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Abstract: Nickel composites doped by chromium and calcium fluoride were produced by powder
metallurgy. The friction coefficient of the samples containing 20% of the CaF2 was lower at elevated
temperatures (600 ◦C) than the friction coefficient for the Ni-50%NiCr(80/20) composite (0.14 vs. 0.20).
Sample surfaces were analyzed by the scanning electron microscope (SEM). EDS analysis proved
tribofilm formation on the surface of the sample with CaF2 addition. A laser confocal microscope
(LCM) was used to investigate the surface condition of the counter-sample after wear tests. The
presence of the tribofilm reduced the wear of the frictional pair, and because of that the wear tracks
were smooth. Tribofilm limited the abrasive wear and ploughing. Therefore, the tribofilm protected
the sample and counter-sample from wear.

Keywords: calcium fluoride; self-lubricating material; surface analysis; confocal microscopy

1. Introduction

Nowadays, nickel-based materials are very common because of their interesting
properties such as high corrosion resistance. On the other hand, the main disadvantages
of these materials are poor wear resistance and low hardness. Despite that fact, nickel-
based materials have been widely used in different applications such as the automotive,
shipbuilding, and aviation industries, as well as in nuclear reactors, which means they
are exposed to high temperatures; hot corrosion; an aggressive environment; and wear at
different, even very high, temperatures. Because of these difficult conditions, Ni-based
materials have to be modified. Conventional Ni-based alloys could be modified by powder
boriding [1,2], fluidized bed technology [3], paste boronization [4], or laser alloying [5,6].
Currently, ceramics materials based on nickel are very common, although they can be
doped by other elements or chemical compounds. Nickel is often modified with additions
of chromium, molybdenum, cobalt, or copper. Chromium is used to increase corrosion
resistance at normal and elevated temperatures, as well as heat resistance. The addition of
molybdenum increases the resistance to reducing acid. If copper is added to nickel, alloys
will be characterized by high corrosion resistance in alkaline solutions, salts, and seawater.
Moreover, Cobalt increases corrosion resistance at high temperatures [7,8]. One of the
most frequently used nickel-based ceramics composites are Ni-Cr composite materials with
varying additions of chromium or its compounds [9–12]. Additionally, because of their
good properties, the Ni-Cr composites have been widely used as a coating material, to
modify other materials, for example, stainless steel [13–16]. As Ni-Cr ceramic composites
are so widely used, it is important to improve their wear properties, especially at high
temperature. A possible way to strengthen the tribological properties of these materials
is to modify them by adding solid lubricants. Solid lubricants have been divided into
three groups, which differ in application temperature: −200 ◦C to room temperature
(RT), and RT to 500 ◦C and above 500 ◦C [17,18]. Soft metals (Ag) [19–21], sulfides (MoS2,
WS2) [22–26], and polymers (PTFE) [27] belong to moderate solid lubricant. Fluorides (BaF2,
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CaF2) [28–31], oxides (ZnO, PbO, and TiO2) [32,33], and salts (BaSO4, CaSO4) [34] form the
group of high-temperature solid lubricants. The connection of Ni-based composite and
self-lubricant, called self-lubricating materials, could be obtained by many methods: cold
pressing and sintering [35], hot pressing and sintering [36], and spark-plasma sintering [37].

In this work, the Ni-based composites with the addition of NiCr(80/20) and CaF2 were
investigated. Samples were produced by powder metallurgy. The first step was pressing
by the hydraulic press followed by sintering carried out at 1000 ◦C for 2 h. Wear tests were
conducted at room and at elevated temperatures, after tests samples were investigated by
SEM and confocal microscopy.

2. Experimental Methods
2.1. Powder Metallurgy

The first step of the investigation was powder preparation. Powder particles are
shown in the Supplementary Materials (Figure S1). Ni and Ni–Cr(80/20) powders are
characterized by a spheroidal shape, whereas the particles of CaF2 have a cuboidal shape.
The size of the particles did not exceed 10 µm (Figure S1a). Two powder mixtures were
prepared: the first mixture contained 50 wt.% of pure Ni and 50 wt.% of NiCr(80/20), while
the second mixture contained 40 wt.% of pure Ni, 40 wt.% of NiCr(80/20) and 20 wt.% of
CaF2. The next step was pressing and sintering. Powder mixtures were pressed by the
MP250M hydraulic press. The pressing pressure was equal to 11,952 kgf/cm2 (1.17 GPa).
Sintering was conducted at 1200 ◦C in an inert atmosphere to avoid the oxidation of the
samples. The heating rate was 250 ◦C/h, and so was the cooling rate [38].

2.2. Wear Tests

The pin-on-disc method was used to investigate the tribological properties of the
composites. A detailed description of this method is described in the previous paper [32].
The parameters of the experiment were as follows: temperature (from room temperature
(RT to 600 ◦C), time (1 h), the rotational speed of the counter-sample (120 min−1), and the
load (4.9 N). The scheme and tribotester are shown in Figure 1.
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Figure 1. Pin-on-disc experiment: (a) scheme of the chamber, (b) T21 tribotester.

2.3. Surface Analysis

Scanning electron microscope (SEM)—Tescan MIRA3 Brno, The Czech Republic—and
optical microscope (OM)—Opta-Tech 40LAB, Warsaw, Poland—were used to investigate
the surface conditions of the worn samples.

SEM investigations was conducted in contrast to the secondary electron (SE) and
backscattered electrons (BSE). The BSE contrast is beneficial because it gives information
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about chemical composition diversity. The areas that contain light elements are dark,
whereas heavy elements are bright. Additionally, sample surfaces were analyzed by the
EDS method. The microanalyzer (Ultim® Max 65, Oxford Instruments, High Wycombe,
UK) was used to detect the elements appearing on the surface of the sample. Calcium,
fluorine, nickel, chromium, and oxygen were analyzed. The results of the EDS analysis
were shown in one color-element concentration map and in twelve color-scale maps. In
this investigation, the accelerating voltage equal to 12 kV was used because the interaction
volume has to be limited.

2.4. Confocal Microscopy

The confocal microscope (LSM 710, Carl Zeiss, Oberkochen, Germany), equipped
with an HeNe laser with a wavelength of 543 nm, was used to investigate the surface of
the samples after the wear test. Additionally, changes of roughness and the stereometrics
profiles of samples were analyzed.

3. Results and Discussion

Composites were characterized by low porosity; additionally, the particles of CaF2
were evenly distributed in the matrix, which means the parameters of sample preparation
were appropriate (Figure S2 in Supplement materials). Therefore, the wear test could be
carried out.

Figure 2 shows the variation of friction coefficient (µ) for samples with and without
the addition of the CaF2 at room temperature. The first stage of wear—grinding-in—
lasted approximately 520 s for the Ni–50% NiCr composite and 1020 s for the sample with
CaF2 addition. During the test conducted at RT, the average friction coefficient (µa) for
Ni–NiCr was lower than that for the self-lubricating composite (0.77 vs. 0.83). Figure 2
shows the surface of the counter-sample after the wear test. The surfaces were different:
shallow grooves could be observed on the surface of the counter-specimen combined with
composite without solid lubricant addition (Figure 3a). However, in Figure 3b, signs of
previous machining were visible.
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Figure 3. Surface condition of the counter-specimen mating with Ni-50%NiCr(80/20) (a) and Ni-
40%NiCr(80/20)-20%CaF2 (b), after wear test conducted at room temperature.

When the temperature of wear investigation increased to 200 ◦C, the course of the
friction coefficient changed significantly (Figure 4). Grinding-in times were as follows:
for the self-lubricating composite, approximately 1300 s; and for the composite without
CaF2 addition, approximately 300 s. The µa value for the Ni–NiCr composite was 0.63,
but after 2250 s it increased to 0.86. It may have been caused by adhesive wear, which
meant that wear products were located between the mating parts. The µa for the sample
with the addition of CaF2 was higher and equal to 0.69. Figure 5 shows the surface of
the counter-specimens mated with samples. The signs of intensive abrasive wear were
observed on the counter-specimen combined with the Ni–NiCr composite (Figure 5a).
On the surface of the second counter-specimen, tribofilm was observed and, as a result,
machining scratches were still visible after the wear test (Figure 5b).
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Figure 5. Surface condition of the counter-specimen mating with Ni-50%NiCr(80/20) (a) and Ni-
40%NiCr(80/20)-20%CaF2 (b), after wear test conducted at 200 ◦C.

Figure 6 shows the variation of the friction coefficient during the wear test conducted
at 400 ◦C. The grinding-in stage lasted approximately 300 s for the Ni–NiCr composite.
After this time, the µa value was equal to 0.79 because of adhesive wear. However, after
1600 s, the average value of friction coefficient dropped drastically to 0.51. In the case of
the self-lubricating composite, the first stage of wear—grinding-in—lasted approximately
700 s. After the grinding-in, the friction coefficient was stable over time and the µa was
equal to 0.55. Differences between surfaces of counter-specimens mated with the Ni–NiCr
composite and the self-lubricating composite are shown in Figure 7. Shallow grooves can be
seen in Figure 7a, whereas tribofilm and previous machining signs are visible in Figure 7b.
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The results of wear investigation conducted at 600 ◦C are shown in Figure 8. At
this temperature, the situation was different in comparison with RT, 200 ◦C and 400 ◦C.
The grinding-in stage lasted longer for the sample without the addition of CaF2 (1350 s
vs. 750 s). Additionally, the average friction coefficient (µa) was lower for the sample
with CaF2 addition (0.14 vs. 0.20). It formed because CaF2 is a high-temperature solid
lubricant, and it has good lubrication properties above 500 ◦C. On the surface of the
counter-sample combined with the Ni–NiCr composite, signs of intensive abrasive wear,
i.e., shallow grooves, were visible (Figure 9a). However, on the counter-sample mated with
self-lubricating, the composite traces of previous machining could be observed as well as
tribofilm, which was produced during wear (Figure 9b).
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Figure 9. Surface condition of the counter-specimen mating with Ni-50%NiCr(80/20) (a) and Ni-
40%NiCr(80/20)-20%CaF2 (b), after wear test conducted at 600 ◦C.

Higher values of average friction coefficient and grinding-in times at room tempera-
ture, 200 ◦C, and 400 ◦C may have been caused by the relatively low temperature of the
test. CaF2 is well known as a high-temperature solid-lubricant, which obtains the best
lubrication properties above 500 ◦C. Below that temperature, CaF2 is too stiff, and it could
not be smeared along the slip planes.

In Figures 10–13, stereometrics profiles of counter-specimen surfaces and graphs with
detailed changes in the height of counter-samples after wear test are shown. A comparison
between the Ni–NiCr composite and the self-lubricating composite, tested at RT, is visible
in Figure 10. It can be clearly seen that surface of the Ni–NiCr composites was rough, and
the level of difference between the material and wear track (∆Z) was greater than ∆Z for
the self-lubricating composite (5.42 vs. 2.1).
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Figure 10. Stereometrics profiles of the counter-samples combined with Ni-50%NiCr(80/20) (a) and
Ni-40%NiCr(80/20)-20%CaF2 (b), after wear test at room temperature.

After the wear test conducted at 200 ◦C, the surface condition of the counter-sample
mated with the Ni–NiCr composite was different (Figure 11a). The surface was smooth, but
∆Z value was very high, equal to 6.88. This may have been caused by adhesive wear, which
meant that some parts of counter-sample were removed and stuck to sample surface. In
the case of the counter-sample combined with the self-lubricating composite (Figure 11b),
the profiles of the wear track and the base materials were similar and ∆Z was equal to 2.28.
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In Figure 12, the results of the investigation of the surfaces of the counter-samples
tested at 400 ◦C are shown. On the stereometrics profile of the counter-sample mated with
the Ni–NiCr composites, scratches were visible and the ∆Z value was equal to 2.87. If
the counter-specimen was combined with self-lubricating composites, its surface looked
different because only shallow grooves were observed (the ∆Z value was slightly lower
(2.85 vs. 2.87)).

In Figure 13a, the surface condition of the counter-sample used with Ni–NiCr compos-
ite at 600 ◦C is shown. In this figure, numerous deep scratches were observed. The surface
condition of the counter-samples mated with self-lubricating composites at 600 ◦C are visi-
ble in Figure 13b. The shallow grooves, as well as signs of adhesive wear, were observed on
the surface of the counter-sample. ∆Z value for counter-sample combined with composite
without CaF2 and with CaF2 were comparable and equal to 2.69 and 2.38, respectively.

A confocal microscopy investigation exhibited beneficial properties of tribofilm be-
cause it protected the sample and counter-sample against wear. The main wear mechanism
for Ni–NiCr composites was abrasive wear, which was revealed by deep scratches; also,
level differences (∆Z) between base material and wear track were higher (Figure 14). In the
case of self-lubricating composites, some shallow grooves were observed on the surface.
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The surface conditions of samples and counter-samples after wear tests showed a
great deal of information about the friction process and the wear mechanism. The surface
conditions of the samples after the wear test conducted at different temperatures are shown
in Figure 15. Shallow grooves were visible on the surface of Ni–NiCr composites, which
appeared at all investigated temperatures. Additionally, at room temperature, delamina-
tion occurred. The surfaces of the self-lubricating composites were different. Tribofilm
consisting of CaF2 was observed on sample surfaces, and tribofilm was characterized by
varying thicknesses. The results of the EDS analysis are shown in Figures 16 and 17. The
following elements were investigated: Ni and Cr (the main elements of the samples), Ca
and F (the main elements of solid lubricant), and O (to identify if oxidative wear occurred).
In the case of Ni–NiCr (Figure 16) composite, the EDS analysis confirmed the presence
of nickel and chromium. Additionally, increased oxygen content was observed on sam-
ple surfaces tested at 200 ◦C, 400 ◦C, and 600 ◦C. On the surfaces of the self-lubricating
composites, an increased amount of Ca, F, Ni, and Cr was observed (Figure 17). Moreover,
increased content of Ca and F occurred in places where the amount of Ni and Cr was
reduced, because samples were covered by tribofilm. Increased content of O was observed
on samples’ surfaces after a wear test conducted at elevated temperatures (200 ◦C, 400 ◦C,
and 600 ◦C). Moreover, tribofilm protected samples against oxidation because the oxygen
content was low in places where tribofilm formed.
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Figure 16. Results of EDS analysis of the worn Ni-50%NiCr(80/20) samples tested at different
temperatures.

Figure 18 shows differences in the distribution of Ca on the surfaces of samples in
12-color scale. White areas contained a large amount of Ca, whereas in black areas, Ca
was not detected. Thus, it was proved that tribofilm was characterized by diversified
thickness. At room temperature and at 200 ◦C, there were more zones with brighter colors
than at 400 ◦C and 600 ◦C. Differences emerged because CaF2 was not smeared very well
on the surfaces of samples; therefore, numerous CaF2 clusters were observed. The situation
changed at higher temperatures (400 ◦C and 600 ◦C). Then, CaF2 particles reached higher
temperature and smeared very well on the surface of the sample. On the sample tested
at 600 ◦C, numerous areas with similar intensity were observed, which meant that the
tribofilm thickness was comparable.
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different temperatures.
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Figure 18. SEM and EDS images of the calcium concentration on the surface of the samples tested at
different temperatures.

It could be clearly seen that tribofilm protected samples against wear, thus producing
lower values of the average friction coefficient (Table 1, Figure 19). The composites with the
addition of CaF2 were characterized by lower values of µa at 200 ◦C and 600 ◦C, but on the
other hand, at RT and 400 ◦C the µa were higher. When the values of µa were compared
to the Figure 18, it could be clearly seen that on the surface of the composites tested at RT
and 400 ◦C there were a lot of areas where CaF2 was not detected (black color), and this
probably caused the higher values of µa.

Table 1. Average friction coefficient (µa) of investigated materials.

RT 200 ◦C 400 ◦C 600 ◦C

µa

Ni + 50 wt.% NiCr 0.77 ± 0.01 0.86 ± 0.01 0.51 ± 0.01 0.20 ± 0.01

Ni + 40 wt.% NiCr + 20 wt.% CaF2 0.83 ± 0.01 0.69 ± 0.01 0.55 ± 0.01 0.14 ± 0.01
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Figure 19. Average friction coefficient (µa) of investigated materials.

At 600 ◦C, the average friction coefficient was equal to 0.14 for the Ni-Cr composite
with the addition of CaF2. The highest values of the coefficient of friction at 600 ◦C
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were observed for the Ni–Cr–Mo–Al composite with the addition of Ag and BaF2/CaF2
(approximately 0.3 in air and 0.16 in vacuum) [39]. Similar results of the friction coefficient
were obtained in work [40]. Self-lubricating NiCr(80/20) composites with the addition of
the following solid lubricants: Cr2O3 (20 wt.%), Ag (10 wt.%), and the eutectic mixture—
BaF2/CaF2 (10 wt.%), were produced in work [41]. The lowest friction coefficients were at
RT (~0.37), 200 ◦C (~0.33), and 400 ◦C (~0.32), which was probably caused by the addition of
Ag, which is a moderate-temperature solid lubricant [17]. At 600 ◦C, the friction coefficient
was equal to ~0.33, and it was two times higher than µa in this work. Additionally, the Ni
alloy could be modified by the addition of 5% wt. CaF2 and 20 wt.% MoS2, and the friction
coefficient, decreased form 0.41 at RT to 0.16 at 700 ◦C [42].

4. Conclusions

In this paper wear, the properties of the Ni–50%NiCr composite with and without the
addition of CaF2 were investigated. The microstructure of the self-lubricating composites
was beneficial because CaF2 particles were evenly distributed in the Ni–NiCr matrix.

1. At room temperature, the friction coefficient of the self-lubricating composite was
higher than that of the composite without the addition of solid lubricant.

2. At 200 ◦C, initially, the µa value for the Ni–NiCr composite was lower than the value
for the self-lubricating composite (0.63 vs. 0.69), but after some time, adhesive wear
became the main wear mechanism and µa increased to 0.86.

3. At 400 ◦C, the µa value for the composite without the addition of CaF2,was equal
to 0.79, and after 1500 s this value dropped to 0.51, whereas the average friction
coefficient for the self-lubricating composite was equal to 0.55.

4. At 600 ◦C, the average friction coefficient was lower for the self-lubricating composite
in relation to the Ni–NiCr composite (0.14 vs. 0.20).

5. Grinding-in times were lower for the sample without the addition of solid-lubricant
at room temperature, 200 ◦C, and 400 ◦C. However, at 600 ◦C, the grinding-in time
for the self-lubricating composite was approximately two times lower than for the
Ni–NiCr composite (720 s vs. 1350 s).

6. A surface analysis of the samples proved that the self-lubricating composite was
coated by the thin tribofilm layer. EDS analysis showed that tribofilm consisted of
calcium and fluorine and was characterized by diversified thickness.

7. The EDS analysis confirmed that tribofilm was well smeared on the sample surface
at higher temperatures (400 ◦C and 600 ◦C) and the tribofilm protected samples
against oxidation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15217511/s1, Figure S1: The powders used in this investigation:
pure Ni (a), Ni–Cr (80/20) (b) and CaF2 (c). Figure S2: Microstructure of produced sinters: Ni + Ni–Cr
(a) and Ni + Ni–Cr + 20%CaF2 (b).
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