205.83 287.97

X
Present 239.24 252.56 273.89 288.9 308.62 373.43 528.16

Shell 238.95 254.69 277.45 293.11 313.24 377.6 527.52

C-S Y
Present 66.58 69.91 75.39 79.44 84.84 102.97 146.98

Shell 65.98 70.313 76.604 80.936 86.504 104.29 145.66

X
Present 122.87 130.02 140.09 148.58 158.73 192.03 271.48

Shell 120.46 128.39 139.88 147.78 157.93 190.37 265.92

S-S
Y

Present 32.72 34.368 37.07 39.06 41.72 50.62 72.24
Shell 32.196 34.314 37.39 39.507 42.226 50.904 71.077

X
Present 60.28 60.29 69.07 72.86 77.83 94.15 133.08

Shell 58.725 62.6 68.208 72.063 77.015 92.827 129.64

Table 3. Critical buckling temperatures of the beam L2 = 8 m for different boundary conditions and
material thickness ratios.

λ

BC Mode Method 0 0.2 0.4 0.5 0.6 0.8 1

C-C
Y

Present 73.17 76.83 82.85 87.3 93.24 113.16 161.54
Shell 73.542 78.368 85.375 90.2 96.405 116.24 162.35

X
Present 135.52 142.96 154.88 163.38 174.53 211.15 298.53

Shell 135.02 143.91 156.78 165.62 177 213.37 298.08

C-S Y
Present 37.63 39.52 42.63 44.91 47.97 58.21 83.07

Shell 37.323 39.774 43.33 45.783 48.933 58.997 82.396

X
Present 69.35 73.33 79.45 83.81 89.53 108.31 153.09

Shell 68.256 72.754 79.261 83.736 89.487 107.87 150.68

S-S
Y

Present 18.45 19.38 20.9 22.03 23.53 28.55 40.73
Shell 18.211 19.409 21.149 22.346 23.885 28.793 40.204

X
Present 33.95 35.9 38.9 41.04 43.84 53.03 74.95

Shell 33.278 35.473 38.651 40.836 43.642 52.603 73.466

Table 4. Critical buckling temperatures of the beam L3 = 10 m for different boundary conditions and
material thickness ratios.

λ

BC Mode Method 0 0.2 0.4 0.5 0.6 0.8 1

C-C
Y

Present 47.03 49.39 53.27 56.13 59.95 72.75 103.83
Shell 47.158 50.252 54.745 57.839 61.818 74.536 104.11

X
Present 86.74 91.72 99.37 104.82 111.98 135.47 191.49

Shell 86.605 92.308 100.56 106.23 113.53 136.86 191.19

C-S Y
Present 24.14 25.35 27.35 28.81 30.77 37.34 53.28

Shell 23.965 25.538 27.823 29.397 31.419 37.881 52.906

X
Present 44.43 46.99 50.91 53.71 57.38 69.4 98.09

Shell 43.872 46.763 50.945 53.822 57.518 69.335 96.854

S-S
Y

Present 11.82 12.42 13.39 14.11 15.07 18.29 26.09
Shell 11.695 12.464 13.582 14.35 15.338 18.491 25.818

X
Present 21.74 22.99 24.91 26.28 28.08 33.96 47.99

Shell 21.396 22.807 24.85 26.255 28.059 33.82 47.234
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In order to further perform the nonlinear stability analysis of the box beam, a pertur-
bation force of intensity ∆F = 500 N is introduced in the y-axis direction at the midpoint
of the clamped–clamped beam. Temperature–displacement curves of the shortest beam
with the comparison of temperature-dependent (TD) and temperature-independent (TID)
materials are shown in Figures 4–6. The results are given for different thickness ratios:
λ = 0.2, λ = 0.5 and λ = 0.8. It can be seen that curves match very well with the critical
buckling temperatures achieved in the eigenvalue manner. As expected, TD solutions
obtained lower critical buckling temperatures. In the case of λ = 0.2, the difference in
critical temperature is around 4%, for λ = 0.5 the difference is 3.3%, and for λ = 0.8 it
is 1.5%.
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3.2. L-Frame

Furthermore, the model is tested for thermal buckling analysis of an L-frame with
the length of both legs being L = 5 m and cross-section described in the previous chapter
(Figure 7). The frame is fixed at points A and C, while at point B, in-plane translations
are prevented.
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To verify the results, the critical buckling temperatures for the full SUS304, ∆Tcr(SUS304)
= 16.09 °C, and full Ti-6Al-4V ∆Tcr(Ti−6Al−4V) = 35.52 °C, sections are solved by a shell
commercial code. To perform nonlinear analysis, a small perturbation force ∆F = 50 N
acting in the z-axis direction at point B is applied. The results are shown in Figure 8 for
pure metals and for λ = 0.2t, λ = 0.5t and λ = 0.8t. The good recognition of the critical
values can be noted. It can be observed that with an increase in the proportion of Ti-6Al-4V
material, higher critical temperatures are achieved.
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4. Conclusions

A thin-walled beam model capable of thermal buckling analysis has been presented.
By means of the updated Lagrangian formulation, the incremental equilibrium equations
have been developed using the nonlinear displacement field of the cross-section, taking
into account the effects of large rotations. The reliability of the present model was verified
by studying the benchmark examples, and the values obtained with the proposed model
are in good agreement with those of the shell model. The effects of boundary conditions,
the length of the beam and material thickness ratio on the critical buckling temperature
and post-buckling response are of great importance. Additionally, it is shown that the TD
solutions provide lower values than those of the TID solutions. The model was found to be
efficient in predicting eigenvalues and nonlinear buckling behavior.
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Appendix A

R11 =
∫
A

E(n, z, T)dnds,

R12 = R21 =
∫
A

E(n, z, T)(x + n sin β)dnds,

R13 = R31 =
∫
A

E(n, z, T)(y − n cos β)dnds,

R14 = R41 =
∫
A

E(n, z, T)(ω − nq)dnds,

R22 =
∫
A

E(n, z, T)(x + n sin β)2dnds,

R23 = R32 =
∫
A

E(n, z, T)(x + n sin β)(y − n cos β)dnds,

R23 = R32 =
∫
A

E(n, z, T)(x + n sin β)(y − n cos β)dnds,

R24 = R42 =
∫
A

E(n, z, T)(x + n sin β)(ω − nq)dnds,

R33 =
∫
A

E(n, z, T)(y − n cos β)2dnds,

R34 = R43 =
∫
A

E(n, z, T)(y − n cos β)(ω − nq)dnds,

R44 =
∫
A

E(n, z, T)(ω − nq)2dnds,

R55 =
∫
A

G(n, z, T)
(

n + Fs
t

)2
dnds.
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