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Abstract: This study investigated the influence of conventional (10 s at 1160 mW/cm2) and fast high-
irradiance (3 s at 2850 mW/cm2) light curing on the micro-tensile bond strength (µTBS) of bulk-fill
resin composites bonded to human dentin. Sixty-four extracted human molars were ground to dentin
and randomly assigned into eight groups (n = 8 per group). After application of a three-step adhesive
system (Optibond FL), four different bulk-fill composites (two sculptable and two flowable compos-
ites) were placed. Of these, one sculptable (Tetric PowerFill) and one flowable (Tetric PowerFlow)
composite were specifically developed for fast high-irradiance light curing. Each composite was poly-
merized with the conventional or the fast high-irradiance light-curing protocol. The specimens were
cut into dentin-composite sticks, µTBS was determined and failure modes were analyzed. Statistical
analysis was performed using t-test for independent observations and one-way ANOVA. A statistical
difference between the curing protocols was only found for Tetric PowerFlow, where the conventional
protocol (23.8 ± 4.2 MPa) led to significantly higher values than the fast high-irradiance light-curing
protocol (18.7 ± 3.7 MPa). All other composite materials showed statistically similar values for both
polymerization protocols. In conclusion, the use of fast high-irradiation light curing has no negative
influence on the µTBS of the investigated high-viscosity bulk-fill composites. However, it may reduce
the dentin bond strength of flowable bulk-fill composite.

Keywords: high-irradiance light curing; rapid photo-polymerization; bulk-fill resin composites;
micro-tensile bond strength; dentin adhesion; failure analysis

1. Introduction

Resin composites are the most used dental restorative materials for direct restora-
tions [1]. Since the inception of resin composites, shrinkage, and the associated stress
development on the adhesive bond during light curing is controversially discussed. Studies
have shown that stress development during light curing can lead to marginal gaps or cause
fractures when placing too large composite layers [2,3]. Therefore, composite layers should
not exceed 2 mm thickness to reduce polymerization shrinkage and allow enough blue
light to penetrate the composite material [2,4]. However, the process of placing multiple
small composite layers can be challenging in difficult clinical conditions and often time
consuming [5].

Creating stable dentin adhesion is challenging due to its water content and smear
layer formation [6]. The loss of dentin-composite bond strength can lead to the formation
of marginal gaps [7], which can be responsible for hypersensitivity, secondary caries or
even the loss of restorations [8].

Resin composite materials [9], adhesive systems [10] and light-curing units [11] are
constantly developing. Examples are the development of bulk-fill composites or the
steadily increasing irradiances of light-curing units (LCU) in recent years [12]. This leads to
acceleration and simplification of many clinical steps.
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Manufacturers designed bulk-fill composites to simplify and speed up the placement
of resin composite restorations. These materials show considerably higher light transmit-
tance [13,14] and can be placed in increments of 4–5 mm thickness [15,16]. Even in large and
deep cavities bulk-filled with such materials, the development of shrinkage stress is lower
than in conventional composites [17,18], which can decrease the development of marginal
gaps [19]. This behavior is particularly relevant in high C-factor cavities [20] rather than
low ones like class IV cavities in anterior direct restorations [21]. Furthermore, the reduced
working time results in a lower risk of fluid contamination. Due to their pleasant properties,
bulk-fill composites are often used for the restoration of large defects. There are sculptable
and flowable bulk-fill composites available. Flowable bulk-fill composites are particularly
attractive for the practitioner as they are simple and quick to use. However, due to their
reduced filler content, capping with a conventional high-viscosity resin composite material
is needed. In contrast to flowable bulk-fill composites, sculptable bulk-fill composites can
be placed in occlusal areas without the need of placing a capping composite layer.

To reduce polymerization shrinkage stress of resin composites, different light-curing
protocols (soft-start, pulse-delay) have been investigated [22–24]. An in vitro study showed
that lower light intensity during photoactivation can maintain the gel phase of the resin
composite for a longer time. This reduces the shrinkage forces by allowing more viscous
flow inside the material [22]. Despite the promising results, this concept was not estab-
lished clinically since such techniques are technically complicated and time consuming.
Furthermore, no significant changes in postoperative sensitivity or marginal integrity were
detected with the soft-start light-curing approach [25].

Any time-saving approach is attractive to the practitioner, which has led to the ap-
proach of polymerizing resin composites for a shorter time but with higher irradiance. This
increased simplicity and efficiency during dental treatments.

LCUs enabling high-irradiance light curing with shorter curing times were devel-
oped [26]. Simultaneously, resin composites were designed that polymerize sufficiently
at higher irradiances and shorter light-curing times [27]. The latest generation of bulk-fill
composites has been specially developed for rapid high-irradiance light curing and is
claimed to allow sufficient polymerization in only three seconds [28]. Camphorquinone
is a key photoinitiator for the process of polymerization in many resin composites. Other
photoinitiators like Ivocerin (Ivoclar Vivadent, Schaan, Liechtenstein) or Lucirin TPO play
a predominant role in enabling short curing times with a sufficient depth of cure [29].

The latest generation of bulk-fill composites mentioned above includes a sculptable
(Tetric PowerFill) and a flowable (Tetric PowerFlow) resin composite which were specially
developed for rapid (3 s) high-irradiance light curing combined with a matching LED-
LCU and radiant exitances up to 3000 mW/cm2 (Tetric Bluephase PowerCure LED-LCU).
However, recent studies have revealed that fast high-irradiance light curing can create high
shrinkage stresses within the composite material and at the adhesive dentin–composite
interface, which might affect dentin bond strength [3,30].

The aim of this study was therefore to compare the micro-tensile bond strength (µTBS)
to dentin of different bulk-fill composites light cured with either a conventional (10 s at 1160
mW/cm2) or rapid high-irradiance (3 s at 2850 mW/cm2) curing protocol. Four bulk-fill
composites were tested. Two of them were specially developed for rapid high-irradiance
light curing. The null hypothesis claimed that (I) neither the composite material (II) nor the
light-curing protocol used would affect the µTBS.

2. Materials and Methods
2.1. Composite Materials

Four light-curable bulk-fill resin composites were investigated. Two of them were
sculptable and two of them were flowable. One sculptable (Tetric PowerFill, Ivoclar
Vivadent, Schaan, Liechtenstein) and one flowable (Tetric PowerFlow, Ivoclar Vivadent,
Schaan, Liechtenstein) composite were specially developed and approved for high-irradiance
light curing. The other sculptable (3M Filtek One Bulk Fill Restorative, 3M, St. Paul,
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MN, USA) and flowable (SDR Flow +, Dentsply Sirona, Konstanz, Germany) composites
have not been specifically developed for high-irradiance light curing. Each composite was
photo-activated with the conventional (10 s at 1160 mW/cm2) or high-irradiance (3 s at
2850 mW/cm2) light-curing protocol. This resulted in eight experimental groups. The
schematic experimental setup with the different material groups and light-curing protocols
is shown in Figure 1. Table 1 shows the chemical composition and additional information
of the resin composite materials used in this study.

Figure 1. Flowchart of the study.

Table 1. Manufacturers’ information about the resin composite materials used in this study.

Composite
Viscosity

Composite Name
(Abbreviation)

Filler
Content

(wt%/vol%)
Resin Matrix Photoinitiator Manufacturer Shade/LOT No.

Flowable Tetric PowerFlow
(TPFlow) 68/46 Bis-GMA,

Bis-EMA, UDMA
CQ/amine,

Ivocerin

Ivoclar
Vivadent,
Schaan,

Liechtenstein

IV A/Z02D5S

SDR Flow + (SDR) 71/47
Modified UDMA,

Bis-GMA,
TEGDMA

CQ

Dentsply
Sirona,

Konstanz,
Germany

Universal/00070690

Sculptable Tetric PowerFill
(TPFill) 77/54

Bis-GMA,
Bis-EMA, UDMA,

propoxylated
bisphenol A

dimethacrylate,
DCP, β-allyl

sulfone AFCT
agent

CQ/amine,
Ivocerin,

Lucirin TPO

Ivoclar
Vivadent,
Schaan,

Liechtenstein

IV A/Z02H66

3M Filtek One Bulk
Fill Restorative

(FIL)
77/59

UDMA, aromatic
UDMA, DDDMA,
proprietary AFM

CQ/amine 3M, St. Paul,
MN, USA A3/NE28748

Bis-GMA: bisphenol-A-glycidyldimethacrylate, Bis-EMA: ethoxylated bisphenol-A-dimethacrylate, UDMA: ure-
thane dimethacrylate, TEGDMA: triethylene glycol dimethacrylate, DDDMA: 1, 12-dodecanediol dimethacry-
late, AFM: addition fragmentation monomer, DCP: tricyclodecane-dimethanol dimethacrylate, AFCT: addition-
fragmentation chain transfer, CQ: camphorquinone, TPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
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2.2. Specimen Preparation

For this in vitro study, 64 extracted human molars were collected. The teeth were
extracted due to medical indications during normal dental treatment. Before the teeth were
collected for the study, patients had to give written informed consent for the further use
of the teeth as anonymized biological materials for research purposes. After extraction,
the teeth were irreversibly anonymized. The study was thus performed in accordance
with the Federal Act on Research involving Human Beings (Human Research Act; article 2,
paragraph 2) and authorization from the ethics committee was waived (BASEC-Nr. Req-
2021-01153).

Only undamaged and caries-free teeth were used, and biological remains like bone,
dental calculus or soft tissue were removed from the teeth. The unrestored teeth were
randomly assigned into the eight groups mentioned above (four composites cured with two
curing protocols; n = 8 per group). Until their use, the teeth were stored in tap water at 5 ◦C.
To facilitate further manipulation, the teeth were fixed on a custom-made carrier (Wenka,
Karl Wenger SA, Courgenay, Switzerland) with a light-curable resin (LC Block-Out Resin,
Ultradent Products Inc., South Jordan, UT, USA). After fixation on the carrier, the teeth
were embedded in self-curing acrylic resin (Paladur, Heraeus Kulzer, Hanau, Germany)
which covered two thirds of the tooth roots.

The crowns of the teeth were removed below the deepest point of the fissure with a
low-speed precision cutter (IsoMet, Buehler, Lake Bluff, IL, USA) and a diamond coated
saw wheel (M0D10, Struers, Birmensdorf, Switzerland; diameter: 102 mm, thickness:
0.3 mm). The surface was then ground from occlusally with 180-grit silicon carbide paper
(Buehler-Met II, Buehler, Lake Bluff, IL, USA) by using a polishing machine (Planopol-2,
Struers, Ballerup, Denmark) until all enamel remnants were removed. This created a
roughening effect similar to that of an 80-µm diamond bur [31]. The polishing machine ran
at low speed (150 rpm) with constant water cooling, avoiding any heat development. A
stereomicroscope (Stemi 2000, Carl Zeiss, Feldbach, Switzerland) was used to ensure that
there were no remnants of enamel on the flat dentin surface and the pulp was not exposed.

2.3. Composite Buildup

A three-step adhesive system (OptiBond FL, Kerr, Orange, CA, USA) was applied
according to the manufacturer’s instructions. After phosphoric acid etching (Ultra-Etch,
Ultradent, South Jordan, UT, USA) for 15 s and rinsing with water for 15 s, the primer was
applied for 15 s to the gently air-dried dentin. Then the primer was air-dried until the
dentin acquired a shiny appearance. The adhesive was subsequently applied, and light
cured at 1160 mW/cm2 for 10 s.

The carrier of the specimen was clamped in a custom-made holder which allowed to
press a 5 mm wide and 4 mm high silicone tube on the flat dentin surface. This enabled
the stable placement of the composite in one increment. The surface was flattened using
conventional modelling instruments.

According to their group, the composites were light cured with either low- or high-
irradiance. Thus, each composite was cured for 3 s at 2850 mW/cm2 (Bluephase PowerCure,
Ivoclar Vivadent, Schaan, Liechtenstein; emission wavelength range: 385–515 nm) or for
10 s at 1160 mW/cm2. The tip of the light guide locked in the opening of the custom-made
holder. This ensured keeping a distance of 1 mm to the composite buildup.

The radiant exitances were periodically controlled using a calibrated dental radiometer
(FieldMaxII-TO, Coherent; Santa Clara, CA, USA). The specimens were dark-stored in tap
water at 37 ◦C during 24 h before µTBS testing.

2.4. Micro-Tensile Bond Strength Test

The specimens were cut perpendicular in two directions using a water-cooled saw
(Accutom-50, Struers, Birmensdorf, Switzerland) and a diamond coated saw wheel (M0D10,
Struers, Birmensdorf, Switzerland; diameter: 102 mm, thickness: 0.3 mm). After cutting, the
eight most central sticks were marked with a waterproof pen and then sawed off parallel to
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the occlusal surface of the tooth. The length of the sticks was between 7–8 mm. Sticks were
only used when they were exactly square cut and free of enamel. This was controlled with
a stereomicroscope (Stemi 2000, Carl Zeiss, Feldbach, Switzerland).

From each tooth, eight dentin-composite sticks were obtained. In total, a group
consisted of eight teeth with eight sticks each. This resulted in a total of 64 sticks per group.
The sticks were stored in tap water at room temperature to prevent extensive drying of
dentin. The edge lengths of the sticks were measured with a digital micrometer (406-250-30,
Mitutoyo AG, Urdorf, Switzerland) on the level of the adhesive area. To calculate the
adhesive surface of the sticks, the edge lengths were multiplied. The mean adhesive surface
of the sticks amounted to 0.921 mm2.

The sticks were prepared for µTBS testing according to Armstrong et al. [32]. Both
ends were glued into sandblasted (110 µm aluminum oxide, 4.5 bar) µTBS jigs (Wenka,
Karl Wenger SA, Courgenay, Switzerland) with cyanoacrylate glue (No. 17330050, Renfert
GmbH, Hilzingen, Germany), and mounted in a universal testing machine (Zwick Roell
Z010, Ulm, Germany) [33]. Using a load cell of 500 N, a tensile force test was applied with a
speed of 1 mm/min until the sticks failed. The load at failure (N) divided by the previously
calculated bonding area (mm2) of the same stick resulted in the µTBS (MPa). These values
were recorded for each stick.

2.5. Failure Mode Analysis

The sticks were subjected to a failure mode analysis. Five different failure modes were
distinguished: adhesive failures, cohesive failures in the dentin, cohesive failures in the
composite, mixed failures, and pre-test failures. The failure modes were observed under a
stereomicroscope (Stemi 2000, Carl Zeiss, Feldbach, Switzerland) using 15× magnification.

2.6. Statistical Analysis

Power analysis was performed based on a preliminary study to determine the sample
size required for identifying a statistically significant difference in bond strength of at
least 10% in the comparisons between the two curing protocols. For power analysis
the software G*Power (version 3.1, Heinrich-Heine-University of Düsseldorf, Düsseldorf,
Germany) was used. Two sticks failed before µTBS testing. According to the protocol
of Armstrong et al. [32] the µTBS of these sticks was set to 0 MPa. Descriptive statistics
were presented as mean, standard deviation, minimum, median, maximum and 95% CI.
Normality of distribution was verified using Kolmogorov-Smirnov and Shapiro-Wilk tests.
Statistical comparisons were performed to identify significant differences between groups
at an overall significance level of α = 0.05. Mean µTBS values for each composite were
compared between two curing protocols using t-test for independent observations. The
comparisons among the composites within a given curing protocol were performed using
one-way ANOVA with Tukey’s post-hoc adjustment for multiple comparisons. Statistical
analyses were performed using the statistical software SPSS (version 25, IBM; Armonk,
NY, USA).

3. Results
3.1. Micro-Tensile Bond Strength

Table 2 shows descriptive statistics of the µTBS of all groups. The abbreviations of the
groups can be seen in Table 1. The results of the statistical evaluation are given in Figure 2.

The only significant difference in dentin bond strength between curing protocols was
found for Tetric PowerFlow, where the conventional (10 s at 1160 mW/cm2) protocol (G2:
23.8 ± 4.2 MPa) led to significantly higher values than the fast-curing (3 s at 2850 mW/cm2)
protocol (G6: 18.7 ± 3.7 MPa) (p = 0.0002). All other groups showed no significant bond
strength differences between the curing protocols.

When comparing the different composites within the conventional (10 s at 1160 mW/cm2)
protocol, Tetric PowerFill (G1: 19.7 ± 4.0 MPa) attained statistically similar dentin bond
strength values as Tetric PowerFlow (G2: 23.8 ± 4.2 MPa), but significantly lower values
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compared to 3M Filtek One Bulk Fill Restorative (G3: 26.4 ± 6.0 MPa) (p = 0.0004) and SDR
Flow + (G4: 24.9 ± 5.2 MPa) (p = 0.0009).

Table 2. Descriptive statistics of the micro-tensile bond strength (MPa) of all groups.

Group (G) Mean SD Min. Median Max. 95% CI

G1 (TPFill; 10 s at 1160 mW/cm2) 19.7 4.0 6.2 20.3 40.7 17.8–21.5

G5 (TPFill; 3 s at 2850 mW/cm2) 18.3 3.2 4.3 18.5 17.6 16.6–20.0

G2 (TPFlow; 10 s at 1160 mW/cm2) 23.8 4.2 0.0 24.8 34.8 21.9–25.7

G6 (TPFlow; 3 s at 2850 mW/cm2) 18.7 3.7 0.0 19.3 17.9 17.0–20.5

G3 (FIL; 10 s at 1160 mW/cm2) 26.4 6.0 2.1 27.8 53.8 23.7–29.0

G7 (FIL; 3 s at 2850 mW/cm2) 25.4 3.7 3.0 24.9 23.9 23.0–27.8

G4 (SDR; 10 s at 1160 mW/cm2) 24.9 5.2 4.4 24.1 51.3 22.2–27.6

G8 (SDR; 3 s at 2850 mW/cm2) 28.2 5.2 5.4 28.3 28.4 25.7–30.7

Figure 2. Micro-tensile bond strength (mean ± SD; in MPa) to dentin achieved with the different
light-curing protocols. Square brackets above the bars show statistically similar results between the
curing protocols (“10 s” vs. “3 s”) within each material. Same uppercase letters indicate statistically
similar results among materials for the “10 s” curing protocol. Same lowercase letters indicate
statistically similar results among materials for the “3 s” curing protocol.

Within the fast-curing (3 s at 2850 mW/cm2) protocol, the composites of the Tetric
family (Tetric PowerFill (G5: 18.3 ± 4.2 MPa) and Tetric PowerFlow (G6: 18.7 ± 3.7 MPa))
reached significantly lower dentin bond strength values compared to 3M Filtek One Bulk
Fill Restorative (G7: 25.4 ± 3.7 MPa) (p = 0.00003 and 0.00008, respectively) and SDR Flow
+ (G8: 28.2 ± 5.2 MPa) (p < 0.000001 for both comparisons).

3.2. Failure Mode Analysis

The distributions of the failure modes of the eight groups are shown in Figure 3. A
heterogenous distribution can be seen over all groups. It was found that the failure modes
depended more on the material than on the light-curing protocol used. Tetric PowerFlow
was the only composite with pre-test failures. 3M Filtek One Bulk Fill Restorative showed
more mixed failures than the other composites investigated. Cohesive failures in dentin
occurred more frequently with SDR Flow + than with the other composites investigated.
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Figure 3. Distribution of failure modes per group. The distribution is given in total numbers.

4. Discussion

Our findings indicate that Tetric PowerFlow was the only composite with a significant
difference in dentin bond strength between light-curing protocols. The µTBS of Tetric
PowerFlow was significantly higher with conventional than with high-irradiance light
curing. Furthermore, a material dependency of the µTBS was found. Thus, both null
hypotheses could be rejected.

Sufficient µTBS is important for direct restorations to prevent the formation of marginal
gaps, which have been associated with clinical complications such as secondary caries
and postoperative sensitivity [8]. The development of new composites and LED-LCUs has
led to continuously increasing material requirements, such as handling high shrinkage
stresses [34] or enabling enough blue light to penetrate to the bottom of the composite
materials. Previous studies investigating fast-curing composites found that the material
itself had a greater impact on various mechanical properties and degree of conversion than
the light-curing protocol [35–37].

The superior µTBS values of Tetric PowerFlow cured with the conventional protocol
were surprising, given that this product was specifically designed for fast high-irradiance
light curing. An explanation therefore could be the total energy concept, which makes the
polymerization of the composite dependent on the total energy to which it is exposed [38].
This could be relevant because composites require sufficient light energy in a compatible
wavelength to achieve appropriate physical properties [39]. The total energies (product
of exposure time and light irradiance) of the two light-curing protocols differ as the con-
ventional group was cured with 11.60 J/cm2 and the fast-curing group with 8.55 J/cm2.
It can thus be assumed that the fast-curing protocol leads to less energy arriving at the
bottom of the cavity, where the actual bonding occurs. Other studies have shown that a
higher total energy also results in better degree of conversion and mechanical properties in
deep layers of the composite [40,41]. This may also affect µTBS. In this study, different total
energies were used to follow manufacturer’s instructions in light curing. The difference in
total energies may be a limitation of this study. Marovic et al. [37] found a lower degree
of conversion for Tetric PowerFlow being polymerized with the fast light-curing protocol,
which might also contribute to the lower bond strength values observed in this study.
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Furthermore, Par et al. [42] reported about significantly worse marginal integrity for Tetric
PowerFlow polymerized with the fast light-curing protocol.

The µTBS of both sculptable composites was not affected by the light-curing protocol.
This finding might be explained by various aspects of the materials. Tetric PowerFill
contains an addition fragmentation chain transfer (AFCT) reagent named β-allyl sulfone
in the organic matrix, which is intended to delay the gel phase and reduce shrinkage
stress [35]. 3M Filtek One Bulk Fill Restorative contains a similar reagent, which is also
designed to reduce shrinkage forces [43]. Furthermore, the higher filler content of the
sculptable composites limits the mobility of reactive species within the composite during
polymerization and can reduce the influence of the light-curing protocol used [13].

Independent of the material or light-curing protocol used, all composites achieved
bond strength values between 18.3 and 28.2 MPa. Only Tetric PowerFill and PowerFlow
were developed and approved for fast high-irradiance light curing. Nevertheless, the other
materials investigated (SDR Flow +; and 3M Filtek One Bulk Fill Restorative) achieved sig-
nificantly higher dentin bond strength with high-irradiance light curing. Tauböck et al. [44]
demonstrated that SDR Flow + develops very low shrinkage forces due to its unique resin
composition, which contains modified high-molecular-weight UDMA base monomers.
Thus, the adhesive bond is less stressed by shrinkage forces, which could explain the high
dentin bond strength values. 3M Filtek One Bulk Fill Restorative performed the best in
another dentin bond strength study [45]. The reason might be its modified resin matrix
mentioned above, which lowers shrinkage stress as it enables the polymer network to
rearrange during polymerization.

The same adhesive system was used for all composites. This combination is approved
but does not follow the manufacturer’s recommendations to stay within the same product
family, which might have resulted in different bond strengths. Nevertheless, the chosen
protocol was used to allow a standardized comparison between the composites.

The failure types were heterogeneously distributed and depended more on the ma-
terial than the light-curing protocol used. Cohesive failures in composites occurred more
frequently with Tetric PowerFlow and PowerFill. Thus, the adhesive bond was stronger
than the cohesion of the composites itself. An explanation for this could be the rapid
onset of opacity during light curing, which was reported by Marovic et al. [37]. With the
rapid onset of opacity of the composite, the light supply for the deep composite layers
is restricted, which could explain the inferior mechanical properties. On the other hand,
cohesive failures in dentin and mixed failures were the predominant failure modes of SDR
Flow + and 3M Filtek One Bulk Fill Restorative, respectively.

A limitation of this study is that only the µTBS was investigated. In the patient’s
mouth, not only tensile but also shear and compression forces are exerted on the filling [46].
These forces may compromise the adhesive bond differently. To draw conclusions about
the clinical situation, further studies investigating the influence of these different kinds
of forces should be conducted. Since dentin development changes over time [47], the
tooth sample collection, which was not based on a specific age group, might represent
another limitation of the present study. Finally, the µTBS tests were carried out 24 h after
the composite restoration was placed and thus the results only provide information about
the short-term adhesive bond. Further studies are needed to draw conclusions about the
long-term adhesive bond.

Flowable bulk-fill composites have been a breakthrough on the dental market because
they are quick and easy to use. Clinicians are used to placing large quantities of flowable
bulk-fill composite materials into teeth, which then need to be capped with a sculptable
composite. However, rapid high-irradiation light curing can reduce the dentin bond
strength of flowable bulk-fill composite (Tetric PowerFlow).

5. Conclusions

The results of this in vitro study show that rapid high-irradiation light curing has no
negative influence on the µTBS of the investigated high-viscosity bulk-fill composites. How-
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ever, rapid high-irradiation light curing can reduce the dentin bond strength of flowable
bulk-fill composites (Tetric PowerFlow). Further studies are needed to verify the results
and to determine other factors influencing µTBS in the long term.
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happens in deep layers of new bulk-fill composites. Materials 2021, 14, 515. [CrossRef]

38. Koran, P.; Kürschner, R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity,
adhesion, and degree of polymerization. Am. J. Dent. 1998, 11, 17–22. [CrossRef]

39. Price, R.B.; Ferracane, J.L.; Shortall, A.C. Light-curing units: A review of what we need to know. J. Dent. Res. 2015, 94, 1179–1186.
[CrossRef]

40. Peutzfeldt, A.; Asmussen, E. Resin composite properties and energy density of light cure. J. Dent. Res. 2005, 84, 659–662.
[CrossRef]

41. Mavropoulos, A.; Cattani-Lorente, M.; Krejci, I.; Staudt, C.B. Kinetics of light-cure bracket bonding: Power density vs exposure
duration. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 543–547. [CrossRef] [PubMed]

42. Par, M.; Spanovic, N.; Marovic, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Rapid high-intensity light-curing of bulk-fill composites: A
quantitative analysis of marginal integrity. J. Dent. 2021, 111, 103708. [CrossRef] [PubMed]

43. Par, M.; Marovic, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Effect of rapid high-intensity light-curing on polymerization shrinkage
properties of conventional and bulk-fill composites. J. Dent. 2020, 101, 103448. [CrossRef] [PubMed]

44. Tauböck, T.T.; Jäger, F.; Attin, T. Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate-
and ormocer-based bulk-fill resin composites. Odontology 2019, 107, 103–110. [CrossRef]

http://doi.org/10.1016/j.dental.2012.11.002
http://doi.org/10.2341/18-163-L
http://doi.org/10.3390/ma13173802
http://doi.org/10.1016/j.jdent.2020.103494
http://doi.org/10.3390/sym13050797
http://doi.org/10.1111/eos.12139
http://www.ncbi.nlm.nih.gov/pubmed/25039287
http://doi.org/10.1590/S1678-77572009000100006
http://www.ncbi.nlm.nih.gov/pubmed/19148402
http://doi.org/10.1590/S1678-77572012000200021
http://www.ncbi.nlm.nih.gov/pubmed/22666845
http://doi.org/10.2341/07-120
http://doi.org/10.1016/j.dental.2020.07.009
http://doi.org/10.1177/0022034518822808
http://doi.org/10.1016/j.dental.2020.02.007
http://doi.org/10.1016/j.dental.2014.02.023
http://doi.org/10.1016/j.dental.2021.02.012
http://doi.org/10.14219/jada.archive.2012.0095
http://doi.org/10.1016/j.dental.2016.11.015
http://doi.org/10.3390/polym14163296
http://doi.org/10.1080/26415275.2021.1979981
http://doi.org/10.3390/ma14061381
http://doi.org/10.3390/ma14030515
http://doi.org/10.1111/j.1708-8240.2001.tb00437.x
http://doi.org/10.1177/0022034515594786
http://doi.org/10.1177/154405910508400715
http://doi.org/10.1016/j.ajodo.2006.09.068
http://www.ncbi.nlm.nih.gov/pubmed/18929272
http://doi.org/10.1016/j.jdent.2021.103708
http://www.ncbi.nlm.nih.gov/pubmed/34077801
http://doi.org/10.1016/j.jdent.2020.103448
http://www.ncbi.nlm.nih.gov/pubmed/32777241
http://doi.org/10.1007/s10266-018-0369-y


Materials 2022, 15, 7467 11 of 11

45. Mandava, J.; Vegesna, D.P.; Ravi, R.; Boddeda, M.R.; Uppalapati, L.V.; Ghazanfaruddin, M.D. Microtensile bond strength of
bulk-fill restorative composites to dentin. J. Clin. Exp. Dent. 2017, 9, e1023–e1028.

46. Mansour, A.Y.; Drummond, J.L.; Evans, C.A.; Bakhsh, Z. In vitro evaluation of self-etch bonding in orthodontics using cyclic
fatigue. Angle Orthod. 2011, 81, 783–787. [CrossRef]

47. Montoya, C.; Arango-Santander, S.; Peláez-Vargas, A.; Arola, D.; Ossa, E. Effect of aging on the microstructure, hardness and
chemical composition of dentin. Arch. Oral Biol. 2015, 60, 1811–1820. [CrossRef]

http://doi.org/10.2319/012811-59.1
http://doi.org/10.1016/j.archoralbio.2015.10.002

	Introduction 
	Materials and Methods 
	Composite Materials 
	Specimen Preparation 
	Composite Buildup 
	Micro-Tensile Bond Strength Test 
	Failure Mode Analysis 
	Statistical Analysis 

	Results 
	Micro-Tensile Bond Strength 
	Failure Mode Analysis 

	Discussion 
	Conclusions 
	References

