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Abstract: Reinforced concrete (RC) structures suffer from different types of loads during service
life, and the corrosion characteristics of steel bars embedded in concrete under load are different
from those under non-load. In this paper, when the interface between steel bars and concrete (IBSC)
cracked and the concrete cover surface (CCS) cracked, the effects of load on the critical corrosion
depth of steel bars were analysed based on the thick-walled cylinder model, and a prediction model
for the corrosion-induced longitudinal cracking (CLC) time (i.e., initiation cracking time) of the CCS
of RC structures under load was proposed. Finally, the influence of load on the CLC time of CCS
was discussed on the basis of the proposed prediction model. The results showed that the load had
a significant effect on the critical corrosion depth of steel bars when the IBSC cracked induced by
corrosion, while the influence of load on the critical corrosion depth of steel bars when the CCS
cracked induced by corrosion was not obvious. When the CCS cracks induced by corrosion under
load, the influence of the rust-filling layer on the critical corrosion depth of steel bars was larger than
that of the load. With the increase in load, the CLC time of CCS decreased. The calculated values of
the proposed prediction model were in reasonable agreement with the experimental values, which
can provide a reference for durability evaluation and service life prediction of RC structures and lay
the foundation for the investigation of the corrosion depth of steel bars in concrete under load.

Keywords: steel corrosion; rust-filling layer; thick-walled cylinder model; critical corrosion depth;
prediction model

1. Introduction

In coastal, marine, or other chloride environments, chloride ion erosion is the main
cause of steel corrosion in reinforced concrete (RC) structures, and corrosion further leads to
the degradation of the durability of RC structures [1,2]. The chloride ions in the environment
reach the surface of steel bars through the pores and micro-cracks inside the concrete, and
their concentration is continuously accumulated on the reinforcement surface. When the
chloride ion concentration reaches a threshold, the dense passive film on the surface of
the steel bars is destroyed, and then, with the presence of oxygen, the local corrosion is
activated. Subsequently, the steel bars undergo electrochemical corrosion, that is, the steel
dissolution reaction of the anode and the oxygen consumption reaction of the cathode
occur simultaneously on the surface of the steel bars [3]. Generally, chloride ion erosion
will cause non-uniform corrosion of steel bars, which is serious on the side of steel bars
facing the concrete cover surface (CCS). Non-uniform corrosion can significantly reduce the
strength and ductility of steel bars [4,5] and then lead to the degradation of the load-bearing
capacity, stiffness, and ductility of RC structures [6]. There are many factors affecting the
corrosion of steel bars in concrete, such as the water-binder ratio or concrete strength,
mineral admixture, cement type, concrete cover thickness, reinforcement type and diameter,
temperature and relative humidity, chloride ion concentration, external load, crack width,
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etc., [7–12] and it should be noted that under different conditions, the main influencing
factors of steel corrosion will be different.

After the corrosion of steel bars embedded in concrete, the volume of corrosion
products is approximately 2–4 times that of the original steel [13,14]. As a result, the
corrosion products exert pressure on the surrounding concrete, which causes cracks at
the interface between steel bars and concrete (IBSC) when the concrete strain reaches
its ultimate tensile strain. Generally, the higher the strength of concrete, the larger the
initial cracking time of IBSC under the same conditions [15]. As the development of steel
corrosion, the cracks extend from the IBSC to the CCS, which provides a way for corrosive
media to quickly reach the surface of steel bars, resulting in the accelerated corrosion of
reinforcement, causing serious damage or even the spalling of the concrete cover [16,17].
Therefore, studying the corrosion-induced cracking process of the concrete cover is of great
significance to predict the durability life of RC structures.

The models for studying the corrosion-induced cracking process of the concrete cover
can be divided into three types including the empirical model, numerical model, and
analytical model. The empirical models are derived by fitting the experimental data under
different experimental conditions, which mainly consider the effects of some parameters
on corrosion-induced cracking, such as concrete cover thickness, the ratio of concrete cover
thickness to the diameter of steel bars, concrete strength, mass loss of steel bars, and so
on [18–20]. Therefore, the applicability of these empirical models is limited to certain
conditions, which cannot really reveal the corrosion-induced cracking mechanism of the
concrete cover. The numerical models adopted by researchers are used to consider the non-
linear behavior during the process of corrosion-induced cracking of the concrete cover, and
the resulting equilibrium equations are solved numerically by either finite element [21–23]
or finite difference methods [24]. Generally, the analytical models require some assumptions
considering the material’s behaviour and can be solved using a closed-form solution, and
in the analytical models, the parameters have specific physical meanings [1]. At present,
different analytical models have been proposed to analyse the corrosion-induced cracking
of the concrete cover based on the thick-walled cylinder model, in which the concrete cover
is divided into an inside cracked and an outside un-cracked region [13,25–28].

The three-stage model [16] has been widely used to quantitatively describe the cracking
process of the concrete cover caused by the corrosion of steel bars. In this model, it is
assumed that the corrosion-induced cracking process of the concrete cover is divided into
three stages: (1) the stage when corrosion products fill the pores at the IBSC, (2) the stage in
which the corrosion products exert expansion pressure on the surrounding concrete, and
(3) the stage in which the corrosion products fill the cracks. According to the three-stage
model, the corrosion amount of steel bars corresponding to the three stages should be
considered to predict the corrosion-induced cracking time of the concrete cover.

However, some researchers [29–32] have found that the average thickness of the
rust-filling layer increased with the thickness of the rust layer until the thickness of the
rust layer reached a critical value, that is, the rust was constantly filling the pores of
surrounding concrete during the formation of rust layer, which is obviously different from
the assumptions of the three-stage model. They also found that, before the corrosion-
induced cracks reached the CCS, the rust would not fill the cracks and the pores of concrete
near the cracks. Similarly, Chernin et al. [33] revealed that while the rust filled the pores
of the IBSC, it continuously filled the pores of the surrounding concrete. Zhao et al. [34]
also confirmed that when the concrete cover surface cracked induced by corrosion, the rust-
filling layer was still developing. Thus, the rust filling the pores of the surrounding concrete
should be taken into consideration when establishing the corrosion-induced cracking model
of the concrete cover.

Because the rust fills the pores of the concrete, a rust-filling layer is formed in the
surrounding concrete. Some researchers have established corrosion-induced cracking
models of the concrete cover considering the effect of the rust-filling layer, while the effect
of the load was not considered in their models [30,31]. During the service stage, RC
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structures suffer from different loads, and the loads affect the corrosion characteristics of
steel bars embedded in concrete [35–37]. In contrast to that without considering load, the
load can shorten the initial corrosion time, change the corrosion rate and the corrosion
distribution, and cause local pitting of steel bars in RC structures [38–40], resulting in
serious corrosion-induced cracking of the concrete cover [41,42]. Therefore, the influence
of load should be considered when establishing the corrosion-induced cracking model
of the concrete cover. However, to the best knowledge of the authors, the study of the
corrosion-induced cracking model considering the effect of the load is severely inadequate.

To fill this research gap, in this paper, based on the thick-walled cylinder model, the
effect of the load was considered to analyse the critical corrosion depth of steel bars when
the IBSC cracked and the CCS cracked. Then, a prediction model for the corrosion-induced
longitudinal cracking (CLC) time (i.e., initiation cracking time) of the CCS of RC structures
under load was proposed, and the rationality of the prediction model was verified by the
experimental data of Wang et al. [43]. Finally, based on the proposed prediction model, the
influence of load on the CLC time of CCS was analysed.

2. Interaction between Ribbed Steel Bars and Surrounding Concrete under Load

The bonding force between ribbed steel bars and surrounding concrete consists of
three parts: the chemical adhesive force between the cement gel and the surface of steel
bars, the friction force between steel bars and concrete, and the mechanical interlocking
force between the transverse ribs of steel bars and concrete. Among them, the mechanical
interlocking force is the main part of the bonding force. The oblique extrusion force between
the transverse ribs of steel bars and the surrounding concrete forms slip resistance. The
component force of the oblique extrusion force along the axial direction of the steel bars
makes the concrete between two transverse ribs bend and shear as a cantilever beam, which
causes oblique cracks inside the concrete. The radial component of the oblique extrusion
force makes the surrounding concrete like a pipe wall under internal pressure, resulting
in hoop tensile stress inside the concrete, which causes radial cracks in the surrounding
concrete. After the ribbed steel bars are subjected to a force, the distribution of cracks near
the transverse ribs is shown in Figure 1.
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Figure 1. Distribution of cracks near the transverse ribs of ribbed steel bars under load. 

After the ribbed steel bars are subjected to a force, the surrounding concrete produces 
oblique extrusion force p on transverse ribs, as shown in Figure 2. In the figure, θ is the 
angle between the concrete sliding surface near the transverse ribs and the axis of ribbed 
steel bars, and μ is the friction coefficient between the ribbed steel bars and concrete. By 
decomposing the oblique extrusion force p and friction force μp on the concrete sliding 
surface along the axis and radial directions of the ribbed steel bars, the bond stress τ and 
the radial pressure q1 can be obtained, as written in Equations (1) and (2), respectively. 

Figure 1. Distribution of cracks near the transverse ribs of ribbed steel bars under load.

After the ribbed steel bars are subjected to a force, the surrounding concrete produces
oblique extrusion force p on transverse ribs, as shown in Figure 2. In the figure, θ is the
angle between the concrete sliding surface near the transverse ribs and the axis of ribbed
steel bars, and µ is the friction coefficient between the ribbed steel bars and concrete. By
decomposing the oblique extrusion force p and friction force µp on the concrete sliding
surface along the axis and radial directions of the ribbed steel bars, the bond stress τ and
the radial pressure q1 can be obtained, as written in Equations (1) and (2), respectively.

τ = p sin θ + µp cos θ (1)

q1 = p cos θ − µp sin θ (2)
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Tepfers [44] found that the angle θ as shown in Figure 2 was 30◦–40◦, and Xu [45]
found that the angle ranged from 10◦ to 40◦, with an average of 25◦. The friction coefficient
µ between the ribbed steel bars and concrete increases with the corrosion degree of ribbed
steel bars, and if the ribbed steel bars are not corroded, the friction coefficient can be taken
as 0.3 [45]. Guo and Shi [46] showed that the steel bars changed from a non-corrosion state
to a corrosion state, and the variation range of the friction coefficient was 0.2–0.6. Zhao and
Xiao [47] confirmed that the friction coefficient between the concrete and rolled steel was
0.25–0.35. According to the above research results, θ is taken as 30◦ and µ is taken as 0.35 in
this paper.

The relationship between the bond stress τ and the radial pressure q1 can be derived
from Equations (1) and (2):

q1 =
cos θ − µ sin θ

sin θ + µ cos θ
τ (3)

The bond stress as shown in Figure 2 can be determined by establishing the mechanical
equilibrium equation along the axis direction of the ribbed steel bars:

τ =
As

2πR
dσs

dx
=

R
2

dσs

dx
(4)

where R is the radius of the ribbed steel bars, and σs is the tensile stress of the ribbed
steel bars.

Substituting Equation (4) into Equation (3), the radial pressure can be obtained as:

q1 =
cos θ − µ sin θ

sin θ + µ cos θ

R
2

dσs

dx
(5)

To calculate dσs/dx in Equation (5), it is first necessary to derive the equation between
the tensile stress of the ribbed steel bars and the bending moment, and then take the
derivative of x on both sides of the equation to obtain dσs/dx. The detailed calculation
process is as follows:

(1) During the service stage, before the load-induced cracking of RC members, the full
cross-section of RC members is subjected to force. When calculating the tensile stress of
ribbed steel bars under the bending moment, the cross-section of the steel bars needs to be
transformed to the concrete section. For RC beams with a rectangular cross-section, the
transformed cross-section is shown in Figure 3, and the area of the transformed cross-section
can be calculated by Equation (6).

A0 = bh + (n1 − 1)As + (n2 − 1)A′s (6)

where A0 is the area of cross-section after transformation, n1 denotes the ratio of the elastic
modulus of tensile steel bars to that of concrete, n2 refers to the ratio of the elastic modulus
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of the compressive steel bars to that of concrete, As is the area of cross-section of tensile
steel bars, A′s is the area of cross-section of compressive steel bars, and b and h are the
width and height of the cross-section, respectively.
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The height of the compression zone of the transformed cross-section can be determined
by the equal area moment of the tension zone and compression zone to the neutral axis of
the cross-section:

x0 =
1
2 bh2 + (n1 − 1)Ash0 + (n2 − 1)A′sa′s

bh + (n1 − 1)As + (n2 − 1)A′s
(7)

where x0 is the height of the compression zone, and h0 is the effective height of the
cross-section.

After the height of the compression zone is obtained, the moment of inertia I0 of the
transformed cross-section can be expressed as:

I0 =
b
3

[
x3

0 + (h− x0)
3
]
+ (n1 − 1)As(h0 − x0)

2 + (n2 − 1)A′s
(
x0 − a′s

)2 (8)

Therefore, before load-induced cracking of RC beams, the tensile stress of ribbed steel
bars under bending moment is:

σs =
n1M(h0 − x0)

I0
(9)

where M is the bending moment.
During the service stage, after the load-induced cracking of RC beams, the concrete

in the tension zone of the cross-section exits work, and only the steel bars in the tension
zone are subjected to force. For RC beams with a rectangular cross-section, the tensile
stress of steel bars in the tension zone of the cross-section can be calculated according to the
method of the transformed cross-section, or calculated according to the method stipulated
in China Standard (GB 50010) [48]. The latter method is adopted in this paper, as written in
Equation (10).

σs =
M

0.87Ash0
(10)

(2) For the RC beams with a rectangular cross-section, the bending moment is often
different along the length of beams under load. Taking the RC beams subjected to third-
point concentrated load (i.e., F/2) as an example (Figure 4), the bending moment can be
calculated according to Equation (11).

M(x) =


F
2 x, 0 ≤ x ≤ l1
F
2 l1, l1 ≤ x ≤ 2l1
F
2 (3l1 − x), 2l1 ≤ x ≤ 3l1

(11)
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where M(x) is the bending moment at the distance x from the left support of beams under
the third-point concentrated load, and l1 is 1/3 of the calculated span of RC beams.
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Figure 4. RC beams under the third-point concentrated load.

Substituting Equation (11) into Equations (9) and (10), respectively, the tensile stress of
ribbed steel bars can be obtained, and then Equation (5) can be rewritten as:

Before load-induced cracking of RC beams:

q1 =


n1F(h0−x0)

2I0

cos θ−µ sin θ
sin θ+µ cos θ

R
2 , 0 ≤ x ≤ l1

0, l1 ≤ x ≤ 2l1
− n1F(h0−x0)

2I0

cos θ−µ sin θ
sin θ+µ cos θ

R
2 , 2l1 ≤ x ≤ 3l1

(12)

After load-induced cracking of RC beams:

q1 =


F

1.74Ash0

cos θ−µ sin θ
sin θ+µ cos θ

R
2 , 0 ≤ x ≤ l1

0, l1 ≤ x ≤ 2l1
− F

1.74Ash0

cos θ−µ sin θ
sin θ+µ cos θ

R
2 , 2l1 ≤ x ≤ 3l1

(13)

This paper only gives the calculation formulas of radial pressure when the RC beams
with rectangular cross-sections are subjected to third-point concentrated loads. Similarly,
the calculation method of radial pressure can be established for beams under other types
of loads.

For RC structures under load, before the corrosion of steel bars, there is only ra-
dial pressure between steel bars and surrounding concrete. The thick-walled cylinder
model [44,49,50] is usually adopted to calculate the interaction between steel bars and the
concrete cover, as shown in Figure 5. In this figure, C is the thickness of the concrete cover,
d is the diameter of steel bars, and q1 is the radial pressure.
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Along the longitudinal direction of the steel bars, the concrete cover may be in un-
cracked, partially cracked, or completely cracked states under radial pressure. This paper
only discusses the longitudinal cracking of the concrete cover under the coupled effects
of load and steel corrosion; hence, the transverse cracking of the concrete cover is not
considered and is out of the scope of this paper. Assuming that the longitudinal cracks do
not generate in concrete cover under radial pressure, that is, the concrete cover is in the
elastic deformation stage (Figure 5). Therefore, the elastic theory can be adopted to calculate
the stress distribution in the concrete cover under radial pressure. According to the theory
of elasticity [51], the hoop stress at any position rx (R ≤ rx ≤ b) of the thick-walled cylinder
under radial pressure can be expressed as:

σθ(rx) =
q1R2

b2 − R2

(
1 +

b2

r2
x

)
(14)

where b is the outer radius of the thick-walled cylinder, b = d/2 + C.
Equation (14) can be used to judge the longitudinal cracking of the concrete cover:

if σθ(R) < f t, no cracking, and if σθ(R) ≥ f t and σθ(b) < f t, partial cracking. After the
corrosion of the steel bars, the surrounding concrete does not crack immediately. Corrosion
products accumulate at the IBSC and continue to exert corrosion expansion pressure q2 on
the surrounding concrete. Therefore, the time when longitudinal cracks appear on the CCS
under the combined action of corrosion expansion pressure q2 and radial pressure q1 is the
longitudinal cracking time of CCS under the coupled effects of load and steel corrosion.
The total radial pressure q calculated by Equation (15) can be directly applied to the inner
wall of the thick-walled cylinder, and then the elasticity and damage mechanics theories
are adopted to derive the time for the appearance of longitudinal cracks on the CCS.

q = q1 + q2 (15)

3. Rust Filling Model

During the corrosion-induced cracking process of the concrete cover, corrosion prod-
ucts accumulate at the IBSC forming the rust layer and filling the pores of surrounding
concrete forming the rust-filling layer. The process of corrosion products filling the pores
of surrounding concrete is affected by many factors, such as the position of the aggregate
and the distribution of pores. Zhao et al. [29,30,32] and Wu [31] found that the average
thickness of the rust-filling layer increased with the thickness of the rust layer until the
thickness of the rust layer reached a critical value, that is, the corrosion products were
constantly filling the pores of surrounding concrete during the formation of the rust layer.
The relationship between the average thickness of the rust-filling layer and the thickness of
the rust layer is shown in Figure 6 and can be expressed by Equation (16) [29,30].{

TCP = kT × TCL, TCL < Tcr
CL

TCP = Tmax
CP = kT × Tcr

CL, TCL ≥ Tcr
CL

(16)

where TCL is the thickness of the rust layer at the IBSC, TCP denotes the average thickness
of the rust-filling layer; Tmax

CP is the maximum value of TCP, Tcr
CL is the TCL corresponding to

Tmax
CP , and kT is the ratio of Tmax

CP to Tcr
CL.

To consider the influence of the rust-filling layer in the corrosion-induced cracking
model of the concrete cover, the rust-filling layer should be converted to the equivalent rust
layer as shown in Figure 7, and the thickness of the equivalent rust layer can be expressed
as [30]:

TCL,pore =
γ×

∫ 2π
0 TCPRdθ

2πR
(17)
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where TCL,pore is the thickness of the equivalent rust layer, TCP denotes the thickness of
the rust-filling layer, and γ is the porosity of concrete around the steel bars, which can be
approximately calculated as [30]:

γ =
W/C− 0.36α

W/C + 0.32
(18)

where W/C is the water–cement ratio of concrete, and α is the hydration degree of concrete.
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Generally, the average thickness of the rust-filling layer does not reach the maximum
average thickness before the CCS cracks [30,31], as shown in Figure 6. Therefore, when
establishing a prediction model for the cracking of CCS, only the case of TCL < Tcr

CL in
Equation (16) is considered. The thickness of the equivalent rust layer can be determined
according to Equation (17):

TCL,pore = γ× TCP = γ× kT × TCL, TCL < Tcr
CL (19)

It can be found from Equation (19) that the thickness of the equivalent rust layer is
related to the type of concrete. After the corrosion of the steel bars, assuming that Vrust is
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the total volume of rust, and Vsteel is the volume lost by the steel bars due to corrosion, the
actual rust volume expansion ratio n can be defined as [30]:

n =
Vrust

Vsteel
(20)

The total volume of rust Vrust is the sum of the volume of rust filling the concrete
pores Vrust,CP and the volume of rust layer Vrust,CL:

Vrust = Vrust,CP + Vrust,CL (21)

However, during the corrosion process of steel bars, only the rust layer exerts extrusion
force on the surrounding concrete, which causes the concrete cover to crack. Therefore, the
nominal rust volume expansion ratio n0 can be defined as [30]:

n0 =
Vrust,CL

Vsteel
(22)

The relationship between the actual rust volume expansion ratio and the nominal rust
volume expansion ratio is [30]:

n
n0

=
Vrust/Vsteel

Vrust,CL/Vsteel
=

Vrust,CL + Vrust,CP

Vrust,CL
= 1 +

Vrust,CP

Vrust,CL
≈ 1 +

TCL,pore

TCL
(23)

The following equation can be derived from Equations (19) and (23):

n0 =
n

1 + γ× kT
(24)

Equation (24) shows that when n = n0, the volume of rust filled into the pores of the
concrete around the steel bars is zero, and n0/n decreases with the increase of concrete
porosity γ, that is, the volume of rust filled into the pores of concrete around the steel bars
increases with concrete porosity. It can be seen from the above analysis that n0 should be
used instead of n when establishing the corrosion-induced cracking model of the concrete
cover. However, for different types of concrete, before calculating n0, the values of γ and kT
need to be determined.

4. Non-cracking Stage Model of Concrete Cover

For the thick-walled cylinder model, as shown in Figure 8, when the IBSC does not
crack under the total radial pressure q, the stress and strain at any point in the concrete
cover can be calculated by the elastic theory. In Figure 8, δcc and δr are, respectively, the
radial deformations of the concrete and rust layers at the IBSC, dρ is the residual diameter
of the steel bars after corrosion, and d1 denotes the diameter of the steel bars after the free
expansion of rust.

Stress components at any point in the concrete cover under the total radial pressure
can be formulated as [13,30]:  σr =

qR2

b2−R2

(
1− b2

r2
x

)
σθ = qR2

b2−R2

(
1 + b2

r2
x

) (25)

where σr and σθ are the radial stress and the hoop stress in the concrete cover at a distance
rx from the center of the steel bar, respectively, and b = R + C.
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Strain components at any point in the concrete cover under the total radial pressure
can be derived as [13,30]:  εr =

1+νc
Ec

qR2

b2−R2

(
1− 2νc − b2

r2
x

)
εθ = 1+νc

Ec

qR2

b2−R2

(
1− 2νc +

b2

r2
x

) (26)

where εr and εθ are the radial strain and the hoop strain in concrete cover at the distance
rx from the center of the steel bar, respectively, and Ec and vc are the elastic modulus and
Poisson’s ratio of concrete, respectively.
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According to the elastic theory, the radial displacement ur at any point in the concrete
cover can be derived by εθ = ur/rx:

ur =
1 + νc

Ec

qR2

b2 − R2

(
1− 2νc +

b2

r2
x

)
rx (27)

The critical state of cracking at the IBSC is defined as the hoop strain of concrete
reaching ultimate tensile strain: {

εθ = ur
rx

εθ|rx=R = εt =
ft
Ec

(28)

where εt and f t are the ultimate tensile strain and tensile strength of concrete, respectively.
When the IBSC cracks, the critical value qinner of total radial pressure q can be obtained

on the basis of Equations (27) and (28):

qinner =
Ecεt

(
b2 − R2)

(1 + νc)(1− 2νc + b2/R2)R2 (29)

According to the deformation coordination conditions of the concrete and rust layer at
the IBSC, the following equation can be obtained [13,30]:

R + δcc = R1 + δr (30)

where R1 is the radius of steel bars after the free expansion of rust.
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The calculation methods of parameters in Equation (30) are [13,30]:
R1 = R

√
(n0 − 1)ηs + 1

δcc = ur|rx=R = 1+νc
Ec

qR2

b2−R2

(
1− 2νc +

b2

R2

)
R

δr = −
n0(1−ν2

r )R
√

(n0−1)ηs+1
Er{[(1+vr)n0−2]+2/ηs} q

(31)

where ηs is the mass loss of steel bars, Er is the elastic modulus of rust, which can be taken
as 100 MPa [52], and vr is the Poisson’s ratio of rust, which can be taken as 0.25 [52].

When the IBSC cracks, the relationship between the critical total radial pressure qinner

and critical mass loss ηinner
s of steel bars can be derived from Equations (29) to (31):

R +
1 + νc

Ec

qinnerR2

b2 − R2

(
1− 2νc +

b2

R2

)
R = R

√
(n0 − 1)ηinner

s + 1−
n0
(
1− ν2

r
)

R
√
(n0 − 1)ηinner

s + 1

Er
{
[(1 + vr)n0 − 2] + 2/ηinner

s
} qinner (32)

The critical total radial pressure qinner can be derived from Equation (32):

qinner =

√
(n0 − 1)ηinner

s + 1− 1

(1+vc)(R+C)2+(1−2vc)R2

Ec(2RC+C2)
+

n0(1−ν2
r )
√

(n0−1)ηinner
s +1

Er{[(1+vr)n0−2]+2/ηinner
s }

(33)

Substituting x1 =
√
(n0 − 1)ηinner

s + 1 into Equation (33), and assuming M1= [(1 +

vc)(R + C)2 + (1 − 2vc)R2]/[Ec(2RC + C2)], M2 = n0(1 − v2
r )/Er, M3 = (1 + vc)n0 − 2, the

following equations can be obtained:

α11x3
1 + α22x2

1 + α33x1 + α44 = 0 (34a)
α11 = M2 −M3/qinner

α22 = M3/qinner + M1M3
α33 = M3/qinner −M2 − 2(n0 − 1)/qinner

α44 = 2M1(n0 − 1) + 2(n0 − 1)/qinner −M1M3 −M3/qinner

(34b)

The algebraic cubic equation as shown in Equation (34a) has three roots. However,
only one analytic real root for Equation (34a) is useful, which can be calculated as [53]:

x1 =
3

√√√√−N2

2
+

√(
N2

2

)2
+

(
N1

3

)3
+

3

√√√√−N2

2
−

√(
N2

2

)2
+

(
N1

3

)3
− α22

3α11
(35a)

N1 =
α33

α11
− 1

3

(
α22

α11

)2
(35b)

N2 =
2

27

(
α22

α11

)3
− 1

3

(
α22

α11

)(
α33

α11

)
+

α44

α11
(35c)

If Equation (34a) has no real roots, a real root can be approximately obtained as the
value of x1 through the MATLAB program, and then the critical mass loss of steel bars can
be determined as:

ηinner
s =

x2
1 − 1

n0 − 1
(36)

Through the critical mass loss of steel bars, the critical corrosion depth of steel bars
can be derived as:

δinner
steel =

d− dρ

2
(37a)
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dρ =
√

1− ηinner
s d (37b)

where δinner
steel is the critical corrosion depth of steel bars when the IBSC cracks.

According to the calculation model of the critical corrosion depth of steel bars es-
tablished above, to analyse the influence of load on the critical corrosion depth of steel
bars when the IBSC cracks, an example is adopted. Assuming that the length of an
RC beam is 2300 mm, its calculated length is 2100 mm, the size of its cross-section is
150 (width) × 250 (height) mm, the strength grade of concrete is C30, the tensile steel bars
are two HRB335 ribbed steel bars with a diameter of d = 18 mm and the yield strength is
f y = 335 MPa, the thickness of the concrete cover is C = 30 mm, and the actual rust volume
expansion ratio is n = 2. The parameters of concrete are tensile strength f t = 2.01 MPa,
compressive strength f c = 20.1 MPa, elastic modulus Ec = 30 GPa, and Poisson’s ratio
vc = 0.2. The range of n/n0 is about 1–1.2 [31], and 1.0 and 1.2 are taken in this example.

For the RC beam under a third-point concentrated load, the radial pressure q1 occurs at
the IBSC, which causes hoop tensile stress in the concrete cover, as shown in Equation (14).
Assuming that the hoop tensile stress at the position rx = R of the concrete cover caused by
the radial pressure is 0, 0.2, and 0.3 times the tensile strength of concrete, the tensile stress
level δT = 0, 0.2, and 0.3, meanwhile, the IBSC does not crack [54]. Figure 9 shows the critical
corrosion depth of steel bars when the IBSC cracks are induced by corrosion under load.
It can be seen from Figure 9 that the load has a significant effect on the critical corrosion
depth of the steel bars. The greater the load, the smaller the critical corrosion depth, and for
the two cases of n/n0 = 1.0 and n/n0 = 1.2, when the tensile stress level δT increases from 0 to
0.3, the critical corrosion depth is reduced by 67.9% and 59.4%, respectively. Therefore, the
influence of load needs to be considered when establishing the corrosion-induced cracking
model of the concrete cover. Figure 9 also depicts that when n/n0 = 1.2, the critical corrosion
depth is significantly larger than that of n/n0 = 1.0, which is because, the larger the n/n0,
the more rust filled into the pores of concrete around steel bars, and the rust-filling layer
does not produce squeezing force on the IBSC. As a result, the more serious the corrosion
of steel bars, the larger the critical corrosion depth of steel bars.
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Figure 9. Critical corrosion depth of steel bars when the IBSC cracks.

5. Partial Cracking Stage Model of Concrete Cover

After the IBSC cracks under the total radial pressure, the cracks propagate radially to
the surface of the cylinder. Therefore, the thick-walled cylinder can be divided into two
coaxial cylinders. The inside one is a cracked cylinder and the outside one is an intact
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cylinder, as depicted in Figure 10. In the figure, Rc represents the radius of the interface
between the cracked cylinder and the intact cylinder.
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where 
cRq  is the radial pressure at the interface between cracked and intact cylinders. 

Strain components: 
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For the cracked cylinder, assuming that the cracks are uniformly distributed on the 
circumference of the cracked cylinder and propagate outwards radially, the damage 
degree of concrete along the direction of cracks is different, which near the steel bars is 
larger than that of concrete far away from the steel bars. The relationship between the 
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Figure 10. Radial deformations of concrete and rust layers at the IBSC under the total radial pressure
in the partial cracking stage of the concrete cover.

The cracked concrete inside the thick-walled cylinder is assumed to be non-uniform
orthotropic linear elastic material, and the outside intact concrete is assumed to be isotropic
linear elastic material [33]. Then, the stress component and strain component at any point
in the intact concrete can be derived from elastic theory [55]:

Stress components:  σr =
qRc R2

c
b2−R2

c

(
1− b2

r2
x

)
σθ =

qRc R2
c

b2−R2
c

(
1 + b2

r2
x

) (38)

where qRc is the radial pressure at the interface between cracked and intact cylinders.
Strain components:  εr =

1+νc
Ec

qRc R2
c

b2−R2
c

(
1− 2νc − b2

r2
x

)
εθ = 1+νc

Ec

qRc R2
c

b2−R2
c

(
1− 2νc +

b2

r2
x

) (39)

For the cracked cylinder, assuming that the cracks are uniformly distributed on the
circumference of the cracked cylinder and propagate outwards radially, the damage degree
of concrete along the direction of cracks is different, which near the steel bars is larger than
that of concrete far away from the steel bars. The relationship between the radial stress and
hoop stress at any point in the cracked cylinder is [55]:

dσr

drx
+

σr − σθ
rx

= 0 (40)

Based on the Mohr–Coulomb failure criterion [13] and Mazar’s damage model [56],
the damage variable D is adopted to describe the damage degree of the cracked cylinder
along the radial direction. Equation (40) can be rewritten as [57]:

σθ = σr
1− (1− D) sin ϕ

1 + (1− D) sin ϕ
+

2c cos ϕ

1 + (1− D) sin ϕ
(41)

where ϕ is the internal friction angle of concrete, and c is the cohesive strength of concrete.
The internal friction angle of concrete decreases slightly with increasing concrete

strength, which can be approximately taken as 37◦, and the cohesive strength of concrete
can be determined as [30,58]:

c =
(1− sin ϕ) fc

2 cos ϕ
(42)

where f c is the compressive strength of concrete.
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The damage variable D can be derived by Mazar’s damage equation [59]:

D = 1− εt(1− At)

εθ
− At

exp[Bt(εθ − εt)]
(43)

where At and Bt are the coefficients of Mazar’s damage model, 0.7 < At < 1 and 104 < Bt < 105.
Substituting Equation (41) into Equation (40) yields [13,30]:

σr = exp
(
−
∫ rx

R

2(1− D) sin ϕ

[1 + (1− D) sin ϕ]x
dx
)(∫ rx

R

2c cos ϕ

[1 + (1− D) sin ϕ]ξ
exp

(∫ ξ

R

2(1− D) sin ϕ

[1 + (1− D) sin ϕ]x
dx
)

dξ + C0

)
(44)

The boundary conditions are expressed as:

σr = −q, rx = R (45a)
D = 0
σr = −qRc , rx = Rc
εθ = εt

(45b)

Substituting Equation (45a) into Equation (44) yields:

C0 = −q (46)

Substituting Equation (45b) into Equation (39) results in:

qRc =
ft

1 + νc

b2 − R2
c

R2
c

1
1− 2νc + b2/R2

c
(47)

Substituting Equation (45b) and Equation (46) into Equation (44), the total radial
pressure can be derived as [13,30]:

q = qRc

(
Rc

R

) 2 sin ϕ
1+sin ϕ

+
c cos ϕ

sin ϕ

(Rc

R

) 2 sin ϕ
1+sin ϕ

− 1

 (48)

Equation (48) can be simplified to Equation (29) when Rc = R. Hence, the calculated
results obtained at the non-cracking stage and partial cracking stage of the concrete cover
are continuous. To simplify the calculation, the cracked cylinder is divided into N concentric
rings of equal thickness, as depicted in Figure 11. For each ring, the damage variable D can
be considered constant. The radial displacement ur in the cracked cylinder should satisfy
the following equation [30,60,61]:

d2ur

dr2
x
+

1
rx

dur

drx
− (1− D)

ur

r2
x
= 0 (49)

The radial displacement at any point in the cracked cylinder can be obtained from
Equation (49), which is expressed as [13,30]:

ur = C1r
√

1−D
x + C2r−

√
1−D

x (50)

where C1 and C2 are the constants.
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According to the geometric equation between displacement and strain, the radial and
hoop strains at any point in the cracked cylinder can be derived as [13,30]:{

εr = C1
√

1− Dr
√

1−D−1
x − C2

√
1− Dr−

√
1−D−1

x

εθ = C1r
√

1−D−1
x + C2r−

√
1−D−1

x
(51)

Assuming that the thickness of each ring in the cracked cylinder is ∆R, the total
thickness of the cracked cylinder is N∆R. For the Nth ring shown in Figure 11 adjacent
to the uncracked concrete, its damage variable DN is close to 0. Therefore, it can be
assumed that the damage variable of the whole Nth ring is 0, and the constants CN

1 and
CN

2 in Equation (50) can be determined according to the condition that Equation (51) and
Equation (39) are equal at the position of rx = Rc. When the constants in Equation (50)
are determined, the radial and hoop strains at any point in the Nth ring can be calculated
according to Equation (51). Since the inner surface of the Nth ring is the outer surface of the
(N−1)th ring, for the (N−1)th ring, the constants CN−1

1 and CN−1
2 in Equation (50) can be

derived according to the strain continuity condition of the two rings at the contact surface.
The damage variable DN−1 of the (N−1)th ring can be determined by Equation (43), and
the parameter εθ in Equation (43) takes the hoop strain on the inner surface of the Nth
ring. As a result, the radial and hoop strains at any point in the (N−1)th ring can also be
calculated according to Equation (51). Similarly, the constants and strains from the (N−2)th
ring to the 1th ring can be calculated. The above-detailed analysis process can be referred
to in the literature [13]. According to the above analysis, the radial deformation of the
concrete at the IBSC is equal to the radial displacement of the inner surface of the 1th ring,
that is:

δcc = u1
r = C1

1 R
√

1−D1
+ C1

2 R−
√

1−D1
(52)

where D1 is the damage variable of 1th ring, which can be calculated according to Equation (43).
At the partial cracking stage of the concrete cover, the mass loss and corrosion depth

of the steel bars can be derived according to Equations (30)–(37). When the cracks develop
on the surface of the thick-walled cylinder, i.e., Rc = R + C, the critical corrosion depth of
the steel bars can be determined as:

δsurface
steel =

d− dρ
2

(53a)

dρ =
√

1− ηsurface
s d (53b)

where ηsurface
s is the critical mass loss of steel bars when the CCS cracks.
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To analyse the influence of load on the critical corrosion depth of steel bars when
the CCS cracks are induced by corrosion, the same example as Section 4 is used. The
internal friction angle ϕ of concrete is 37◦, the cohesion strength c = 5.01 MPa of concrete
is calculated according to Equation (42), ∆R is 1 mm, and the values of At and Bt are 0.7
and 104, respectively. Zhao et al. [13] found that when the cracks propagated to 0.8 times
the thickness of the concrete cover, the corrosion expansion force at the IBSC reached the
maximum, and at this time, even if the corrosion process of steel bars stopped, the cracks
could spontaneously extend to the CCS. Therefore, this paper assumes that when the radius
of the interface between the cracked cylinder and intact cylinder is Rc = R + 0.8C, the CCS
cracks. Assuming that the hoop tensile stress at the position rx = R of concrete cover caused
by the radial pressure is 0, 0.2, and 0.3 times the tensile strength of concrete, that is, the
tensile stress level δT = 0, 0.2, and 0.3, and meanwhile, the IBSC does not crack [54]. The
range of n/n0 is about 1–1.2 [31], and 1.0, 1.05, and 1.1 are taken in this example. When the
CCS cracks are induced by corrosion under load, the critical corrosion depth of steel bars is
shown in Figure 12.
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Figure 12. Critical corrosion depth of steel bars when the CCS cracks.

Figure 12 illustrates that the load affects the critical corrosion depth of the steel bars
when the CCS cracks, but the effect is not significant. The larger the load, the smaller the
critical corrosion depth of the steel bars. The larger the n/n0, the more rust filled into the
pores of concrete around steel bars, resulting in a larger critical corrosion depth of the steel
bars. For the three cases of δT = 0, 0.2, and 0.3, when the n/n0 increases from 1.0 to 1.1, the
critical corrosion depth of steel bars increases by 30.8%, 30.2%, and 30.6%, respectively. For
the three cases of n/n0 = 1.0, 1.05, and 1.1, when the tensile stress level δT increases from
0 to 0.3, the critical corrosion depth of the steel bars decreases by 4.6%, 4.8%, and 4.7%,
respectively. Apparently, the value of n/n0, that is, the influence of the rust-filling layer
on the critical corrosion depth of the steel bars is greater than that of the load. Compared
with the analysis results of Section 4, it can be found that the influence of the load on the
critical corrosion depth of the steel bars when the IBSC cracks is larger than that of when
the CCS cracks.
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6. Prediction Model of CLC Time of CCS under Load

According to the definition of the nominal rust volume expansion ratio n0 described
in Section 3, when the CCS cracks, the thickness of the rust layer is:

Tsurface
CL = n0δsurface

steel − δr (54)

Considering the thickness of the equivalent rust layer, when the CCS cracks, the total
thickness of the rust layer is:

ds(t) = Tsurface
CL + Tsurface

CL,pore = Tsurface
CL (1 + γkT) =

(
n0δsurface

steel − δr

) n
n0

= nδsurface
steel − nδr

n0
(55)

Liu and Weyers [16] found that after the steel bars in concrete were corroded, the total
thickness of the rust layer when the corrosion time was t could be expressed as: ds(t) =

Wrust(t)
2πR

(
1

ρrust
− αrust

ρst

)
Wrust(t) =

√
2
∫ t

0
0.21πRicorr(t)

αrust
dt

(56)

where αrust is the constant related to the type of corrosion products, which can be taken as
0.57 [16]; ρrust is the density of corrosion products, which can be taken as 3600 kg/m3 [16];
ρst denotes the density of the steel bars and is taken as 7850 kg/m3; Wrust (t) means the
total amount of corrosion products at corrosion time t; and icorr (t) represents the current
density at corrosion time t.

When the current density of steel corrosion is a constant, the CLC time of CCS under
load can be directly derived according to Equations (55) and (56):

tsurface
cr =

αrustπR
0.105icorr

[
nδsurface

steel − nδr
n0

1
ρrust
− αrust

ρst

]2

(57)

When the current density of steel corrosion changes with time, the relationship be-
tween current density and time needs to be determined according to the measured values.
Then, the relationship is substituted into Equation (56), followed by integration with respect
to t from 0 to tsurface

cr . Finally, the CLC time of CCS under load can be determined according
to Equations (55) and (56).

7. Model Validation

For the model established in Section 5, the rationality has been verified by Zhao
et al. [30] when the influence of the load is not considered. This section focuses on verifying
the rationality of the model considering the effect of load. Wang et al. [43] recorded the
CLC time (i.e., initiation cracking time) of the CCS of recycled concrete beams under load
as listed in Table 1, and in their test, the load applied to recycled concrete beams was 0.2,
0.4, and 0.6 times the flexural capacity, respectively. It can be found that the CLC time
of the CCS of recycled concrete beams tends to decrease with the increase of the applied
load. Due to the load borne by RC structures during the service stage not being larger than
0.6 times the flexural capacity [62], it can be concluded that the recycled concrete beams in
the test of Wang et al. [43] are all in the service stage. It should be noted that Equation (57)
is established based on the uniform corrosion of steel bars, whereas the corrosion of steel
bars under load has obvious pitting corrosion characteristics. However, the electrochemical
corrosion method is adopted in the corrosion test of Wang et al. [43]; hence, the corrosion
of steel bars in recycled concrete beams under load is mainly uniform corrosion, which has
been discussed in detail by Wang et al. [43]. Therefore, the experimental values of Wang
et al. [43] can be adopted to verify the rationality of Equation (57). When the Equation (57)
is adopted to calculate the CLC time of CCS under load, the values of the parameters in
Equation (57) are as follows: αrust = 0.57, ρrust = 3600 kg/m3, ρst = 7850 kg/m3, R = 6 mm,
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n = 2, icorr = 0.01 mA/mm2, n/n0 = 1.1, C = 23 mm, b = 29 mm, vc = 0.2, ϕ = 37◦, At = 0.7,
Bt = 104, ∆R = 0.5 mm, and assuming Rc = 6 + 0.8 × 23 ≈ 25 mm when the CCS cracks.

Table 1. Comparison of calculated values and experimental values of CLC time of CCS under load.

Beam Label RAC-0.2-50 RAC-0.2-100 RAC-0.4-50 RAC-0.4-100 RAC-0.6-50 RAC-0.6-100

Experimental values (h) 134–136 132–134 106–114 106–114 89–92 89–92

Calculated values (h) 144.87 135.94 120.77 115.01 102.52 97.13

The comparison of the calculated values from Equation (57) and the experimental
values are listed in Table 1. It can be found that the calculated values are slightly larger
than the experimental values, but the two are basically consistent. There are two main
reasons for this phenomenon: on the one hand, in the test of Wang et al. [43], the steel bars
embedded in recycled concrete beams are not completely rusted uniformly, and there are
many local pits on the surface of steel bars, and it is well known that pitting corrosion of
steel bars can shorten the CLC time of CCS; on the other hand, it is difficult to accurately
determine the values of n and n/n0, and the analysis results of Sections 4 and 5 show that
the value of n/n0 has an effect on the critical corrosion depth of steel bars, i.e., the larger
the n/n0, the larger the critical corrosion depth, which in turn affects the CLC time of CCS
under load, hence the n/n0 = 1.1 is taken in Equation (57), which may be greater than the
actual value of n/n0 for the recycled concrete beams in the test of Wang et al. [43].

8. Parametric Analysis

There are some factors affecting the CLC time (i.e., initiation cracking time) of CCS,
such as concrete tensile strength, concrete cover thickness, reinforcement diameter, cur-
rent density, rust property, etc. [14,49,60]. Based on the prediction model established in
Section 6, this section analyses the influence of load, n, and, n/n0 on the CLC time of
CCS. The RC beam as shown in Section 4 is adopted, the values of parameters are listed in
Sections 4 and 5, and the current density icorr = 0.01 mA/mm2. Assuming that the hoop
tensile stress at the position rx = R of concrete cover caused by load is 0, 0.1, 0.2, and
0.3 times the tensile strength of concrete, the tensile stress level δT = 0, 0.1, 0.2, and 0.3. The
range of the actual rust volume expansion ratio n is about 2–4 [13,14], and 2, 3, and 4 are
adopted in this section. The range of n/n0 is about 1–1.2 [31], and 1.0, 1.1, and 1.2 are taken
in this section. The influence of load, n, and n/n0 on the CLC time of CCS is shown in
Figure 13.
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Figure 13. Effects of load, n, and n/n0 on the CLC time of CCS. (a) n = 2; (b) n = 3; (c) n = 4.

Figure 13 shows that, with the increase of n or load, the CLC time of CCS decreases,
while the CLC time increases obviously with the n/n0. For example, in the case of n = 3
and n/n0 = 1.2, when δT increases from 0 to 0.3, the CLC time decreases from 397.42 h
to 355.04 h; while in the case of n = 4 and δT = 0.30, when n/n0 increases from 1.0 to 1.2,
the CLC time increases from 142.78 h to 243.80 h. In order to further investigate the effect
of load on CLC time, the influence of load on the CLC time of CCS can be calculated
quantitatively according to Figure 13, as listed in Table 2. It can be found from Table 2 that
the values of n and n/n0 affect the influence of load on the CLC time. When n/n0 remains
unchanged, the greater the n, the more obvious the load can shorten the CLC time, that
is, the percentage reduction in CLC time caused by load increases with n. For instance,
in the case of n/n0 = 1.1, when n increases from 2 to 4, the percentage reduction in CLC
time caused by the load is increased by 178.5%. However, when n remains unchanged,
the percentage reduction in CLC time caused by the load decreases with the increase of
n/n0. For instance, for the case of n = 3, when n/n0 increases from 1.0 to 1.2, the percentage
reduction in CLC time caused by the load is decreased by 27.2%.
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Table 2. Effects of load on the CLC time of CCS.

n = 2 PRCT n = 3 PRCT n = 4 PRCT

n/n0 = 1.0 9.8% n/n0 = 1.0 17.3% n/n0 = 1.0 24.8%
n/n0 = 1.1 7.9% n/n0 = 1.1 15.9% n/n0 = 1.1 22.0%
n/n0 = 1.2 6.0% n/n0 = 1.2 12.6% n/n0 = 1.2 19.8%

Note: PRCT stands for percentage reduction in CLC time when δT increases from 0 to 0.3.

9. Conclusions

This paper studied the effect of load on the CLC time of CCS of RC structures, and the
following conclusions can be drawn:

(1) The load has a significant effect on the critical corrosion depth of steel bars when the
IBSC cracks induced by corrosion, and for the n/n0 = 1.0 and 1.2, when the tensile
stress level increases from 0 to 0.3, the critical corrosion depth is reduced by 67.9%
and 59.4%, respectively;

(2) The load does not have an obvious effect on the critical corrosion depth of the steel
bars when the CCS cracks induced by corrosion, and for the n/n0 = 1.0, 1.05, and
1.1, when the tensile stress level increases from 0 to 0.3, the critical corrosion depth is
decreased by 4.6%, 4.8%, and 4.7%, respectively;

(3) When the CCS cracks induced by corrosion under load, the influence of the rust-filling
layer on the critical corrosion depth of steel bars is larger than that of load, and the
effect of load on the critical corrosion depth of steel bars when the IBSC cracks is
larger than that of when the CCS cracks;

(4) Considering the effects of load and the rust-filling layer, a prediction model of the
CLC time of CCS is established, and the calculated values of the prediction model are
in reasonable agreement with the experimental values;

(5) The values of n and n/n0 affect the influence of load on the CLC time. When n/n0
remains unchanged, the percentage reduction in CLC time caused by load increases
with n. However, when the n remains unchanged, the percentage reduction in CLC
time caused by load decreases with an increasing n/n0.

Author Contributions: Conceptualization, J.W.; methodology, J.W.; validation, H.Q.; investigation,
J.W., Y.Y. and Q.X.; data curation, H.Q.; writing—original draft preparation, J.W. and Y.Y.; writing—
review and editing, J.W. and H.Q.; supervision, J.W.; funding acquisition, J.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Laboratory of Transportation Industry for Old Bridge
Inspection and Reinforcement (Beijing) (Grant No. 76140-42990014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Lun, P.Y.; Zhang, X.G.; Jiang, C.; Ma, Y.F.; Fu, L. Modelling of corrosion-induced concrete cover cracking due to chloride attacking.

Materials 2021, 14, 1440. [CrossRef]
2. Zhang, W.; François, R.; Wang, R.; Cai, Y.; Yu, L. Corrosion behavior of stirrups in corroded concrete beams exposed to chloride

environment under sustained loading. Constr. Build. Mater. 2021, 274, 121987. [CrossRef]
3. Fang, X.; Pan, Z.; Chen, A. Phase field modeling of concrete cracking for non-uniform corrosion of rebar. Theor. Appl. Fract. Mech.

2022, 121, 103517. [CrossRef]
4. Lu, C.H.; Yuan, S.Q.; Cheng, P.; Liu, R.G. Mechanical properties of corroded steel bars in pre-cracked concrete suffering from

chloride attack. Constr. Build. Mater. 2016, 123, 649–660. [CrossRef]

http://doi.org/10.3390/ma14061440
http://doi.org/10.1016/j.conbuildmat.2020.121987
http://doi.org/10.1016/j.tafmec.2022.103517
http://doi.org/10.1016/j.conbuildmat.2016.07.032


Materials 2022, 15, 7395 21 of 22

5. Fernandez, I.; Bairán, J.M.; Marí, A.R. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ—ε
behavior. Constr. Build. Mater. 2015, 101, 772–783. [CrossRef]

6. Naderpour, H.; Ghasemi-Meydansar, F.; Haji, M. Experimental study on the behavior of RC beams with artificially corroded bars.
Structures 2022, 43, 1932–1944. [CrossRef]

7. Feng, W.; Tarakbay, A.; Memon, S.A.; Tang, W.; Cui, H. Methods of accelerating chloride-induced corrosion in steel-reinforced
concrete: A comparative review. Constr. Build. Mater. 2021, 289, 123165. [CrossRef]
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