
Citation: Grzyb, K.; Jasiński, R.
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Abstract: Experimental identification of stiffening walls is often limited to studying single-wall
models. However, these samples do not reflect many additional effects—torsion of the building and
redistribution of internal forces. This paper presents the results of two full-scale buildings made of
autoclaved aerated concrete (AAC) masonry elements. The primary purpose of the work was to
determine the changes in the stiffness of the shear walls and to attempt the empirical distribution of
loads on the stiffening walls. The intermediate goals were: a description of the crack morphology and
the mechanism of failure, the designation of the stiffening walls’ behavior. It was shown that the first
crack formed in the tensile corner of the door opening, and the subsequent cracks formed in the wall
without a hole. Based on the changes in the value of the shear deformation angles, the phases of work
of the stiffening walls were determined. The presented research results are only a part of an extensive
study of stiffening walls in masonry buildings conducted at the Silesian University of Technology.

Keywords: stiffening wall; shear wall; wall stiffness; spatial stiffness; crack morphology; horizontal
load; building analysis; masonry structure; autoclaved aerated concrete; digital image correlation

1. Introduction
1.1. Terminology and Standard Inaccuracies

Information on the design of shear walls in the Eurocode is limited to general recom-
mendations and regulations. According to the definition [1]—term 1.5.10.10, the stiffening
wall is a structural element located perpendicular to other walls, which supports them with
the transfer of horizontal forces, preventing buckling and contributing to the stability of the
building. The stiffening elements mainly take the horizontal loads acting in the plane of the
walls. Although these elements are primarily shear in the plane, they can simultaneously
transfer other forces (vertical loads, bending moments) depending on other functions and
load distribution in the building.

In literature, the concept of stiffening walls sometimes replaces the term shear walls [2–5].
In the code regulations of Eurocode 6, the definition of a shear wall [1]—term 1.5.10.9 is
distinguished and denotes shear walls whose task is to transfer lateral forces acting in the
plane of the wall. This terminological inaccuracy raises problems in naming the walls of
the building.

The structure of the entire building determines the distribution of loads on the stiffen-
ing walls. Horizontal forces can be transferred to walls in proportion to their stiffness [6],
provided that the slab act as a rigid diaphragm. Suppose the horizontal forces act in the
eccentricity concerning the center of gravity of the stiffening walls, or the layout of the
stiffening walls is asymmetrical. In that case, the torsional effect should be considered in
the calculations. It is worth mentioning that this situation occurs in practice in most cases.
The standard recommendations do not indicate a consistent design method to consider
or omit the torsion effect [6]. Moreover, the standard [1] allows for the redistribution of
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internal forces to a maximum level of 15%—but there is no experimental recognition of the
issue.

1.2. Stiffening and Shear Walls Test Results

Stiffening walls can be erected in different ways, for instance, as confined walls [7] by
making circumferential reinforced concrete surrounding the masonry [8–10] or by filling the
external masonry elements with mortar (reinforced grouted masonry) [11–16]. Moreover,
stiffening masonry can be unreinforced [17] or reinforced [18,19]. Some ways of increasing
shear rigidity were collected in [20].

Both flexural and shear deformations affect the total horizontal displacement of a
single shear wall [21,22]. Stiffening walls with mating sections of transverse walls (flanged
walls [23,24]) can take part in taking horizontal loads. The work [25] shows the influence
of the flanged parts on the transmission of normal stresses and a slight influence on the
transmission of shear stresses caused by the horizontal load.

The level of compressive stress (prestress) influences the behavior of masonry [26].
When the compressive stresses of the wall are low, cracks run along the diagonal of the
wall in the head and bed joints of the masonry [27]. The damages open along the diagonal
with large horizontal (e.g., 30 mm) displacements [28]. At high compressive stresses of
the shear wall, cracks run through the masonry units and have a vertical course locally.
If the damage has a stepped path, the reduction in strength caused by tension is smaller
than in the case of cracks in the masonry elements [29]—Figure 1. In some cases, there may
be a mixed mechanism that combines step failure and cracks running through masonry
units [30]. The slenderness of the wall also influences the crack morphology [31].
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are used to determine the load capacity of in-plane shear walls [35] (sometimes called 
SLC—shear load capacity [36]). A simple equilibrium model can be used to estimate the 
behavior of shear walls [37]. Work [38] proposes mathematical models to predict the in-
plane horizontal load capacity of unreinforced masonry (URM) walls, considering 

Figure 1. Behavior of stiffening masonry wall in simple and complex failure mode; 1—straight
crack (high compressive stress); 2—stepped crack (low compressive stress); 3—tensile corner;
sc—compressive stress; st—tensile stress; Hx—horizontal shear force; Ft—tensile force.

The complexity of the calculation depends on the localization of the perforation in the
building [32]. The geometry of both door and window openings is also essential [33,34].
If the openings are in-line—it is possible to distinguish the stiffening units relatively
unequivocally. In the case of the openings’ irregular location, the analysis’s complexity
increases significantly. Various analytical models based on flexural or shear failure are used
to determine the load capacity of in-plane shear walls [35] (sometimes called SLC—shear
load capacity [36]). A simple equilibrium model can be used to estimate the behavior of
shear walls [37]. Work [38] proposes mathematical models to predict the in-plane horizontal
load capacity of unreinforced masonry (URM) walls, considering possible failure modes
and the presence of perforations. Paper [39] presents analytical models for partially grouted
masonry.
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The analysis depends on the relative stiffnesses of the vertical and horizontal wall
sections (spandrels, lintels) between the openings [40] and the building geometry. Usually,
the analysis assumes that the walls are fixed in the foundation, but sometimes analysis
includes soil-structure interaction [41]. In the case of rigid vertical inter-opening pillars
(cantilever piers)—the lintels (spandrels, lintels) act as horizontal struts between the vertical
pillars. In this scheme, the determination of internal forces is relatively simple and based
on the cantilevered, bent work of the vertical wall fragments between the openings. The
role of lintels is to transfer forces to vertical elements, and their deformations correspond
and coincide with the rigid vertical parts of the wall.

In the second situation, the vertical wall fragments are characterized by much lower
stiffness than the horizontal elements. It is assumed that the lintels and horizontal fragments
are infinitely rigid, and the vertical pillars are analyzed as fixed at the base of the columns.
The horizontal stripes between the windows are designed for the forces transmitted by
vertical elements. The verification of the theory with reality is often based on a single wall
test, but these models do not reflect many additional effects.

The experimental spatial model of the building allows taking into account the cooper-
ation between the walls in transferring horizontal loads and capturing the torsion of the
building [42–44]. A careful analysis of the crack morphology provides information on the
actual heights of inter-hole pillars and the recognition of stress concentration areas. Full-
scale building studies have the advantage over single shear walls research, but experimental
analyses of real-scale [45] spatial models are rare in the literature. The analyses usually are
conducted for scaled-down models [46], or when tests are performed on full-scale models,
there are focused on seismic loads [47]. Instead, computational analyzes are performed
based on, e.g., statistical characterization of mechanical properties of masonry [48] and
stochastic discontinuum analysis [49]. The finite element method [50,51] (FEM), discrete
macro-element model (DMEM) [52] or multiple vertical line element method (MVLEM) [53]
also is used.

This paper presents the results of full-scale buildings made of autoclaved aerated
concrete masonry elements [54]. The digital image correlation (DIC) technology was used
to observe the propagation of cracks and damages [55–57]. The presented research is the
basis for further analysis of the stiffening walls’ behavior in the masonry structure’s spatial
model.

The primary purpose of the work was to determine the changes in the stiffness of the
stiffening walls and to attempt the empirical distribution of loads on the stiffening walls.
The intermediate goals were: description of the crack morphology and the mechanism of
failure, the designation of the stiffening walls’ behavior. The publication is only a part of
extensive research at the Silesian University of Technology on stiffening walls in masonry
buildings.

2. Materials and Methods
2.1. Research Models

Two models of single-storey buildings were made to analyze the spatial behavior of the
stiffening walls. The construction of each model was the same. First, the lower reinforced
concrete perimeter beam with a cross-section of 20 × 22 cm was made (width x height).
This element is reinforced with four rods Ø12 mm and stirrups with a diameter of Ø6 mm
with a spacing of 15 cm. The circumferential beam was fastened using screws—Figure 2a.
After 28 days, walls were made of autoclaved aerated concrete masonry elements. The
dimensions of a single block were 18 × 59 × 24 cm (width × length × height). The walls
are designed in such a way as to minimize the need to cut the blocks—the walls were ten
layers of masonry elements high, each 4 m long. In one of the walls of the building was a
door opening 100 cm wide and 192 cm high (eight layers of masonry blocks). The opening
is covered with a prefabricated system lintel made of AAC. The walls were erected with a
thin joint without filling the head joints—Figure 2b.
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Figure 2. Construction stages; (a) formwork of the lower perimeter beam; (b) erection of masonry
walls made of autoclaved aerated concrete; (c) slab top reinforcement; (d) concreting the slab.

On the walls, precast L-shaped elements were laid, which were made of lightweight
concrete. On the fittings, there was reinforcement consisting of Ø12 mm main rods and
Ø 6 mm stirrups at a distance of 15 cm, similarly to the bottom beam. Instead of the
traditional monolithic slab, a modern slab structure consisting of precast elements was
made. Three prefabricated panels 1200 mm wide each with four prestressed ribs were used.
In order to reduce the total weight of the slab, polystyrene was inserted between the ribs.
The thickness of the precast slab element was 4 cm and 12 cm at the connection with the
rib. Reinforcement hooks with a diameter of Ø10 mm with a spacing of 100 cm were built
up on the perimeter, which constituted the upper reinforcement for a partial moment. The
top surface reinforcement was placed at the very end in the form of Ø4 mm diameter nets
with a mesh size of 15 cm—Figure 2c. After the reinforcement was made, the structure was
monolithized with a 5 cm thick concrete overlay—Figure 2d. Figure 3 shows the details of
the slab structure.
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Figure 3. Slab construction; (a) cross-section of panels; (b) longitudinal section of the panels;
1—masonry wall made of autoclaved aerated concrete; 2—precast L-shaped element made of
lightweight concrete; 3—reinforcement of the circumferential top beam; 4—precast, pretensioned
panel slab; 5—lightweight filling–polystyrene; 6—concrete overlay; 7—the monolithic connection
between panels.
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Both models were made of AAC masonry units on a system mortar class M5 with
thin-layer bed joints and unfilled head joints. The compressive strength of the wall was
determined according to PN-EN 1052-1 [58] and was f c = 2.97 N/mm2, and the modulus
of elasticity was equal to Em = 2040 N/mm2. The initial shear strength was determined
according to the procedures specified in PN-EN 1052-3: 2004 [59] and was f vo = 0.31 N/mm2.
The average coefficient of friction of the mortar in the bed joints was equal to µ = 0.92.
The shear modulus was determined according to ASTM E519-81 [60] and was equal to
G = 329 N/mm2.

2.2. Test Stand

Stiffening walls are horizontally loaded due to the action of wind, uneven building
settlement or paraseismic loads. In order to analyze the behavior of such structures, a
dedicated test stand was built—Figure 4.
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Figure 4. Research model in the test stand; 1—slab; 2—masonry wall made of autoclaved aerated
concrete units; 3—ring bottom beam; 4—ring top beam; 5—fixing the building model in the slab of
great forces; 6—hydraulic cylinder; 7—force gauge; 8—steel column.

The research models were erected in the laboratory hall. Next to the building, a steel
column with a brace was placed halfway along the length of the walls. The horizontal shear
force was induced by a hydraulic actuator supported by steel construction mounted on the
steel column. The operating range of the hydraulic jack was 1000 kN. The load was applied
to the building at the axis level of the slab. The dynamometer of range 250 kN enabled the
measurement of horizontal force.

Moreover, the actual stiffening walls are loaded with dead loads (self-weight and
weight of finishing layers) and live loads (resulting from the utility function of the building).
It means that during wall shearing, initial compressive stresses occur in it. For inducing
initial stress in walls, weights with a diameter of 60 cm and a height of 30 cm were used.
The vertical load was suspended on the twelve steel rods, and on each rod hung three
weights—Table 1. The view of loads of the models is shown in Figure 5, and the values of
initial compressive stresses are in Table 2. The research model in the test stand is presented
in Figure 6.
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Table 1. Vertical loads of research models—details.

Type of Load Description Value, kN

dead self-weight of slab 57.00

live
one weight 2.04

load per one steel rod 6.12
total load of 12 steel rods 73.44

Table 2. Initial compressive stresses in the masonry walls.

Description Value

total vertical load on the walls, Pc 130.44 kN
the area of the horizontal layout of the walls, Ac 2.82 m2

compressive prestress of the walls, σc 46,33 kPa (~0.05 MPa)
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Figure 6. Research model in the test stand; 1—prestressed precast slab panel; 2—reinforcement of
the top ring beam; 3—top reinforcement of the slab; 4—steel C-profile; 5—precast lintel; 6—load
suspension points; 7—visible weights.
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2.3. Measurement Methodology

There were mounted measuring bases on each model’s walls (measuring frame). The
size of the frame system was designed to cover the largest possible area of the wall and
avoid edge disturbances. The frames were rectangular, 3260 mm long, and 2150 mm high—
Figure 7. Linear variable differential transformer (LVDT) sensors [61] measured the change
in vertical and horizontal segments and the length of diagonals of the measurement base.
LVDT sensors with a measuring range of 20 mm (PJX-20) were mounted on the diagonals,
LVDT sensors with a range of 10 mm (PJX-10) on the vertical and horizontal frames. The
accuracy of the indications was 0.002 mm. The measuring base was attached to the masonry
wall point-by-point in the corners with screws. This solution allows the measurement of
the shear strain in the elastic range and the deformation angle in the nonlinear range.
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Figure 7. Frame system mounted on each model’s walls to measure shear strain and deformation
angle; H—horizontal shear force; 1—rigid diaphragm; 2—concrete foundation; 3—masonry wall
made of AAC; 4—measuring base; a0, c0—horizontal part of the frame system; b0, d0—vertical part of
the frame system; e0, f 0—diagonal part of the frame system.

Basic lengths of the measuring frame fragments changed by a value of ∆a, ∆b, ∆c,
∆d, ∆e, ∆f. After deformation, the total length of vertical fragments was calculated from
Equations (1) and (2); horizontal fragments from Equations (3) and (4) and diagonals from
(5) and (6).

bd = b0 + ∆b (1)

dd = d0 + ∆d (2)

ad = a0 + ∆a (3)

cd = c0 + ∆c (4)

ed = e0 + ∆e (5)

fd = f0 + ∆f (6)

The value of the change in the length of the measuring frame fragments was used to
determine the partial deformation angles θi (where i = 1, 2, 3, 4) isolated from the deformed
measuring system—Figure 8. The partial values of the global deformation angle were
calculated based on the law of cosines (relations (7)–(10):
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- the triangle formed by lines ad, dd and f d:

f 2
d = a2

d + d2
d − 2addd · cos

(
π
2 + θ1

)
→

θ1 = −π
2 + arccos

(
a2

d+d2
d− f 2

d
2addd

)
(7)

- the triangle formed by lines cd, dd and ed:

e2
d = c2

d + d2
d − 2cddd · cos

(
π
2 − θ2

)
→

θ2 = π
2 − arccos

(
c2

d+d2
d−e2

d
2cddd

)
(8)

- the triangle formed by lines ad, bd and ed:

e2
d = a2

d + b2
d − 2adbd · cos

(
π
2 − θ3

)
→

θ3 = π
2 − arccos

(
a2

d+b2
d−e2

d
2adbd

)
(9)

- the triangle formed by lines bd, cd and f d:

f 2
d = b2

d + c2
d − 2bdcd · cos

(
π
2 + θ4

)
→

θ4 = −π
2 + arccos

(
b2

d+c2
d− f 2

d
2bdcd

)
(10)
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Figure 8. Deformation of measuring base (frame system) due to the action of shear force;
H—horizontal shear force; 1—rigid diaphragm; 2—concrete foundation; 3—masonry wall
made of AAC; 4—measuring base before deformation; 5—measuring base after deformation;
ad, cd—deformed horizontal part of the frame system; bd, dd—deformed vertical part of the frame
system; ed, f d—deformed diagonal part of the frame system.

The global value of deformation angle θ at the following load levels was calculated as the
arithmetic mean of the partial values of deformation angles θi (where i = 1, 2, 3, 4)—relation
(11).

Θ =
1
n

n = 4

∑
i = 1
|Θi| (11)

The total angle of strain deformation determined from dependence 11 includes both
deformations resulting from in-plane bending (Figure 9) as well as shear (Figure 10). As a
result of bending, the lengths of the vertical bases change and horizontal lengths remain
without changes. Thanks to that, trigonometric relationships (12) and (13) enable calculating
the lengths of diagonals caused by bending moments.

c1 =

√
c2

0 −
(

dd − bd
2

)2
(12)
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The diagonal lengths resulting from the flexural deformations can be calculated ac-
cording to the Formula (13).

e1 = f1 =

√
c2

1 +
(

dd −
(

dd−bd
2

))2
→

e1 = f1 =

√
c2

0 + d2
d − 2 · dd

(
dd−bd

2

) (13)

Subtracting from the total lengths of the diagonals the lengths of diagonals resulting
from only in-plane bending, the differences in the length of the diagonals are obtained—
relationships (14) and (15).

∆ f1 = fd − f1 (14)

∆e1 = ed − e1 (15)

The diagonal lengths resulting from the shear deformations can be calculated accord-
ing to Formulas (16) and (17).

fs = f0 + ∆ f1 (16)

es = e0 + ∆e1 (17)
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Figure 9. Deformation of measuring base resulting from flexural deformation; V—vertical force;
M—in-plane bending moment; 1—rigid diaphragm; 2—concrete foundation; 3—masonry wall made
of AAC; 4—measuring base before deformation; a0, c0—undeformed horizontal part of the frame
system; e1, f 1—deformed diagonal part of the frame system (result from flexural deformation).
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Figure 10. Deformation of measuring base resulting from shear deformation; H—horizontal shear
force; 1—rigid diaphragm; 2—concrete foundation; 3—masonry wall made of AAC; 4—measuring
base before deformation, 5—measuring base after deformation; ad, cd—deformed horizontal part of
the frame system; b0, d0—undeformed vertical part of the frame system; es, f s—deformed diagonal
part of the frame system (result from shear deformation); θ1s, θ2s, θ3s, θ4s—values of partial strain
deformation angles.

Values of partial angle of strain deformation can find it from the law of cosines:

- the triangle formed by lines d0, f s and ad:

f 2
s = d2

0 + a2
d − 2d0ad · cos

(
π
2 + θ1s

)
→

θ1s = −π
2 + arccos

(
d2

0+a2
d− f 2

s
2d0ad

)
(18)

- the triangle formed by lines cd, es and d0:

e2
s = c2

d + d2
0 − 2cdd0 · cos

(
π
2 − θ2s

)
→

θ2s = π
2 − arccos

(
c2

d+d2
0−e2

s
2cdd0

)
(19)

- the triangle formed by lines ad, es and b0:

e2
s = a2

d + b2
0 − 2adb0 · cos

(
π
2 − θ3s

)
→

θ3s = π
2 − arccos

(
a2

d+b2
0−e2

s
2adb0

)
(20)

- the triangle formed by lines b0, f s and cd:

f 2
s = b2

0 + c2
d − 2b0cd · cos

(
π
2 + θ4s

)
→

θ4s = −π
2 + arccos

(
b2

0+c2
d− f 2

s
2b0cd

)
(21)

The mean value of the partial strain deformation angle is determined by Formula (22).

Θs =
1
n

n = 4

∑
i = 1
|Θis| (22)

Although the partial angle of strain deformation helps determine the shear modulus
in further analysis, the total strain angle deformation (consisting of shear and flexural
deformation) allows for calculating the stiffness of entire walls.
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3. Results
3.1. Crack Morphology and Digital Image Correlation

After the research, a detailed inventory of the cracks and damages was done—Figure 11.
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Figure 11. The crack pattern of tested masonry buildings; (a) front view of MW-AAC-010/1 model;
(b) back view of MW-AAC-010/1 model; (c) front view of MW-AAC-010/2 model; (d) back view of
MW-AAC-010/2 model; the blue arrow marks the horizontal load.
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The propagation of the cracks was captured using the DIC system—Figures 12 and 13.
Figure 14 shows the wall displacement with the door opening along the horizontal force (a)
and the displacement from the out-of-plane (b).

The cracks on both models were similar. Initial cracks formed at the door opening
corners where tensile strength occurred—Figure 11a,c and Figure 12a. The cracks appeared
through the bed joints on which the lintel rested and along one head joint. A load increase
caused cracks in the wall without openings—Figure 11b,d. The cracks occurred through
the bed and head joints and covered about half of the length of the wall—Figure 13a,b.

Diagonal cracks of the vertical pillars appeared during the load increase, and the pre-
viously formed damages in the corner developed towards the top ring beam—Figure 11a,c
and Figure 12b. The cracks in the vertical pillars occurred from the load side up to approxi-
mately 75% of the wall length. After reaching the maximum load, the cracks in the wall
without holes (Figure 13c,d) and damage in the pillars between the holes reached almost
the entire diagonal length. In addition, cracks formed in the pillars near the base of the wall.
An apparent increase in the displacements of the stiffening walls resulted in the cracking of
the lower corners of the walls—Figure 11.
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Figure 12. The crack propagation—MW-AAC-010/1 model; (a) crack pattern—Hx = 32.23 kN; (b) 
crack pattern—Hx = 46.39 kN; (c) crack pattern—Hx = 58.22 kN; (d) crack pattern—Hx = 42.40 kN 
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Figure 12. The crack propagation—MW-AAC-010/1 model; (a) crack pattern—Hx = 32.23 kN;
(b) crack pattern—Hx = 46.39 kN; (c) crack pattern—Hx = 58.22 kN; (d) crack pattern—Hx = 42.40 kN
(post-peak behavior).
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Figure 13. The crack propagation—MW-AAC-010/2 model; (a) crack pattern—Hx = 48.05 kN; (b) 
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Figure 14. Post peak deformation analysis—MW-AAC-010/1 model—Hx = 42.40 kN; (a) displace-
ment along the X axis; (b) displacement along the Z axis. 
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through the bed joints on which the lintel rested and along one head joint. A load increase 

Figure 13. The crack propagation—MW-AAC-010/2 model; (a) crack pattern—Hx = 48.05 kN;
(b) crack pattern—Hx = 48.60 kN; (c) crack pattern—Hx = 69.25 kN; (d) crack pattern—Hx = 42.77 kN
(post-peak behavior).
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3.2. Behavior of Stiffening Walls

The behavior of the stiffening walls is shown in the diagrams of the horizontal force-
deformation angle relationships—Figures 15 and 16.
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Figure 15. Relationship between horizontal force and strain deformation angle for MW-AAC-010/1
model; (a) results for A and B wall (b) results for 1 and 2 wall.
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Figure 16. Relationship between horizontal force and strain deformation angle for MW-AAC-010/2
model; (a) results for A and B wall (b) results for 1 and 2 wall.

In the first MB-AAC-010/1 model, in wall A, full results could not be obtained due
to problems with the LVDT sensors. The force causing the crack in the corner of the
opening (wall A) was equal Hcr,1 = 13.66 kN. In the wall without holes (wall B), the cracks
appeared at force Hcr = 49.49 kN (first model) and Hcr = 46.39 kN (second model). The
maximum force for the MB-AAC-010/1 model was equal Hu = 58.34 kN, and for the MB-
AAC-010/2 model, the maximum force was equal Hu = 69.25 kN. In the post-elastic phase,
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the deformations increase at the stabilized force. The residual forces were determined
at approximately70–80% of the maximum forces and were equal Hre, model 1 = 46.96 kN
and Hre, model 1 = 49.66 kN (walls B without door opening). The deformation angles in
the stiffening walls (A and B) were greater than in the perpendicular walls (1 and 2). The
deformation angle at the maximum force was Θu = 0.76 mrad (wall B in the second model);
in walls 1 and 2, deformation angles were equal to about Θu = 0.17 and Θu = 0.13 mrad.
Detailed test results for the stiffening walls are shown in Table 3. An attempt to capture the
behavior phases is shown in Figure 17.

Table 3. Summary of test results.

Model Model Wall

Initial Phase Elastic Phase Nonlinear Phase Post-Peak
Residual Phase

Hcr,1,
kN

Θcr,1,
mrad

Hcr,
kN

Θcr,
mrad

Hu,
kN

Θu,
mrad

Hre,
kN

Θre,
mrad

MB-AAC-010/1
with door opening

(wall A) 13.66 0.001 - -
58.34

- - -

without door
opening (wall B) - - 49.49 0.07 0.74 46.96 2.35

MB-AAC-010/2
with door opening

(wall A) 9.76 0.02 49.51 0.38
69.25

1.89 50.04 2.84

without door
opening (wall B) - - 46.39 0.10 0.76 49.66 2.03Materials 2022, 15, x FOR PEER REVIEW 17 of 25 
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opening.

4. Analysis of Research Results
4.1. Proposition of an Empirical Method of Load Distribution on Stiffening Walls

In line with the purpose of the work, an attempt was made to determine the values
of horizontal forces acting on individual stiffening walls (walls A and B located along the
load direction). Such forces depend on the stiffness defined as the quotient of the total load
corresponding to the displacement—Formula (23):

K =
H
∆

=
H

θ · h (23)

In which: H—total load acting on the wall; ∆—horizontal displacement; θ—shear
deformation angle; h—wall height.
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The total stiffness of the building can be calculated as:

Ktot =
Htot

∆tot
=

Htot

θmv · h
(24)

Htot—total load acting on a building; ∆tot—total displacement of a building; θmv—
mean value of deformation angle of stiffening walls (walls located along horizontal load
direction) calculated according to Formula (25); h—wall height.

θmv =
θA + θB

2
(25)

The total stiffness of the building was calculated in each behavior phase. The results
are summarized in Tables 4 and 5.

Table 4. Stiffness of the building model MB-AAC-010/2.

Model Model Wall

Initial Phase Elastic Phase Nonlinear Phase Post-Peak
Residual Phase

Θcr,1,mv,
mrad

Ktot,cr,1,
kN/mm

Θcr,mv,
mrad

Ktot,cr,
kN/mm

Θumv,
mrad

Ktot,u,
kN/mm

Θres,mv,
mrad

Ktot,re,
kN/mm

MB-AAC-010/2 Wall A and B - - 0.24 76.01 1.32 19.90 2.43 7.79

Table 5. Stiffness of stiffening walls based on the test.

Model Wall

Initial Phase Elastic Phase Nonlinear Phase Post-Peak
Residual Phase

Ktot,cr,1,
kN/mm

Ktot,cr,
kN/mm

Ktot,u,
kN/mm

Ktot,re,
kN/mm

MB-AAC-010/1
with door opening (wall A) 5979.31 - - -

without door opening (wall B) - 255.15 29.84 7.58

MB-AAC-010/2
with door opening (wall A) 187.60 49.33 13.93 6.70

without door opening (wall B) - 179.86 34.82 9.32

In order to determine the load acting on individual stiffening walls, relationships that
determine the proportions of the shear deformation angles in ΘA/ΘB = ω as a function of
the acting load and shown in Figure 18.
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The forces in the stiffening walls balance the total force acting on the building, and the
equilibrium condition is as follows:

Htot = HA + HB (26)

Formula (26) can be developed as:

Ktot · ∆tot = KA · ∆A + KB · ∆B = Ktot · θmv = KA · θA + KB · θB = KA · θB · ω + KB · θB = (KA · ω + KB)θB →
Ktot

(KA · ω+KB)
= θB

θmv

(27)

Having regard to that:

KB =
HB

θB · h
→ θB =

HB

KB · h
(28)

The value of the force acting on the stiffening wall B can be calculated from For-
mula (29):

Ktot · θmv
(KA · ω+KB)

= θB = HB
KB · h

HB = KB · h Ktot · θmv
(KA · ω+KB)

(29)

The value of the force in wall A can be determined in the same way. A summary of
the values of the forces in each behavior phase is presented in Table 6.

Table 6. Forces acting on stiffening walls in the MB-AAC-010/2 model.

Model Wall

Initial Phase Elastic Phase Nonlinear Phase Post-Peak
Residual Phase

Hcr,1,
kN

Hcr,
kN

Hu,
kN

Hre,
kN

MB-AAC-010/2
with door opening (wall A) - 19.27 34.62 17.05

without door opening (wall B) - 28.67 34.62 32.80

HA/HB - 0.67 1.00 0.52

As the load increases, the degradation of stiffness is significant, as well as the redistri-
bution of internal forces. A wall without an opening takes greater force than a perforated
one. After gaining maximum load-bearing capacity, the differences between walls are
minor.

4.2. Determination of Internal Forces by the Analytical Method

In addition to the empirical method of determining internal forces in stiffening walls,
the author’s [6] method was used to calculate the stiffness and load distribution. The shear
forces in the walls were determined from the following formulas:

• shear forces due to the load Hx and Hy:

Hx,i = Hx
Ky,i

∑i Ky,i
, Hy,i = Hy

Kx,i

∑i Kx,i
(30)

• shear forces induced by torsional moments Msx and Msy:

Hxs,i = ±Msx
axiKy,i

∑i a2
xiKx,i+∑i a2

yiKy,i
, Hys,i = ±Msx

axiKy,i

∑i a2
xiKx,i+∑i a2

yiKy,i
,

Hxs,i = ±Msy
axiKy,i

∑i a2
xiKx,i+∑i a2

yiKy,i
, Hys,i = ±Msy

axiKy,i

∑i a2
xiKx,i+∑i a2

yiKy,i
,

(31)

In which: axi, ayi—distances between the gravity center of the wall fragments and the
rotation centre (RC); hm—height of the wall.

The bending moments are:
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• bending moments due to load Hx and Hy:

Mox,i = Mox
Kx,i

∑i Kx,i
, Moy,i = Mox

Ky,i

∑i Ky,i
, (32)

• bending moments due to torsional moments of the building Msx and Msy:

Msx,i = ±Hxs,ihm, Msy,i = ±Hys,ihm (33)

The coordinates of the rotation centre (RC) are derived from the equilibrium of forces
according to the following Formula (34):

xR =
∑i(axiKxi)

∑i Kxi
, yR =

∑i(ayiKyi)

∑i Kyi
, (34)

In which: axi, ayi—the distance between the load centre (LC) and the rotation center of
the wall or stiffening group, Kxi, Kyi—stiffness of the wall or stiffening group.

After calculating the stiffness of the wall with an opening—a single wall was divided
into zones weakened by perforation and zones of greater stiffness (lintel and bottom
spandrel)—Figure 19. The displacement from the unit load of the upper edge of the wall
with concentrated force and the bending moment was determined, analogously to Canadian
regulations [62]. The total displacement of the upper edge of the wall is the sum of the
displacements of the bottom spandrels, inter-opening pillars and lintels—Formula (35):

∆w = A∆w + P∆w + B∆w (35)

In which: A∆w, B∆w—displacement of the bottom spandrel and lintel, P∆w—displacement
of the wall with the opening of height h0 and length l.
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The displacements of the wall components depend on the geometry and boundary
conditions. If the height ratio to the wall’s length is h/l > 2, the effects of tangential stresses
in determining the wall stiffness can be neglected. Otherwise, the stiffness should be
calculated, considering shear deformations. Wall stiffness depending on the boundary
conditions is shown in Table 7.
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Table 7. Stiffness of walls subjected to shear with bending.

Static Scheme
h/l ≤ 2 h/l ≥ 2

Force P Moment M Force P Moment M

Cantilever type “C”

Kp = 1
h3

m
3EI +

1.2hm
GA

2EI
h2

m
KM = 3EI

h3
m

KM = 2EI
h2

m
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After calculating the total displacement of the wall, its stiffness can be estimated fol-

lowing the Formula (36): 

𝐾𝑤 =
1

∆𝑤
 (36) 

Δw—is the total displacement of the top edge of the wall due to unit load H = 1. 

After calculating the total displacement of the wall, its stiffness can be estimated
following the Formula (36):

Kw =
1

∆w
(36)

∆w—is the total displacement of the top edge of the wall due to unit load H = 1.
The analytical calculations of the stiffening walls were carried out according to the

following procedure:

1. The length of the transverse wall fragment beff1 was assumed following the recom-
mendations of Eurocode 6 [1].

2. Wall with the opening was divided into fragments as shown in Figure 19. Moments
of inertia of the wall components were calculated, taking into account the transverse
beff1 parts.

3. Static schemes of each component were established: “C”—cantilever wall, “F”—
restrained wall.

4. The stiffness K of the wall components were determined according to the formulas in
Table 7.

5. The stiffness of walls was determined according to Figure 19 and dependence (35),
6. The distances axi, ayi to the load center (LC) were assumed.
7. The localization of the rotation center was calculated according to Formula (34).
8. The internal forces in walls were calculated according to Formulas (30)–(33).

The results of the geometric data and wall stiffness calculations are given in Table 8.
Based on Formula (34), the coordinates of the torsion center are: xR = 0 m, yR = −0.61 m.
Based on Formulas (30)–(31), the internal forces calHcr and calHu in walls were calculated—
Table 9.
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Table 8. Geometric and stiffness characteristics of walls.

Wall or Component
Moment of

Inertia
I, m4

Surface
A, m2

Static
Scheme

Distance from the Center of
Gravity of the Wall to a Point LC

a, m

Stiffness
K, MN/m

1 Ix2 = 1.59 4.18 “F” ax2 = 1.91

2 Ix2 = 1.59 4.18 “F” ax2 = 1.91 Kx,2 = 114.0

A
A’ IyA’ = 1.59 4.18 “F”

axA =1.91
Ky,A’ = 592.8

Ky,A = 81.5C IyC = 0.09 0.09 “F” Ky,C = 47.2
D IyD = 0.09 0.09 “F” Ky,D = 47.2

B IyB = 1.5 4.18 “F” axB = –1.91 Ky,B = 114.0

Table 9. Comparison of test results and analytical analysis.

Model Wall
Elastic Phase Nonlinear Phase

Hcr,
kN

calHcr,
kN Hcr/calHcr

Hu,
kN

calHu,
kN Hu/calHu

MB-AAC-010/2

with door opening (wall A) 19.27 19.38 0.99 34.62 27.99 1.24
without door opening (wall B) 28.67 28.56 1.00 34.62 41.25 0.84

sum 47.94 47.94 - 69.24 69.24 -

The best convergence of the empirical load distribution on the walls with the analytical
model was obtained at the crack phase. The most significant discrepancies in results were
obtained at the maximum load in the wall. The estimated shear force in the linear-elastic
model was over 24% lower than the empirical value (test) in the wall with a window
opening. The opposite situation occurred in the wall without the door opening, and the
empirical load estimation was almost 16% lower. There was internal forces redistribution
from a wall without an opening (stiffer) to a wall of lower stiffness with an opening. This
phenomenon occurs when the walls differ in their initial stiffness.

5. Discussion and Conclusions

The article presents the results of tests of two models of buildings made of masonry
units made of AAC. Stiffening walls with and without a door opening were erected along
the load direction. The studies analyzed the values of the forces acting on the building and
the shear deformation angles. Based on the damage morphology, it was shown that the first
crack formed in the tensile corner of the door opening, and the subsequent cracks formed
in the wall without a hole. A load increase caused the crack propagation. The values of
the total stiffness of the building and the stiffness of individual walls were determined
empirically based on elementary relationships. Based on the changes in the value of the
shear deformation angles, the phases of work of the stiffening walls were determined:

1. the initial phase (cracks in the tensile corner); 0—Hcr,1,
2. elastic phase (cracks in the wall without opening); Hcr,1—Hcr,
3. nonlinear phase (up to maximum horizontal force); Hcr—Hu,
4. post-peak residual phase (decrease the horizontal force and stabilization of shear

deformations); Hu—Hre.

Two approaches to the determination of forces in stiffening walls have been proposed:

(a) empirical approach—based on empirical proportions between the deformation an-gles
of the walls,

(b) analytical approach—based on determining the stiffness of each wall based on its
components [6].

The results were compared with the empirical ones. The most remarkable differences
were found at the maximum load level. The force values decreased in the wall with initially
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higher stiffness, and in the wall with a door opening, they increased. The obtained result
proves the potential redistribution of internal forces of 25%, which is over 10% more than the
recommendations of Eurocode 6. Further work in this area will concern the determination
of the level of loads at which the permissible redistribution of loads of 15% is achieved.

The presented research results are only a part of a more extensive study of stiffening
walls in masonry buildings, including the new concept of analytical models and extensive
Finite Element Method analysis. The research will define and verify the algorithm for
determining the redistribution of internal forces in the stiffening walls.
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