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Abstract: When designing scaffolds for bone tissue engineering (BTE), the wall shear stress (WSS),
due to the fluid flow inside the scaffold, is an important factor to consider as it influences the cellular
process involved in new tissue formation. The present work analyzed the average WSS in Schwartz
diamond (SD) and gyroid (SG) scaffolds with different surface topologies and mesh elements using
computational fluid dynamics (CFD) analysis. It was found that scaffold meshes with a smooth
surface topology with tetrahedral elements had WSS levels 35% higher than the equivalent scaffold
with a non-smooth surface topology with hexahedral elements. The present work also investigated
the possibility of implementing the optimization algorithm simulated annealing to aid in the design
of BTE scaffolds with a specific average WSS, with the outputs showing that the algorithm was able
to reach WSS levels in the vicinity of 5 mPa (physiological range) within the established limit of
100 iterations. This proved the efficacy of combining CFD and optimization methods in the design of
BTE scaffolds.

Keywords: wall shear stress; computational fluid dynamics; optimization; bone tissue engineering;
triply periodic minimum surfaces; simulated annealing

1. Introduction

In bone tissue engineering (BTE), scaffolds are porous support matrixes designed
as an environment to promote cell proliferation, differentiation, and growth [1]. These
cellular processes are considerably influenced by several parameters, one of which is the
wall shear stress (WSS) that affects the cells inside the scaffold [2–5]. WSS is caused by
the relative movement between the scaffold walls and the fluidic phase inside the scaffold.
Studies have shown that different levels of WSS lead to different mechanical signals for the
mesenchymal stromal cells, which, in turn, cause differences to the cellular differentiation
process [6,7]. This parameter is affected by various factors, with one being the scaffold
geometry. In fact, small changes in the scaffold’s design parameters (such as its porosity,
surface topology, or curvature) considerably alter the average WSS experienced by the
cells inside the scaffolds [8,9]. Furthermore, in order to promote the desired conditions to
promote bone proliferation, the average WSS experienced by the cells needs to be between
0.1 and 10 mPa [10,11].

When designing scaffolds, the multiple possible inputs for scaffold development result
in a large range of possible designs. Therefore, computational simulations are normally
implemented to reduce the time and cost associated with conceptualizing a new scaffold.
For BTE, computational fluid dynamics (CFD) analysis is essential in understanding how
changes to a scaffold’s design influence its fluidic properties (such as the WSS) and the
underlying cellular processes [12–14].

Additionally, computational simulations can also be used to design scaffold geometry
with the desired characteristics, through a structural optimization approach. Although there
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are several different optimization methods, most of them follow the same framework [15].
After defining the design space, the chosen objective function, and the constraints for that
specific optimization process, the process starts with an initial step where the initial geom-
etry (initial solution) is set as well as the material properties of the structure. Afterward,
the state variables are computed through a proper numerical tool in order to analyze the
relevant properties of the initial geometry. If the resulting properties do not reach the objec-
tive, then an optimization algorithm is utilized to obtain a new geometry, according to the
predefined constraints. This process repeats itself iteratively until a new structure satisfies
the objective function. However, in BTE, optimization methods have rarely focused on the
fluidic properties of the scaffold [14–16], instead only consider the scaffold’s mechanical
properties (such as their Young’s modulus [17]; compressive strength [18] and octahedral
shear strain [19–21]).

Taking this into consideration, the objective of this work was twofold. Firstly, the differ-
ence in average WSS was analyzed for different scaffold topologies, with either smoothed
(tetrahedral elements) or non-smoothed (hexahedral elements) wall surface topologies.
This was in order to determine whether previously designed numerical models [22] can
be used in the study of WSS, or if an additional step to correct their surface topology is
required. Secondly, a simulated annealing (SA) optimization strategy was used to design
scaffolds for a specific average WSS, in order to investigate the feasibility of using structural
optimization methodologies combined with CFD analysis in the design of scaffolds for
required fluidic properties.

2. Materials and Methods
2.1. Scaffold Design

To generate the scaffold’s mesh for the CFD analysis a computer code was used,
which, given the specific design parameters, created a hexahedral mesh of the desired
geometry for the analysis [22]. This mesh consists of a single cubic unit of the fluidic phase
of the chosen scaffold design, with forty elements per side, seeing as previous studies
have shown that 40 elements per side are the minimum in order to obtain an appropriate
scaffold geometry [23]. For this study, the chosen scaffold geometries were the triply
periodic minimum surfaces (TPMS) gyroid (SG) and Schwartz diamond (SD) designs. This
choice was because these scaffolds were found to be the most appropriate TPMS structures
for cellular growth given their high permeability and fluid tortuosity that promotes cell–
scaffold interaction [22]. Additionally, an empty portion was added before and after the
scaffold, which represented the empty permeability chamber that allows the fluid flow to
stabilize before and after passing the scaffold (Figure 1), mimicking the experimental setup
for permeability analysis [24].

Having designed a scaffold mesh with hexahedral elements (Figure 2a), to create the
corresponding mesh with tetrahedral elements and a smooth surface, an additional design
step was required. To this end, Meshlab® [25] was used to apply a three-step Laplacian
smoothing process followed by a three-step isotropic explicit remeshing process to obtain
the scaffold with smooth surfaces (Figure 2b).

The scaffold design parameters considered for this paper were: the porosity of the scaf-
fold and the length of the side of a single basic cubic unit (higher values result in scaffolds
with larger pore sizes). In addition to these two characteristics, two other parameters that
were analyzed were the length of empty chambers before and after the scaffold and, in the
case of the tetrahedral meshes, the world unit parameter from Meshlab’s isotropic explicit
remeshing process (which directly controls the number of elements in the final mesh).
Given that these factors were constant across all scaffolds that were studied, a convergence
test was carried out for each one to determine their best value. For these tests, both scaffold
geometries were analyzed in regard to their average WSS and permeability with a fluid
inlet velocity of 0.0001 m/s, a length of 5 mm for the cubic unit, and a 70% porosity.
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fold mesh.

2.2. Surface Topology CFD Analysis

Having defined the optimal values for the cubic unit length and the world unit
parameters, the next step was to define the scaffold designs to be compared. For each of
the two TPMS geometries, three different levels of porosity were considered (60%, 70%,
and 80%) for a total of six different scaffold designs. A hexahedral and a tetrahedral mesh
were then created for each design and their average WSS was studied using CFD analysis
with the previously mentioned fluid inlet velocity of 0.0001 m/s and cubic unit length of
5 mm. For this study, the computational simulations were conducted using the commercial
software Fluent® Ansys® (Ansys Inc., Canonsburg, PA, USA), which has already proven
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to be a useful tool for analyzing the fluidic properties of scaffolds [26,27]. In terms of
the parameters for the Fluent solver, the fluid chosen for the simulations was water, in
accordance with previous studies [22,28], with a density of 1000 kg/m3 and dynamic
viscosity of 0.001 Pa.s. The fluid was also assumed to pass through the scaffold in a steady
state laminar flow.

Three different boundary conditions need to be defined, these being the velocity inlet,
the pressure outlet, and the wall boundary. For these simulations, it was considered that
the fluid was traveling in the y direction through the scaffold. This meant that an exterior
wall on the xz plane was the velocity inlet surface, while the opposite wall was the pressure
outlet with 0 Pa, so that the pressure drop of the scaffold would be equal to the pressure
at the inlet (since the pressure drop is the pressure at the inlet minus the pressure at the
outlet). Additionally, interfaces with periodic boundary conditions were implemented in
parallel on the remaining exterior walls in order to create an infinite scaffold in the x and
z directions.

Finally, after running the simulations, the software CFD-post from Ansys was used
to calculate the average WSS on the scaffold walls and, if needed, the pressure difference
between the inlet and outlet of each scaffold. Afterward, the scaffold permeability could be
calculated using the pressure drop and Darcy’s law (Equation (1)) [29,30]:

K = (v·µ·L)/∆P, (1)

where K is the permeability expressed in m2; ∆P is the pressure drop expressed in Pa; L is
the length of the scaffold expressed in m; v is the inlet velocity of the fluid and µ is the
dynamic viscosity of the water which is 0.001 Pa*s.

2.3. Structural Optimization Process

For this work, the created optimization algorithm was focused on the scaffold’s average
WSS on both the SD and SG geometries with tetrahedral elements. More specifically, the
algorithm will attempt to design a scaffold geometry with an average WSS that promotes
cellular proliferation and growth. Zhao et al. (2015) [10] and Ali et al. (2019) [11] discussed
how the WSS of structures meant for bone growth needed to be between 0.1 and 10 mPa.
Given that the present method looks at the average WSS, a target was set at 5 mPa for the
optimization program, as an average target value between the two edges of the accepted
physiological levels. Additionally, seeing as the average WSS of the scaffold was dependent
on the fluid velocity passing through it (unlike permeability, which is only dependent on the
scaffold design), a constant inlet velocity of 0.001 m/s (similar to the parameter described in
a comparable scaffold perfusion analysis [31]), was selected to allow a comparison between
all scaffold geometries.

To solve the established scaffold optimization challenge, the metaheuristic optimiza-
tion computational algorithm simulated annealing (SA) was chosen. This is a metaheuristic
optimization approach used to solve optimization problems with a large search space.
Additionally, this algorithm allows a worse solution to be accepted in the earlier iterations,
which minimized the probability of the program reaching a local minimum and being
unable to progress further.

SA requires the definition of an appropriate cooling schedule variable (a); the objective
function; the maximum number of iterations the algorithm runs before stopping (Kmax);
and the upper (Uj) and lower (Lj) boundaries of each parameter. In this work, a cooling
schedule variable of 0.9 was chosen, alongside a maximum of 100 iterations. The objective
function was defined as the normalized difference between the target (5 mPa) and the real
average calculated WSS, and the design variables are the side length of the unit cell of the
TPMS structure and the scaffold porosity. These variables are limited to the lower and upper
bounds of 1 and 10 mm for the unit length and 60% and 80% for the porosity, respectively.
These values were chosen to maintain pore sizes that promote cellular processes.

After defining the variables, the algorithm then calculated an initial value for each
parameter (equal to the halfway point between the upper and lower boundary of each
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parameter), and used the process discussed in the previous section to create and study the
average WSS of the scaffold.

The program then used a Matlab® (Mathworks, Natick, MA, USA) script to calculate
the objective function value of the designed scaffold and recorded it as the current solution
(Zc). Subsequently, the algorithm defined an initial temperature (Tj) equal to 1/5 of the
current solution. The temperature was cooled after each iteration by multiplying it by the
previously established cooling schedule variable (a).

Having the initialization of the SA algorithm, the iterative process started with testing
the immediate neighbors of the current solution (using the current parameters and normal
distribution). If a parameter went outside the predefined boundaries, then it was replaced
by the closest values within the boundaries (for example, if the new porosity parameter
was equal to 85%, then the code replaced it with 8’, the corresponding maximum allowed
value). The program then calculated the objective function value of the new parameters,
using the same method as discussed above, and recorded it as the next trial solution
(Zn). If Zn was lower than or equal to Zc, then the code always accepted the new value.
Otherwise, the chance of accepting the new value was equal to e((Zc−Zn)/Tj). The code then
recorded the value of the parameters and objective function value and proceeded with
the temperature cooling. Finally, when the algorithm ended, it returned the history of the
optimization process.

3. Results
3.1. Scaffold Design Parameters

Figure 3 shows the results of the convergence analysis on the pressure drops and
average WSS for simulations conducted on both 70% porosity test scaffolds. After obtaining
these results, the relative difference between the analysis with the smallest world unit and
every other simulated mesh was calculated (Tables 1 and 2). As expected, the results
showed that an increase in the number of elements in the simulation led to more accurate
results. However, an increase in the number of elements also resulted in longer simulations.
Therefore, a compromise had to be made between the accuracy of the results and the
computational cost of the simulation. Accordingly, the world unit value 0.15 was decided
as the best option seeing as it always presented a considerably low relative error (almost
always around or below 1%) with considerably quicker simulations than models with a
higher element count.
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Table 1. Calculated pressure drop and average WSS for the SD70 scaffold.

World Unit 0.095 0.1 0.125 0.15 0.175 0.2 0.25 0.3

# Elements 936246 840421 662816 503793 282630 203490 118248 78767
Pressure Drop (mPa) 17.846 17.817 17.713 17.587 17.401 17.283 16.937 16.635

WSS (mPa) 1.029 1.021 1.028 1.018 1.016 1.013 0.998 0.990

Table 2. Calculated pressure drop and average WSS for the SG70 scaffold.

World Unit 0.095 0.1 0.125 0.15 0.175 0.2 0.25 0.3

# Elements 844429 777951 645069 499543 275998 190338 110911 72858
Pressure Drop (mPa) 11.319 11.305 11.260 11.210 11.131 11.061 10.922 10.790

WSS (mPa) 0.770 0.770 0.774 0.768 0.781 0.785 0.797 0.811

For the fluid flow to stabilize, the chambers before and after the scaffold must have
sufficient “empty” length to allow the flow to stabilize before and after the scaffold; other-
wise, this could affect the numerical simulation, namely the pressure drop measurement.
However, the longer the empty chamber, the higher the computational cost of the simula-
tions, which would in turn considerably affect the computational cost of the optimization
algorithm. Therefore, the desirable empty chamber length is the shortest one that still
allows the stabilization of the fluid flow. Furthermore, an additional length should be
added to the minimum length to account for different scaffold configurations that require a
longer chamber to stabilize, such as lower porosity scaffolds.

In order to determine a minimal length, two different scaffolds were designed: one
where the length of the empty chambers, before and after the scaffold, was equal to the
length of the basic cubic unit and another where the length empty chambers was equal to
half the length of the basic cubic unit. As the fluid flow pressure drop measurement and
the average scaffold WSS are both independent from the length of the chambers (as long as
the flow is stable at both ends of the numerical model), if both CFD simulations returned
similar pressure drop and average WSS values, then this meant that the model with the
smaller empty chamber was enough to allow the fluid flow to stabilize.

As shown in Table 3, for both the SG and SD scaffolds, the difference between the
models with varying values of h was minimal, with their difference always below 0.3%.
This indicates how the shorter chamber was sufficient in allowing the flow to stabilize at
the edges of the numerical model. On top of that, analyzing the fluid flow streamlines
presented in Figure 4 highlights how the fluid flow is completely stable at the edges of
the numerical model. However, choosing a shorter chamber could potentially risk the
CFD simulations for the scaffolds with the smallest pore sizes whilst not significantly
contributing to a lower computational cost. Therefore, an empty chamber length of half the
length of the scaffold was chosen for all the CFD analysis.

Table 3. Comparison of the pressure drop and average WSS between scaffolds with different length
of the empty chamber before and after the scaffold.

SG70
Half Chamber

SG70
Full Chamber

SD70
Half Chamber

SD70
Full Chamber

Pressure Drop (mPa) 11.212 11.187 17.587 17.555

Relative
Difference (%) −0.224 −0.172

Average
WSS (mPa) 0.768 0.768 1.018 1.021

Relative
Difference (%) −0.028 0.287
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3.2. Surface Topology CFD Analysis

Tables 4 and 5 illustrate how the difference in the of scaffold surface topology (original
jagged surfaces with hexahedral elements or smooth surfaces with tetrahedral) influences
the average WSS of the six different scaffold designs. The results show that all of the
smoothed scaffolds had a higher average WSS than the original scaffolds (average of
35% increase).

Table 4. Comparison of the average WSS between SG scaffolds with and without surface topol-
ogy smoothing.

SG60
Original

SG60
Smoothed

SG70
Original

SG70
Smoothed

SG80
Original

SG80
Smoothed

Average
WSS (mPa) 0.700 0.930 0.568 0.768 0.455 0.625

Relative
Difference (%) 32.843 35.221 37.320

Table 5. Comparison of the average WSS between SD scaffolds with and without surface topol-
ogy smoothing.

SD60
Original

SD60
Smoothed

SD70
Original

SD70
Smoothed

SD80
Original

SD80
Smoothed

Average
WSS (mPa) 0.955 1.278 0.749 1.018 0.607 0.821

Relative
Difference (%) 33.826 35.915 35.180

Additionally, the volumes of the original and smoothed scaffolds were compared to
determine if the smoothing process would influence the porosity of the scaffolds (Table 6).
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Table 6. Volume (mm2) of various scaffolds with square size of 1 mm before and after smoothing.

G60 G70 G80 SD60 SD70 SD80

Original 599.5 700.5 799.8 600.8 699.1 800.5
Smoothed 599.4 701.4 801.6 599.1 699.2 801.71
Relative

Difference (%) −0.012 0.128 0.216 −0.280 0.026 0.155

3.3. Optimization Method

For each scaffold geometry, the optimization algorithm ran multiple times. Examples
of one optimization run for the SD and SG geometries are shown in Tables 7 and 8, respec-
tively. The iterations where no new point was considered were not presented in the tables.
The convergence of the results is shown in Figure 5.

Table 7. Simulated annealing process for the SD scaffolds.

Optimization Iteration Cubic Unit Length (mm) Porosity (%) Average WSS (mPa)

1 5.500 70 9.277
2 7.375 73.1 6.515
3 7.735 70.8 6.531
4 9.523 65.4 5.978
6 10.000 65.4 5.697

11 10.000 68.2 5.361
12 10.000 71.2 5.039

Table 8. Simulated annealing process for the SG scaffolds.

Optimization Iteration Cubic Unit Length (mm) Porosity (%) Average WSS (mPa)

1 5.500 70 6.916
2 6.183 67.2 6.522
5 6.081 66.5 6.710
7 7.320 71.6 5.041
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4. Discussion

The comparison between the different surface topologies showed that the WSS levels
in the smoothed surfaces increased by an average of 35% when compared to the original
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non-smoothed surfaces. A previous study has shown that in scaffolds with equal geometry
but different surface roughness levels, a lower average WSS was calculated for the scaffolds
with a higher roughness [32]. This corresponds to what was observed in Table 5, where the
original jagged mesh, given its higher surface roughness, resulted in a lower WSS than the
smoothed tetrahedral mesh. Furthermore, when fabricating scaffolds using 3D printing
techniques, these methods normally create surface topologies closer to the smoothed
surfaces than the original jagged ones. Therefore, the smoothed surface was chosen as the
basis for the optimization algorithm of the scaffold’s average WSS. Finally, the difference
between the volume before and after the smoothing is illustrated in Table 6. The difference
between the two is minimal, indicating that the smoothing process can be used without it
affecting the scaffold’s porosity.

In terms of the optimization algorithm, it was able to consistently reach the desired
average WSS of 5 mPa taking a maximum of 12 iterations, well within the established
100-iterations limit. However, given the inherent random nature of the SA algorithm,
the number of iterations and the final parameters varied between each optimization run.
Nevertheless, the outputs remained similar to those reported in Tables 7 and 8. The optimal
SD scaffold was always close to the maximum limit of 10 mm for the cubic unit length
and a porosity close to 70%; whilst the SG scaffolds had a cubic unit length between 7 and
8.5 mm and porosity between 63% and 73% (higher porosity corresponded with lower
cubic unit length).

The resulting scaffold designs from this algorithm were able to refine the scaffold
geometry in order to reach the desired average WSS of 5 mPa. This highlights how
the optimization algorithm presented in this work can be combined with CFD analysis;
additionally, this algorithm can enhance the design of TPMS scaffolds with a specific fluidic
property such as a specific average WSS or permeability. The results also demonstrate how
the SA method worked as intended, with the code accepting worse solution to the current
one at earlier iterations (for example the SG optimization from the second to the fifth
iteration as seen in Table 8) and only accepting strictly better solutions at higher iterations
(when the temperature variable Tj of the algorithm was at its lowest).

Although the SA algorithm proved as useful to optimize and improve one specific
parameter, it would not be able to simultaneously improve multiple fluidic parameters,
such as both WSS and permeability. In other words, WSS and permeability are inversely
correlated, with studies have shown that that increasing the average WSS leads to a
decrease in the scaffold’s permeability and vice versa [33,34]. To address the limitations of
the current algorithm, a multi-objective optimization approach might be implemented in
future developments. Instead of focusing on a single objective function, multi-objective
optimization could analyze each parameter individually and would give a set of possible
solutions, organized as a Pareto front, but with a higher computational cost. This method
would result in multiple possible solutions, which would need to be analyzed in terms of
their suitability for BTE.
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