
Citation: Im, K.-S.; Shin, S.; Jang,

C.-H.; Cha, H.-Y. Low-Frequency

Noise Characteristics in HfO2-Based

Metal-Ferroelectric-Metal Capacitors.

Materials 2022, 15, 7475. https://

doi.org/10.3390/ma15217475

Academic Editor: Jose P. B. Silva

Received: 26 September 2022

Accepted: 21 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Low-Frequency Noise Characteristics in HfO2-Based
Metal-Ferroelectric-Metal Capacitors
Ki-Sik Im 1, Seungheon Shin 2 , Chan-Hee Jang 2 and Ho-Young Cha 2,*

1 Department of Green Semiconductor System, Daegu Campus, Korea Polytechnics, Daegu 41765, Korea
2 School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea
* Correspondence: hcha@hongik.ac.kr

Abstract: The transport mechanism of HfO2-based metal-ferroelectric-metal (MFM) capacitors was
investigated using low-frequency noise (LFN) measurements for the first time. The current–voltage
measurement results revealed that the leakage behavior of the fabricated MFM capacitor was caused
by the trap-related Poole–Frenkel transport mechanism, which was confirmed by the LFN mea-
surements. The current noise power spectral densities (SI) obtained from the LFN measurements
followed 1/f noise shapes and exhibited a constant electric field (E) × SI/I2 noise behavior. No
polarization dependency was observed in the transport characteristics of the MFM capacitor owing
to its structural symmetry.
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1. Introduction

Hafnium oxide (HfO2)-based ferroelectric (FE) materials can be used in memory
devices and negative capacitance field-effect transistors (FETs) [1–4]. Owing to their out-
standing material properties, such as a large dielectric constant of 20–25 and a high-energy
bandgap of ~5.7 eV, HfO2-based metal-ferroelectric-metal (MFM) capacitors have high ca-
pacitance, low leakage current, and strong ferroelectric properties. HfO2 ferroelectric films
can be deposited using an atomic layer deposition (ALD) system in a complementary metal-
oxide-semiconductor (CMOS)-compatible process with excellent thickness controllability
and large-area uniformity.

Current–voltage (I–V) and capacitance–voltage (C–V) measurements are commonly
used to evaluate MFM capacitors. The ferroelectric properties of HfO2-based MFM ca-
pacitors based on I–V and C–V measurements have also been reported as functions of
frequency and temperature [5]. Giusi et al. [6] reported Ru-based capacitors characterized
by low-frequency noise (LFN) measurements. LFN measurements can be used to analyze
the conduction mechanism and evaluate the device/material reliability [7–9]. Recently,
Shin et al. reported a study on a metal-FE-insulator-semiconductor (MFIS) FET based on
noise measurements [7–9]. They investigated conduction mechanisms and noise fluctu-
ation depending on the FE polarization direction and the process conditions. The MFIS
configuration is asymmetric, with an additional interface between the FE and the semicon-
ductor, whereas the MFM device has a symmetric interface between the FE and the metal
electrodes. FE polarization has been reported to play a significant role in MFIS FET noise
behavior; hence, analyzing FE material is important. However, LFN characteristics have
not been reported for HfO2-based MFM capacitors. This study comprehensively analyzed
a HfO2-based MFM capacitor using LFN measurements.

2. Device Fabrication

The MFM capacitor consisted of 100-nm-thick TiN metal, 10-nm-thick HfO2 ferro-
electric oxide, and 100-nm-thick TiN metal layers grown on a quartz substrate (Figure 1a).
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The fabrication process was as follows: After cleaning the wafer in wet chemical solutions
(acetone, methanol, and deionized water), a 100-nm-thick TiN film was deposited at room
temperature using a radio frequency (RF) sputtering machine. The bottom electrode pat-
tern was defined using a fluorine-based plasma-etching process. A 10-nm-thick un-doped
HfO2 ferroelectric layer was deposited via an atomic layer deposition (ALD) method at
220 ◦C using a TEMA-Hf precursor and 100 g/m3 of O3. Then, a 100-nm-thick TiN film
was deposited as the top electrode, which was patterned with a diameter of 100 µm. The
top TiN film and the un-doped HfO2 were subsequently etched to form capacitors using
SF6/Ar and CF4/O2 gas mixtures. The fabricated MFM capacitors were annealed using
rapid thermal annealing (RTA) at 650 ◦C for 1 min to obtain the desired ferroelectric proper-
ties. Cross-sectional transmission electron microscopy (TEM) images and energy-disperse
spectroscopy (EDS) analysis of the fabricated MFM capacitor (shown in Figure 2) confirm
the un-doped HfO2 of a thickness of 10 nm. Detailed ferroelectric characteristics, including
X-ray diffraction analysis, can be found in ref. [5].
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Figure 2. (a) Cross-sectional TEM images. (b) EDS analysis of the fabricated HfO2-based MFM capacitor.

3. Characterization and Discussions

The I–V and LFN characteristics were measured in a shielding box at atmospheric
pressure using a NOISYS7 machine (Synergie-concept) [10]. We measured fifteen devices
from three samples (five from each sample), and no significant variation was observed.

Figure 3a shows the leakage current density (J) as a function of the bias voltage of
the fabricated MFM capacitor. The leakage current behavior in both the forward and
reverse-bias regimes exhibits similar rectifying characteristics attributed to the Schottky
barrier between the HfO2 and the TiN electrode. The asymmetric characteristics in the
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forward and reverse directions are attributed to the asymmetric structures of the top and
bottom electrodes. No hysteresis in the current–voltage characteristics was observed as
a function of the bias sweep direction, whereas the capacitance–voltage characteristics
exhibited typical butterfly hysteresis characteristics, as reported in [5]. No difference was
observed in the current–voltage characteristics as a function of the polarization direction,
which implies the same noise behavior. To determine the transport mechanism, ln (I/V)
versus V0.5 and ln (I/V2) versus 1/V are plotted in Figure 4a and 4b, respectively [9]. ln
(I/V) versus V0.5 follows a straight line from 0.7 to 3.2 V in Figure 4a, which implies that the
leakage current phenomenon is associated with the Poole–Frenkel (PF) mechanism caused
by the oxide traps and vacancies in the HfO2 FE layer (see Figure 1b) [7–9]. In contrast, the
Fowler–Nordheim (FN) mechanism caused by tunneling through the HfO2 layer becomes
dominant at voltages higher than 2.5 V, as shown in Figure 4b [11].

Figure 3b shows the bias-dependent LFN characteristics of the MFM device measured
in the frequency (f ) range of 4–103 Hz. The bias voltage was applied from 0.5 to 3 V to
the top TiN electrode and for the bottom TiN electrode. The normalized current noise
power spectral density (SI/I2) curve exhibited a 1/f noise shape, as shown in Figure 3b,
regardless of the bias voltage, which is consistent with the noise results of the reported
MIM capacitors and MFIS FET with positive polarization [6–9]. The noise levels (SI/I2)
decreased while the bias voltage and measurement frequency increased. The SI/I2 values
were inversely proportional to the current density, as shown in Figure 5a. Figure 5b shows
E × SI/I2 versus the current density, from which no dependence on the current density is
observed. Therefore, we suggest that the origin of the noise is primarily related to the PF
emission mechanism, following the model given in [9,12]:

E × SI

I2 ∝ β2 = constant value, (1)

where β is the field enhancement factor. The β value increases as thermal field emission
is added to the PF emission [9,12]. The β value of the HfO2 MFM capacitor fabricated in
this study was approximately three orders of magnitude lower than the one reported in [9].
In addition, no increase in the β value as a function of the current density was observed,
indicating that the thermal emission was negligible and that only a PF mechanism was
responsible for the leakage behavior.

The SI versus the current density is plotted in Figure 6a to investigate the FE material
quality. The SI is proportional to J2 in the current density range below J = 100 A/cm2, which
can be expressed by [6,13,14]:

SI =
BJ2

f
(2)

where B is the trap-related value, which depends on film quality. The estimated B values
of the fabricated devices range from 8 × 1017 to 3 × 1018. These values are comparable to
those reported for SrTiO3 MIM capacitors [6].

The oxide trap density (Nt) can be extracted from the measured SI using the following
equations [15,16]:

Nt =
Aα f SI

a2 I2kT
(3)

where A is the capacitor area (=7.85 × 10−5 cm2), α is the oxide tunneling attenuation given
by 4π

h
√

2qm∗φB, a is the blocking area (= πr2, where r is half of the oxide thickness [15,16]),
kT is the thermal energy, h is Planck’s constant, q is the electron charge, m* is the effective
mass, and ΦB is the barrier height. With m* = 0.15 × m0 (m0 is the electron mass) [17] and
ΦB = 1.8 eV [9], and α is calculated as 6.3 × 107 cm−1. Consequently, Nt versus the voltage
is plotted in Figure 6b. The derived Nt was as low as 1.6 × 1020 cm−3·eV−1, comparable
to that reported in a previous study [15]. For comparison, the Nt characteristics were also
derived from the difference in the slope of the capacitance–frequency (C–F) curves, that
is, the ∆(C–F slope) method [18]. Figure 7a,b shows the ∆(C–F) characteristics and the
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extracted Nt versus voltage. Notably, the ∆(C–F slope) method results in relatively lower
Nt values compared to other methods [18]. Therefore, the difference observed between the
two methods in this study is not atypical.
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Figure 3. (a) Logarithmic scale of current density as a function of voltage in the MFM capacitor.
(b) Normalized current power spectral density (SI/I2) versus frequency as a function of bias voltage
ranging from 0.7 to 3.4 V.
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Figure 4. (a) ln (I/V) versus V0.5 and (b) ln (I/V2) versus 1/V show the Poole–Frenkel emission
and the Fowler–Nordheim emission, respectively. From the straight lines, the dominant leakage
mechanisms are the Poole–Frenkel mechanism from 0.7 to 3.2 V and the Fowler–Nordheim mechanism
at V > 2.5 V.
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Figure 6. (a) Current power spectral density (SI) as a function of current density (J) at f = 10 Hz for
the fabricated MFM capacitor. The dashed line indicates J2. (b) Oxide trap density (Nt) versus voltage
extracted from SI measurements.
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Figure 7. (a) ∆(C– F) versus measurement frequency and (b) oxide trap density (Nt) calculated using
the ∆ (C– F slope) method and measured at 10 kHz.

4. Conclusions

An HfO2-based MFM capacitor was fabricated and characterized using I–V and noise
measurements. The device exhibited a constant of E × SI/I2 noise values and noise shapes
of 1/f, indicating that the dominant transport mechanism is a trap-related PF emission
caused by trapping in the oxide defects. The oxide trap density, Nt, extracted from the
noise measurements was as low as 1.6 × 1020 cm−3·eV−1. The important finding is that the
transport mechanism of the MFM capacitor itself has no dependency on the polarization
direction, whereas the asymmetric MFIS configuration has different mechanisms depending
on the bias voltage polarity. The MFM capacitor exhibited similar behavior to that of the
positive polarization case of the MFIS device.
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