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Abstract: This research reports the results related to the evaluation of the fatigue phenomenon of
the arms of a medium–large excavator made of composite material (carbon fiber) instead of the
classic constructional steel S355 (UNI EN 10025-3). In the numerical sizing phase, it was obtained
that the overall weight of the excavator’s arms made of composite material is about 35% of the same
components made of steel, obviously with equal performance in terms of the safety static coefficient,
rigidity, and critical buckling load. The evaluation of the fatigue behaviour (assuming 5.25 × 106

load cycles) applied for each load condition analyzed (levelling from the maximum distance to the
minimum, lifting at the maximum distance, lifting at the minimum distance and rotation) shows the
magnitude of the safety coefficients both related to the allowable stress and relative to the number of
cycles acceptable. The assumption instead of combined cycles (involving one or more load conditions)
leads to a significant reduction in the magnitude of the safety coefficients. The implementation of a
loading cycle plan resulting from the different load conditions must be reliably assessed to evaluate
as accurately as possible the fatigue behavior of the excavator arms made of composite material.

Keywords: structural lightening; composite materials; fatigue phenomenon in composite materials;
numerical finite element analysis

1. Introduction

Nowadays, the protection of the environment is of fundamental importance. The new
solutions, for structural components, must be eco-friendly, eco-sustainable, and energy-
efficient. The earthmoving machine sector is of paramount importance to achieve this target.
A way to increase the efficiency of these machines is trying to reduce the CO2 consumption
and to achieve this, it is also possible to operate on the weight of the components of these
machines using innovative and performing materials. Examples of these materials can
be aluminium alloys, composite materials, or sandwich, which are used to design the
structural component in the automotive sector [1–3].

The use of composite materials also for the structural components [4,5] is very advan-
tageous for many reasons; two of these are that they have very good mechanical properties
and low density. Thanks to these properties, in recent years the possibility of applying
composite materials in areas not strictly related to the automotive sector has been ex-
plored [6–9]. The added benefit involving the use of these materials is related to the inertia
and accelerations reduction, which are very important factors in highly dynamic applica-
tions [10,11]. Research [12] has demonstrated that there is an advantage in terms of the
system that commands components of earthmoving machines; in particular, cheaper and
more compact systems are needed. In general, these components are preliminarily designed
considering only static load conditions and assuming adequate safety factors (around three
times with respect to the allowable strength of the material) [5,6,9,10]; however, during the
real conditions works, a lot of components suffer the fatigue phenomena which involves
their premature failure.
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The aim of this research is to verify the fatigue resistance of an innovative structural
component made of composite material; in particular, the handling arms, boom and stick,
installed on an excavator. These components are subjected to continuous loading and
unloading phases, phenomena that cause cyclic stress in time. In particular, it will be
demonstrated how the composite materials respond to these types of loads compared to
traditional materials commonly used. The study will be addressed using a composite made
of epoxy resin and carbon fibers. Starting from some studies already addressed, in terms of
static loads, on the excavator arms, the fatigue phenomena verification will be performed
using numerical methods: Finite Element Method (FEM analysis).

The research was developed without considering the residual stresses present in the
components, which can also be high and can be determined through the hole drilling
method, digital image correlation (DIC) techniques, and numerically through FEM analy-
sis [13]. This choice derives from the fact that the research also has an exploratory effect
and therefore these important aspects will be further explored later.

2. Machine Description and Used Materials

The machine adopted, to conduct the optimization study relating to the lightening of
the components, is a commercial excavator made by the Komatsu company (Tokyo, Japan)
and more specifically the PC600 model (the year 2007). The choice fell on this machine
because, in addition to being used for large uses, it is the same one already adopted for
other studies and therefore has certain reliability in terms of design data.

The excavator has a total weight of 584,600 [N] and is characterized by a power of
323 [kW]; the geometric configuration is given by the presence of two arms, both marked
in the figure: the curved boom with a length of 7.66 [m] and the stick which has a length of
3.5 [m]. Figure 1 shows the main excavator parameters and its working range.
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Figure 1. Excavator object of the study: (a) load diagram; (b) main dimensions.

The choice of the composite material [14,15] to be used for this application fell on the
composition of epoxy resin and carbon fiber. In particular, a percentage of fiber of 60% and
a matrix of 40% was chosen. Table 1 shows the main characteristics of the two phases:
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Table 1. Mechanical properties of composite material.

Material Density ρ

[kg/m3]
Young’s Modulus

E [MPa]
Shear Modulus

G [MPa]
Poisson

Ratio

Epoxy resin 1200 4500 1600 0.4

Carbon fiber 1750 230,000 50,000 0.3

To fully define the composite material, it is necessary to know the properties of the
lamina along with the directions of the fiber. They are shown in Table 2 [14,15].

Table 2. Mechanical properties of composite material in direction of the lamina.

Properties Density ρ

[kg/m3]

Young’s
Modulus E1

(|| to the Fibres)
[MPa]

Young’s
Modulus E2

(⊥ to the Fibres)
[MPa]

Shear
Modulus G12

[MPa]

Major
Poisson’s Ratio

ν12

Minor
Poisson’s Ratio

ν21

Composite 1530 139,800 10,929 3817 0.34 0.026

3. Load Condition

As shown in the load diagram in Figure 1, the excavator can assume an infinite number
of geometric configurations for the two arms. Various mathematical modelling exists in the
literature to describe the position, speed, and forces of the excavator’s arms [16–19].

In the present research, the arms were modelled in a complete manner, i.e., with all the
parts that make up the arm system (arms, hydraulic cylinders, connecting rods, pins, etc.).
This schematisation made it possible to avoid the development of numerical modelling of
the excavator’s arms.

Four load conditions were assumed, representative of the heaviest load conditions to
which the excavator may be subjected during its use [5].

3.1. Load Condition 1: Levelling from Maximum Distance to Minimum Working Distance

In this phase of work, the double articulation starts from a configuration where the
hydraulic cylinder that controls the stick is in the fully retracted position, the bucket
is therefore forced to perform a horizontal translation movement to level the ground
(Figure 2).

Figure 2. Load condition 1.

3.2. Load Condition 2: Lifting with Full Load at the Minimum Working Distance

In this configuration, the excavator is lifting with a loaded bucket, placed at the
minimum distance from the rotation axis, and is ready to be lifted vertically so that there
are no variations in the angular position of the bucket to avoid the escape of the material.
This phase, therefore, requires the hydraulic lifting cylinders, those that move the boom,
and a considerable thrust in the extension phase, while the remaining cylinders are moved
relatively to balance the position of the bucket (Figure 3).
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Figure 3. Load condition 2.

3.3. Load Condition 3: Lifting Fully Loaded at the Maximum Working Distance

This load condition is similar to the previous one, however, the bucket is at the
maximum distance from the rotation axis of the excavator. During movement, the bucket
remains horizontal to prevent the exit of the material contained therein (Figure 4).

Figure 4. Load condition 3.

3.4. Load Condition 4: Rotation

This load condition occurs both in the levelling phase of the ground in the transverse
direction, and in the event of material movement, therefore it is repeated many times on
site. This load condition is particularly severe for the excavator arms, which are subjected
to bending and torsional actions which are also a function of the position of the bucket with
respect to the rotation axis of the machine (Figure 5).

Figure 5. Load condition 4.
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4. Geometry of Arms Made of Composite Material

With the use of composite materials [20–23], from a manufacturing point of view
and in regard to the stress state of the component, the creation of rectangular sections is
somewhat problematic; for this reason, it was decided to opt for a different geometry and,
more specifically, an elliptical section with a truncated cone with a variable thickness along
its development is chosen. The truncated cone elliptical section was chosen for different
reasons. First of all, as the arms work mainly in the vertical plane, the vertical plane is
requested for greater stiffness. The second reason is correlated with the manufacturing
process. Using the filament winding [24–27], it is possible to adopt the truncated conical
core on which the composite material is wrapped, and once the process is finished, to
remove the core and use it to make other arms.

In this way, it is possible to create a uniformly resistant section about the bending
movements acting on the two planes. In particular, since the thickness of the composite
is constant on the contour of the entire section, we proceeded by modifying the axes of
the elliptical section to obtain a uniform resistance, that is, as can be seen from Figure 6,
the stress at point A (σzA) was imposed equal to the one at point B (σzB) (Equation (1)).
Regarding the bending movements on the two planes (MX and d MY), and to the properties
of the section (JX, JY, WX, WY), Equations (1)–(5) reports the correlation between the
movements acting on the two planes and the dimensions (H, B) of the elliptical section.

Figure 6. Elliptical section and its stress for the composite material.

σZA = σZB =
Mx

Wx
=

My

Wy
(1)

Jx =
Wx

H/2
; Jy =

Wy
B/2

(2)

b = B− 2S; h = H − 2S (3)

Jx =
π

64
B× H3; Jy =

π

64
H × B3 (4)

Mx

My
=

BH3 − (B− 2S)× (H − 2S)3

B3H − (B− 2S)3 × (H − 2S)
× B

H
(5)

Once the problem related to the basic geometry of the arm has been overcome, it is
necessary to find a way to connect the various components necessary for its use, such as
the hydraulic cylinders or the bucket.

To deal with this problem, it was decided to create special aluminum sections on
which the various conical composite components will be grafted and glued.
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This solution was designed to obtain continuity of the sections and in such a way as to
not alter the resistance of the composite part by making holes for fixing as the latter are the
trigger point, due to the stress concentration effect, for cracks (Figure 7).

Figure 7. Geometrical solution for both the arms. The composite material is shown in dark grey;
whereas, central and terminal elements made in the aluminium alloy are shown in light grey.

Another characteristic of the composite material boom, as can be seen in Figure 8,
is that it does not have the typical curvature that can be found in the two previous solu-
tions. This choice was made for reasons of flexibility, modularity, and feasibility. In fact,
by adopting composite sections with a truncated cone geometry with no curvature, the
production process of the component is simpler and therefore less expensive; moreover,
with this geometry, it is also easy to obtain different formats of the arms by replacing the
different sections that constitute the arm itself. This geometry also allows us to obtain an
excavation diagram not very different from the one obtainable from the classic solution,
but what varies are the overall dimensions when the machine is stopped.

The theory used to size the arms was the Winding Angle [24,25].
Lastly, Table 3 shows the weight reduction [(Steel Weight—Comp. Weight)/Steel

Weight)%] due to the use of composite material instead of classic steel.

Table 3. Weight reduction using composite material.

Material
Weight
Boom

[N]

Weight
Reduction

[%]

Stick
Weight

[N]

Weight
Reduction

[%]

Total
Weight

[N]

Weight
Reduction

[%]

S355
(UNI EN 10025-3) 36,000 - 15,000 - 51,000 -

Composite 12,450 65.4 5850 61.0 18,300 64.1
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Figure 8. Maximum Von Mises Stress, for stick and boom, for the work conditions: start (s) and
end (e) movement for the 1, 2, and 3 load conditions.

5. Static Numerical Analysis for the Composite Arms

At this point, having defined the materials and the geometry, it is possible to proceed
to the static numerical verification of the models of the arms, stick, and boom, presented in
the previous paragraph.

The numerical analyses, carried out using the Autodesk Simulation Mechanical®

simulation software, are static and were conducted both for the initial phase and for the
final phase of the movement according to the specific load condition.

The FEM model was made using solid brick elements with the quadratic formulation.
These elements are solid elements with cubic or tetrahedron geometry. The characteristic
is that these element types have nodes both at the vertices of and in the centre of the side
forming the elementary solid. In general, the boom arm was designed with 35,000 elements,
whereas the stick arm was designed with 20,000 elements.
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For the FEM analysis of the composite arm, the simulation was performed on load
condition 2, lifting at full load at the minimum working distance, with this being the
most burdensome.

Figures 8 and 9 show the results obtained in terms of stress and displacement for the
work conditions 1,2, and 3.

Figure 9. Displacements for the work conditions 1, 2, and 3 for both boom and stick: start (s) and
end (e) movement.

Figures 8 and 9 show that the component designed with innovative materials resists
the stresses due to the heaviest operating situation.

For completeness, Table 4 shows the values of the maximum displacement for all the
working conditions in which these values are in agreement with the one determined when
the arms are built with classical structural steel.
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Table 4. Maximum displacements [mm] for the steel and composite arms.

Material

Load Conditions

1 2 3

Start Finish Start Finish Start Finish

S355
(UNI EN 10025-3) 7.3 10.1 9.8 15.1 5.6 6.2

Composite 7.0 9.2 18.1 16.7 8.5 10.5

6. Verify Fatigue Phenomena

Once defined and the geometry of the component minimizes its weight, it is possi-
ble to verify it to fatigue phenomena [28–30]. In this paragraph, these verifications will
be addressed both through FEM analysis of the model defined above using Solidworks
Simulation® software (2020, Dassault Systèmes SolidWorks Corporation, Massachusetts,
United States) and by analytical formulations.

6.1. Fatigue Loads Definition

The excavator arms that are the object of this study, during the working phase, are
subjected to continuous load variations. These load variations involve stresses which are
not constant and therefore induce fatigue stresses. The number of cycles to which the boom
and stick are subjected is 525,000. This value derives from the hypothesis that the excavator
works for 175 days per year, completing 200 cycles per day for 15 years at full load. The
number of cycles was estimated from interviews with the operators.

The stress condition for each phase of the work was analysed for both boom and stick,
in particular at the start and at the end of each one.

From the numerical phase, for the two components, we obtained the value shown in
Table 5. The stress values, according to the Von Mises criterion, refer to the most stressed
point both for the boom and stick.

Table 5. Start and end stresses [MPa] for the stick and boom.

Stick Boom

Start Finish Start Finish

Levelling 103.8 122.6 8.9 51.8

Lifting max distance 33.2 27.2 3.9 25

Lifting minimum
distance 40.7 19.8 9.8 49.9

Rotation 157.5 32.7 6.3 6.9

The studied case is two, and they entail different ratios between the minimum and
the maximum stresses. In the first case, fatigue verification has been performed using the
maximum stresses at the start and at the end of each load condition, as if every single
operation were repeated n times.

In this case, the ratio is equal to R = 0.1 because the minimum stress is not equal to 0
as the arms are always subject to the contribution of their own weight [6].

In the second case, instead, the stress condition is studied during the change in the
load conditions, and, in particular, during the passage between the end of the levelling
to the start of the lifting at the minimum distance. This can be considered a complete
load condition.

This condition was addressed only for the stick being that this component is the most
stressed. Table 6 shows the stress magnitude for two different load conditions at the start
and finish movement.
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Table 6. Start and end stresses [MPa] for the stick during the phase change.

Stick

Start Finish

Levelling 103.8 122.6

Lifting minimum distance 40.7 19.8

6.2. A S-N Curve Definition

To deal with the calculation, it is necessary to know the S-N curve of the composite
material and import it into the calculation software. The σ− N values regarding the stress
ratio refer to the composite material made of epoxy resin matrix (40%) and carbon fiber
(60%). Additionally, in this case, it is necessary to relate the number of cycles and the value
of alternate stresses for both cycles’ ratios. To do this, it is possible to use the curves present
in the literature [28–30]. These values have been processed in Excel ® and imported into
Solidworks® to carry out the simulation.

Table 7 reports the values of alternate stress for R = 0.1 and R = 0.3 and shows the
trend of the stress in the function of the number of cycles for both ratios. Where R is
the ratio value between the minimum peak stress divided by the maximum peak stress.
(R = σmin/σmax).

Table 7. Cycles–Alternate Stress with R = 0.1 for composite material chosen.

Composite Material R = 0.1 R = 0.3

Cycles Alternate Stress [MPa] Alternate Stress [MPa]

10 780 270

100 770 255

1000 720 241

10,000 650 220

100,000 580 193

1,000,000 530 160

At this point, it is possible to proceed with the analytical analysis to verify the com-
posite material fatigue resistance.

6.3. Analytical Approach to Fatigue Verification

This paragraph will address the analytical approach to verify that the excavator’s
arms resist to the fatigue phenomenon. It is based on generic curves σ− N [30–32].

This verification will be applied to both cases, remember here:

• fatigue verification using the maximum stresses at the start and at the end of each
works phase, for both boom and stick with R = 0.1;

• fatigue verification during the passage between the end of the levelling and the start
of the lifting at the minimum distance, only for the stick, with R = 0.3.

Using the tabular values shown in Table 7 and the trend of the stresses in a cycle, the
verification was carried out following what is reported in Table 6.

The value of the stresses for these cases is reported in Table 6 in the previous paragraph.
This verification, which is applicable to both composite and non-composite materials,

is based on the determination of the safety factor expressed in terms of the number of cycles
and stresses. Starting from a generalized Whöler diagram, it is possible to describe the
course through a line in a bi-logarithmic diagram. The relation that describes this straight
line is:

σ× Nk = C (6)
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Knowing the value of fatigue stresses, in two points of the straight line, given the
number of cycles, it is possible to derive the constants k e C. Moving in a bi-logarithmic
system, the following is obtained:

logσ = −klogN + logC (7)

Taking as the study points the beginning and end of the lines reported in graph 1, and
using the values in the tables for R = 0.1 and R = 0.3, we obtained the values shown in
Table 8. In this case, the number of reference cycles is from 103 to 106.

Table 8. Number of cycles and their relative stresses for R = 0.1 and R = 0.3.

σN [MPa]

Ncycles R = 0.1 R = 0.3

103 720 241

106 530 160

Replacement is obtained via the constant k and C which are reported in Table 9.

Table 9. Number of cycles and their relative stresses for R = 0.1 and R = 0.3.

Ratio k C [MPa]

R = 0.1 0.044 880

R = 0.3 0.044 297

Now, it is possible to calculate the number of cycles to which the components resist
when stressed at forces equal to those calculated by the numerical method.

The equation that permits calculation of the number of cycles is:

N =

(
C

σN

) 1
k

(8)

Additionally, their values for both conditions are reported in the Table 10.

Table 10. Number of cycles at the maximum stress for R = 0.1.

R = 0.1 Stick Boom

Start N◦ cycles at the maximum
stress [MPa]

N◦ cycles at the maximum
stress [MPa]

Levelling 1.25× 1021 2.20× 1045

Lifting at max.
distance 2.23× 1023 3.06× 1053

Lifting at min.
distance 2.17× 1030 2.46× 1044

Rotation 9.59× 1016 5.66× 1048

End

Levelling 2.84× 1019 9.07× 1027

Lifting at max.
distance 2.07× 1034 1.40× 1035

Lifting at min.
distance 2.8× 1037 2.12× 1028

Rotation 3.15× 1032 7.16× 1047
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Additionally, for the combinate cycle, end levelling, and start lifting at a minimum
distance, the value in terms of the maximum number of cycles is reported in Table 11.

Table 11. Number of cycles at the maximum stress for the combinate cycles (R = 0.3) for the stick arm.

Combinate cycle: end levelling and Start
Lifting minimum distance 4.74× 108

The component dimensioned for 525× 103 cycles can withstand the working condi-
tions imposed. Now we evaluate the safety factors that result from these conditions.

Using the stresses at the 525× 103 listed in Table 5 and comparing the material perfor-
mance, it is possible to evaluate the safety factor with respect to the stresses and number of
the cycles using the following equations. The results are reported in Tables 12 and 13.

ησ =
σt

σw
(9)

ηN = (ησ)
1
k (10)

Table 12. Safety coefficient for the stick arm in the case of R = 0.1.

Start ησ ηN

Levelling 4.6 1.44× 1015

Lifting at max. distance 14.5 2.57× 1026

Lifting at min. distance 11.8 2.50× 1024

Rotation 3.0 1.10× 1011

End

Levelling 3.9 3.27× 1013

Lifting at max. distance 17.7 2.38× 1028

Lifting at min. distance 24.3 3.24× 1031

Rotation 14.7 3.62× 1026

Table 13. Safety coefficient for the stick arm in case of the combinate cycle (R = 0.3).

ησ ηN

Combinate cycle: End Levelling and Start Lifting
minimum distance 1.45 4.63× 103

The obtained results demonstrate that the studied component can resist the fatigue
phenomenon under the conditions analysed. The composite material dimensioned arms,
therefore, in addition to ensuring a significant mass reduction, are able to face the real
working phase, that is those that involve a variation of stress in time.

7. Conclusions

The aim of this research is the implementation of composite materials and, in particular,
carbon fiber in the main components of an excavator (arms). The research focuses on
evaluating the fatigue behaviour of the arms themselves. The analytical sizing and then
the numerical verification by finite element analysis took place considering different load
conditions to which the excavator may be subjected during its use. The implementation
of composite materials (and aluminium alloy for the end parts) in place of the classic
construction steel has made it possible to achieve a significant reduction in the overall
weight of the arms. The total final weight is approximately 35% of the original weight. The
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sizing was carried out considering different aspects such as a static safety coefficient of
approximately 3, a deformation or displacement magnitude comparable to the ones made
of steel, and similar values in regards to the safety coefficient for the buckling phenomenon.

The peculiar aspect of this research lies precisely in the evaluation of the fatigue
behaviour of the arms made of composite material. Based on interviews with users, a
likely number of load cycles is approximately 5.25 × 105. The excavator is used in a marble
quarry on a non-continuous basis. A usage of 15 years × 250 days per year and ×140 cycles
per day was assumed in agreement with the users. By adopting this value as an estimate, a
series of safety factors were obtained both concerning stress and the number of cycles for
each load condition analysed. In particular, the minimum safety coefficient with regard
to the stress is equal to three and occurs for the load condition defined as the rotation.
With the combination of several actions (assuming a cycle that consists of levelling the
ground and lifting the bucket), the safety factor is drastically reduced. The assumption of
a combined cycle or one involving several actions induces a significant reduction in the
fatigue safety coefficient with regard to the arms made of composite material.

The development of the research concerns two aspects: the first is the experimental
evaluation of the real use of a similar excavator made of steel; the second point relates to
the evaluation in the operation field of the composite material with regards to the aspects
related to fatigue and the influence of environmental conditions.
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