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Supplementary Material 
 
Forward differencing in Time and Central differencing in Space” FDTC method 

The method used here considers a two-dimensional adaptation of the finite-difference method for linear boundary-

value problems, that requires a 2-dimensional grid defined in a horizontal interval [a,b] and a vertical interval [c,d]. 

These intervals are partitioned vertically into n-equal parts and horizontally by m-equal parts vertically. This grid is 

already shown in Figure 8, where the vertical axis refers to the time evolution in steps dt = 1 ns, and the horizontal 

axis refers to positions along a 1-dimensional bar made of steel, divided into cells of size dx = 15 nm. 

 

Assuming that the material is isotropic, the thermal conductivity at each point in the body is independent of the 

direction of the heat flow through the point. Suppose that k, c and ρ are functions of (x, y, z) for the 3-dimensional 

problem, representing the thermal conductivity, specific heat and density respectively at a point (x, y, z). The 

temperature u = u(x, y, z, t) in a body can be found by solving the partial differential equation: 

 𝑘 + 𝑘 + 𝑘 = 𝑐𝜌     (S1) 

 

When k, c and ρ are constants, this equation is known as the simple 3-dimensional heat equation expressed as: 

 + + =       (S2) 



 

Since in most situations k, c and ρ  are not constant, and the boundaries are irregular, the solution to this partial 

differential equation must be obtained by approximation techniques. We assume that since the material is isotropic, 

the solution for a 1-dimensional bar of certain length l = 600 µm could be extrapolated under some specific conditions; 

the rod has a uniform temperature within each cross-sectional element dx, the rod is perfectly insulated on its lateral 

surface, and certain constant α is determined by the heat-conductive properties of the material of which the rod is 

composed, assumed to be independent of the position in the rod. The parabolic partial differential equation we consider 

is the following: 

 𝛼 (𝑥, 𝑡) = (𝑥, 𝑡)      (S3) 

 

One of the typical sets of constraints for a heat-flow problem of this type is to specify the initial heat distribution in 

the rod, as u(x, 0) = f(x), and to describe the behaviour at the ends of the rod, known as boundary conditions. In our 

specific case, the ends of the rod are insulated and are held at constant temperature U1 = U2 = 273 K, therefore u(0, t) 

= u(l, t), and correspondingly: 

(0, 𝑡) = 0 𝑎𝑛𝑑 (𝑙, 𝑡) = 0     (S4) 

Then, no heat escapes from the rod and in the limiting case the temperature on the rod is constant. Every time a pulse 

arrives at the rod, the heat distribution function f(x) corresponds to a Gaussian distribution with dimensions and 

amplitude equal to the ones used during the experiments as indicated in Materials and Methods section. 

 

The approach to approximate the solution to this simplified problem involves finite differences. We use as integer an 

m > 0, in our specific case m = 40,000 and the x-axis step size dx = l/m = 15 nm. The grid points in this situation are 

(xi, tj), where xi = idx, for i = 0, 1, …, m, and tj = jdt, for j = 0, 1, …n whose maxima are different for each case 

depending on the repetition rate and scan speed used for computing optimization. We implement the forward 

difference method using the Taylor series in t, to form the difference quotient: 

 



𝑥 , 𝑡 = , ( , ) − 𝑥 , 𝜇    (S5) 

 

For some µj ∈ (tj, tj+1), and the Taylor series in x to form the difference quotient 

 

𝑥 , 𝑡 = , , ( , ) − (𝜉 , 𝑡 )  (S6) 

 

where ξi ∈ (xi-1, xi+1). This parabolic partial differential equation implies that at interior gridpoints (xi, tj), for each i = 

1,2,…,m and j = 1,2,… n, we have 

(𝑥 , 𝑡 ) − 𝛼 (𝑥 , 𝑡 ) = 0     (S7) 

Therefore, the forward difference quotients of equations (5) and (6) are: 

, − 𝛼 , , = 0    (S8) 

 

Where wij approximates u(xi, tj). 

 

The explicit nature of this difference method implies that the (m-1)× (m-1) matrix associated with this system can be 

written in the tridiagonal form: 

 

𝐴 = ⎣⎢⎢
⎢⎡(1 − 2𝜆) 𝜆 0 … 0𝜆 (1 − 2𝜆) 𝜆 ⋱ ⋮0 ⋱ (1 − 2𝜆) ⋱ 0⋮ ⋱ ⋱ ⋱ 𝜆0 … 0 𝜆 (1 − 2𝜆)⎦⎥⎥

⎥⎤  (S9) 

 

Where λ = α2 (dt/dx2). If we let: 

 w( ) = (𝑤 ,𝑤 , … , 𝑤 , ,)      (S10) 

 



for each j = 1, 2, …, then the approximate solution is given by: 

w( ) = 𝐴w( )  (S11) 

for each j = 1, 2, …n, so w(j) is obtained from w(j-1) by a simple matrix multiplication. This is known as the Forward-

Difference method, and the approximation shown in Figure 8 uses information from the other previous points marked 

on that figure, as indicated in the text. 
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