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Abstract: Hybrid lattice compliant mechanisms (HLCMs) composed of multiple microstructures
have attracted widespread interest due to their superior compliant performance compared to the
traditional solid compliant mechanisms. A novel optimization scheme for HLCMs is presented using
the independent continuous mapping (ICM) method. Firstly, the effective properties of multiple or-
thogonal and anisotropic lattice microstructures are obtained by taking advantage of homogenization
theory, which are used to bridge the relationship between the macrostructure layout and microstruc-
ture recognition. Then, a new parallel topology optimization model for optimizing HLCMs is built
via a generalized multi-material, recognizing interpolation scheme with filter functions. In addition,
the characterization relationship between independent continuous variables and performance of
different elements is established. Sensitivity analysis and linear programming are utilized to solve the
optimal model. Lastly, numerical examples with a displacement inverter mechanism and compliant
gripper mechanism demonstrate the effectiveness of the proposed method for designing HLCMs
with various lattice microstructures. Anisotropic lattice microstructures (ALMs) significantly facilitate
the efficient use of constitutive properties of materials. Hence, HLCMs consisting of various ALMs
achieve superior compliant performance than counterparts comprising different orthogonal lattice
microstructures (OLMs). The presented method offers a reference to optimize HLCMs, as well as
promotes the theoretical development and application of the ICM method.

Keywords: hybrid lattice; compliant mechanisms; topology optimization; multiple microstructures;
ICM method

1. Introduction

Compliant mechanisms (CMs) have attracted widespread attention and become an
innovative research hotspot in recent decades because such mechanisms can achieve partial
transformation of the displacement and force to greatly reduce the friction, lubrication,
and assembly problems due to their deformation [1,2]. CMs are special mechanisms that
obtain motions through the deflection of their compliant members. Consequently, the
CMs have promising application values in wide fields covering macroscale/microscale
manipulation [3], precision manufacturing [4], microelectromechanical systems [5], and
vibration control [6]. Abundant design research of CMs has been carried out, and several
familiar methods have been proposed, incorporating the kinematics-based method [7,8],
building blocks method [9,10], and topology optimization method [11–13]. HLCMs with
multiple microstructures can make better use of constituent materials to improve the
compliant performance with respect to traditional solid CMs. However, HLCMs coupling
macroscopic and microscopic optimization are very difficult to achieve due to the huge
design space. With the blossoming development of topology optimization, the design of
HLCMs has become feasible.

Topology optimization is a progressive concept design method that can fulfill the
optimal distribution of materials to minimize or maximize a given objective function

Materials 2022, 15, 7321. https://doi.org/10.3390/ma15207321 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15207321
https://doi.org/10.3390/ma15207321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8370-1942
https://doi.org/10.3390/ma15207321
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15207321?type=check_update&version=2


Materials 2022, 15, 7321 2 of 22

under the prescribed constraints in an assumed design domain [14]. Plentiful topology
optimization methods have been put forward, mainly including the solid isotropic material
with penalization (SIMP) method [15,16], the homogenization method [17,18], the level
set method (LSM) [19,20], the moving morphable components (MMC) method [21,22], the
evolutionary structural optimization (ESO) method [23,24], the phase field method [25,26],
and the ICM method [27,28]. The abovementioned methods have been expanded to design
CMs. The seminal work for CMs design can be traced back to [29,30].

Recently, the topology optimization method for CMs research has evolved from single-
material to multi-material design and from mono-scale to multiscale design. The early
two-material CMs [31] were designed using an ingenious weighted material interpolation,
which has been extensively utilized in generating multi-material CMs [32]. CMs with two
different materials greatly improved the objective performance compared to the CMs with
a single material due to the stiff phase and soft phase being distributed in the load transfer
regions, as well as the likewise hinge regions [33]. With the aim of tackling the problem
of design variables being too large in multi-material topology optimization, an ordered
SIMP interpolation scheme was presented, characterizing the relationship between the
elastic modulus and normalized design variables by introducing scaling and translational
coefficients [34]. To overcome the point flexure problem with undesired de facto hinges, the
parametric LSM was introduced to simultaneously optimize the objective displacement and
structural compliance of the multi-material CMs [35]. However, the abovementioned multi-
material CMs consist of distinctly different materials, and an obvious interface strength
problem exists between any two types of materials, which restricts the improvement of
compliant performance.

To surmount this shortcoming, uniform and nonuniform lattice CMs have been pro-
posed to coordinate microstructure selection and macrostructure layout through multiscale
optimization. With the premise of evenly distributing the identical microstructures in
the macrostructure, the uniform lattice structures are acquired [36,37]. The merits of a
uniform design scheme mainly include computational efficiency improvement and ex-
cellent connectivity. However, the structure performances are constrained in view of the
constitutive materials not being utilized efficiently. Nonuniform lattice structures facilitate
a better adjustment of the macro- and microstructures. Therefore, nonuniform lattice CMs
have attracted more and more interest. Rodrigues et al. [38] first established a hierar-
chical optimization model to realize the macroscopic structure layout and microscopic
microstructure design, in which the hierarchical calculation did not take full advantage of
the design degree and only implemented a compromised concurrent optimization. The
compromised optimization issue was conquered by building and solving an approximately
constitutive model with tensor decomposition [39]. Multiscale topology optimization has
been utilized to design nonuniform CMs with any number of particular microstructures,
and the performance of the optimized porous CMs exhibited apparent improvement com-
pared to their counterparts designed using single-scale topology optimization [40]. An
adaptive polygonal finite element method is utilized to fulfill the topology optimization of
submerged breakwater under fluid–structure interaction, which contributes to the coastal
protection [41]. Based on the adaptive geometric components, robust concurrent topology
optimization of porous infills and incompressible multi-materials with uncertain load are
proved effectively [42,43] and expanded to optimize the coated structure with buckling
constraints [44]. The CMs with lattice microstructures were used in the balancer and blade
to fulfill tailoring stiffness, which demonstrates that the obtained CMs possess better me-
chanical performance than the traditional mechanisms [45–47]. In addition, studies on
the functionally graded materials’ CMs have been applied to enhance the mechanical or
geometric advantages with respect to traditional homogeneous CMs [48–50].

The above studies mainly focused on the multi-material CMs, gradient lattice CMs, or
HLCMs consisting of various kinds of OLMs. Nevertheless, there are few research studies
on HLCMs comprising various kinds of ALMs [51,52]. Hence, this paper puts forward
a novel optimization scheme for the HLCMs with different microstructures. An HLCM
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with various ALMs obtains a superior compliant performance than an HLCM with various
OLMs because the ALMs could make full use of constitutive materials.

The remainder of the work is organized as follows. In Section 2, effective elastic
properties of all kinds of OLMs and ALMs are calculated on the basis of the homogenization
theory. Section 3 establishes a parallel topology optimization model through a generalized
multi-material recognizing interpolation scheme and gives an elaborate solution procedure.
In Section 4, several numerical examples are demonstrated to prove the validation of the
current method. Lastly, Section 5 draws the conclusions.

2. Effective Elastic Properties of Multiple Lattice Microstructures

Lattice microstructures are increasingly used in wide industrial domains taking full
advantage of constituent materials, providing the chance to design novel geometries to
satisfy the specified demands corresponding to macroscale physical performances [53]. For
the sake of putting into use lattice microstructures for CM design, homogenization theory
is introduced to compute the effective elastic properties of lattice microstructures [54,55].
The perturbation theory is utilized to asymptotically expand the elastic governing equation;
then, the relationship between the effective elastic tensor and local strain is achieved
as follows:

DH
ijkl =

1
|Y|

∫
Y

(
Dijkl − Dijpq

∂χkl
p

∂yq

)
dY (1)

where DH
ijkl denotes the effective elastic tensor; |Y| and χkl

p represent the volume of the
periodic microstructure and local displacement field, respectively; Dijkl denotes the elastic
tensor of constitutive material; and yq represents the local microscopic variable. The
quadrilateral finite element, which has eight degrees of freedom, is utilized to calculate the
effective elastic properties of lattice microstructures.

For a more convenient discussion, this paper uses dimensionless units. The Young’s
modulus of the constitutive material is hypothesized as 1000, and Poisson’s ratio is assumed
equal to 0.3. The volume fractions of multiple lattice microstructures are maintained
the same at 0.6, so as to coordinate the macrostructure layout and the display effect of
microstructures. The effective elastic tensors of various OLMs and ALMs are computed via
the above-described homogenization theory. The subsequent research mainly considered
regular OLMs and ALMs to design the HLCMs for comparison and verify their feasibility.
Figure 1 exhibits the quadrate OLM containing four branches and the quadrate ALM
containing a branch, where w represents the dimension of the microstructure, the wall
thickness is 0.1 w, and it is kept consistent. The r indicating horizontal branch size and the
diagonal branch size s decide the configurations of OLMs in Figure 1a. The t indicating
slant branch size and the slant branch degree θ decide the configurations of ALMs in
Figure 1b. The effective elastic tensors DH of the prescribed OLM1, OLM2, OLM3, and
OLM4 are listed in Table 1. The effective elastic tensors DH of the prescribed ALM1, ALM2,
ALM3, and ALM4 are listed in Table 2. In fact, the microstructures can be extended to be
more diverse and complex in future work. The effective stiffness matrix k0 of the lattice
microstructure can be obtained as follows:

k0 =
∫

Y
BTDHBdY (2)

where B indicates the strain–displacement matrix.
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3. Parallel Topology Optimization Formulations for HLCMs
3.1. Parallel Topology Optimization Model

A parallel topology optimization model for HLCMs’ design based on the ICM method
is formulated by a multi-material-recognizing interpolation scheme. In the multi-material
topology optimization process, multiple vital filter functions are incorporated to establish
the relationships between different element properties and various kinds of independent
continuous topological variables. The objective output displacement of CMs is maximized
under a volume fraction constraint. Figure 2 exhibits that an original design domain is di-
vided into a number of finite elements, which characterizes the multi-material-recognizing
interpolation scheme. To determine which kind of microstructure is suitable for every
element, multiple kinds of topological variables relating to every element are introduced
to seek out the optimized macroscopic topology and rational layout of various lattice
microstructures. The volume vi and stiffness matrix ki of the i-th element in a three-phase
domain (two different constituent materials and one void phase) can be identified using
various filter functions [56] as follows:

vi(x1i, x2i) = fv(x1i)
{
[1− fv(x2i)]v0

1 + fv(x2i)v0
2

}
= fv(x1i) fv(x2i)(v0

2 − v0
1) + fv(x1i)v0

1 (3)

ki(x1i, x2i) = fk(x1i)
{
[1− fk(x2i)]k0

1 + fk(x2i)k0
2

}
= fk(x1i) fk(x2i)(k0

2 − k0
1) + fk(x1i)k0

1 (4)

where x1i and x2i are the first and second kinds of topological variables with regard to the i-th
element, respectively; v0

1 and v0
2 respectively represent the intrinsic volumes of the first and

second kinds of microstructure elements; k0
1 and k0

2 indicate the intrinsic stiffness matrices of the
first and second kinds of microstructure elements, respectively; fv(x1i) and fv(x2i) are the first
and second volume filter functions, respectively; and fk(x1i) and fk(x2i) are the first and second
stiffness matrix filter functions, respectively. Based on Equations (3) and (4), it can be apparently
seen that the first kind x1i confirms the macroscale structure (with or without material), while
the second kind x2i recognizes the designated material for every retained element.
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Figure 2. Characterization of multi-material-recognizing interpolation scheme.

A generalized multi-material-recognizing interpolation scheme that can handle any
kind of material is proposed by expanding Equations (3) and (4).

vi(x1i, x2i, · · · xJi) =
J

∑
j=2

[
(v0

j − v0
j−1)

j

∏
q=1

fv(xqi)

]
+ fv(x1i)v0

1 (5)

ki(x1i, x2i, · · · xJi) =
J

∑
j=2

[
(k0

j − k0
j−1)

j

∏
q=1

fk(xqi)

]
+ fk(x1i)k0

1 (6)

where xqi denotes the q-th kind of topological variable; J represents the total kinds of
prescribed materials; v0

j−1 and v0
j respectively represent the intrinsic volumes of the (j-1)-th

and j-th material elements; k0
j−1 and k0

j represent the intrinsic stiffness matrices of the
(j-1)-th and j-th material elements, respectively; fv(xqi) and fk(xqi) are the q-th kind of
volume filter function and stiffness matrix filter function of the element, respectively; and
J represents the total material kinds.
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Equations (5) and (6) demonstrate that each element corresponds to J kinds of topolog-
ical variables, but in finite element analysis (FEA), the total number of discretized elements
can retain constant. The present scheme facilitates their integration into the generalized
multi-material topology optimization using the ICM method [57].

According to the multi-material-recognizing interpolation scheme, the parallel topol-
ogy optimization model with objective output displacement maximization subject to total
volume constraints is mathematically expressed as follows:

find x = (x11, x12, · · · , xei, · · · , xJN)
T

maximize uout
subject to Ku = F

V =
N
∑

i=1
vi ≤ V = RvV0

0 < x1i ≤ x1i ≤ 1, i = 1, 2, . . . , N

0 ≤ xei ≤ 1, e = 2, 3, . . . , J, i = 1, 2, . . . , N

(7)

where uout denotes objective output displacement; x represents the total unknown vector of
the whole topological variables xei; K, F, and u denote the global stiffness matrix, external
force vector, and displacement vector of the study object, respectively; V and V respectively
represent the actual volume and its allowable volume; V0 and Rv are the design domain
volume and the prescribed volume fraction, respectively; and N denotes the total number
of finite elements. Besides, x1i is the lower limit of the first type of topological variables

and is set as 0.0001 to circumvent numerical singularity.

3.2. Sensitivity Analysis and Solution

An approximately explicit expression of the objective output displacement is the
greatest challenge. For computational convenience, the power functions are utilized for all
various kinds of filter functions as follows:

fv(xei) = xei e = 1, 2, . . . , J (8)

fk(xei) = xp
ei e = 1, 2, . . . , J (9)

where p represents the filter power factor of the element stiffness matrix and is allocated as
3 to fulfill faster convergence and better material distribution.

For the purpose of acquiring the approximately explicit expression of the objective
output displacement, the adjoint method [58] is applied to solve partial derivatives of the
objective output displacement with respect to various kinds of topological variables [59].
Since the external load vector F is not dependent on topological variables, the partial
derivative of the equilibrium equation in Equation (7) in regard to xei is expressed as:

∂K
∂xei

u + K
∂u

∂xei
= 0 (10)

The partial derivative of the objective output displacement uout can be deduced by
introducing an indeterminate vector Λm and an ancillary vector αm. In addition, the
introduced two vectors can satisfy the subsequent adjoint relationship:

KΛm = αm (11)

where αm = [0, · · · , 0︸ ︷︷ ︸
m−1

, 1︸︷︷︸
m

, 0, · · · , 0]T, the m-th component is set as 1, and the remaining

components are 0. In that case, the m corresponds to the degree freedom of the key node
where the objective output displacement is located. The partial derivative of the objective
output displacement in regard to xei is achieved:
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∂uout

∂xei
= αT

m
∂u

∂xei
= αT

m
∂u

∂xei
−ΛT

m(
∂K
∂xei

u + K
∂u

∂xei
) = (αT

m −ΛT
mK)

∂u
∂xei
−ΛT

m
∂K
∂xei

u = −ΛT
m

∂K
∂xei

u (12)

According to Equation (6), the global stiffness matrix K can be acquired:

K =
N

∑
i=1

ki(x1i, x1i, · · · xJi) =
N

∑
i=1

{
J

∑
j=2

[
(k0

j − k0
j−1)

j

∏
q=1

fk(xqi)

]
+ f (x1i)k0

1

}
(13)

As a result, the partial derivative of global stiffness matrix in regard to xei is obtained:

∂K
∂xei

=


J

∑
j=2

{
(k0

j − k0
j−1)

[
pxp−1

1i

j
∏

q=2
fk(xqi)

]}
+ pxp−1

1i k0
1, e = 1

J
∑
j=e

{
(k0

j − k0
j−1)

[
pxp−1

ei

j
∏

q=1,q 6=e
fk(xqi)

]}
, e = 2, 3, . . . , J

(14)

Substituting Equation (14) into Equation (12) generates:

∂uout

∂xei
=


−ΛT

m

{
J

∑
j=2

{
(k0

j − k0
j−1)

[
pxp−1

1i

j
∏

q=2
fk(xqi)

]}
+ pxp−1

1i k0
1

}
u, e = 1

−ΛT
m

{
J

∑
j=e

{
(k0

j − k0
j−1)

[
pxp−1

ei

j
∏

q=1,q 6=e
fk(xqi)

]}}
u, e = 2, 3, . . . , J

(15)

The first-order partial derivative of the real volume in regard to the whole topological
variables can be conveniently obtained using Equations (5), (7), and (8).

∂V
∂xei

=


J

∑
j=2

{
(v0

j − v0
j−1)

[
j

∏
q=2

fv(xqi)

]}
+ v0

1, e = 1

J
∑
j=e

{
(v0

j − v0
j−1)

[
m
∏

q=1,q 6=e
fv(xqi)

]}
, e = 2, 3, . . . , J

(16)

The objective output displacement is approximated via first-order Taylor expansion:

uout ≈ u(b)
out +

J

∑
e=1

N

∑
i=1

∂uout

∂xei

∣∣∣b(xei − x(b)ei

)
(17)

where the symbol ‘b’ means the b-th optimization iteration.
Analogously, the real volume of the structure can also be formulated as follows:

V ≈ V(b) +
J

∑
e=1

N

∑
i=1

∂V
∂xei

∣∣∣b(xei − x(b)ei

)
(18)

Through the above derivation process, the complex Equation (7) can be converted
into a classical linear programming (LP) problem. Finally, the convergent criterion is set
as follows: ∣∣∣u(b+1)

out − u(b)
out

∣∣∣
u(b)

out

≤ ξ (19)

where ξ represents the convergent precision. The optimization iteration is terminated when
ξ = 0.001.

The topology optimization model was established and solved. Figure 3 displays a
flow chart of optimization process to understand the proposed method conveniently.
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4. Numerical Examples

The displacement inverter mechanism (DIM) and compliant gripper mechanism
(CGM) are demonstrated to verify the feasibility of the present method in this section.
Dimensionless units are utilized to facilitate the relevant discussion for material properties,
geometric sizes, and external loads. Because optimization results depend on how to assign
microstructures to the topological variables, an interpolation strategy is listed in Table 3 to
select the microstructures.

Table 3. Adopted interpolation strategy.

x1i x2i x3i x4i Selection

0.0001 - - - void
1 0 - - OLM1
1 1 0 - OLM2
1 1 1 0 OLM3
1 1 1 1 OLM4

4.1. Displacement Inverter Mechanism

The DIM is selected as the first example, and its design domain is exhibited in Figure 4.
The geometric sizes of the original design domain are L = 240 and H = 240, with a thickness
of 1. The upper left and right corners are fixed. At the midpoint of the top margin, a unit
load Fin is imposed straight upward. A mesh with 60 × 60 elements is adopted by dividing
the original design domain. Due to the DIM being symmetrical, we only consider the right
half domain. The aim is to maximize the downward displacement at the midpoint of the
bottom margin under a prescribed total volume fraction constraint Rv = 0.3.
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The distribution of multiple OLMs and the optimized hybrid lattice DIM (HL-DIM)
are displayed in Figure 5. Lattice microstructures with various configurations are dis-
tributed in designated locations to play more significant roles across the overall design
domain. As depicted in Figure 5a, OLM1 is primarily utilized in the cyanine regions,
which require the relatively most compliant effective elastic properties; OLM4 with the
relatively stiffest vertical or horizontal effective elastic properties is located in the gray
regions. Furthermore, small quantities of OLM2 with inferior most compliant effective
elastic properties and OLM3 with subordinate stiffest vertical or horizontal effective elastic
properties are separately placed in the transitional orange and magenta regions. The partial
enlargement areas I-III in Figure 5b illustrate that the gradual change of different lattice
microstructures in the translational regions can be convenient to fulfill better compliant
performance. Various lattice microstructures increase the design freedom. Combining the
sensitivity filter, the corner-to-corner joints are avoided. Figure 6 demonstrates the iteration
histories of the objective output displacements and volume fraction for the HL-DIM with
OLMs, in which the intermediate topological evolution facilitates the understanding of
the progress of the optimization.
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In order to reveal the superiorities of the HL-DIM, four kinds of uniform lattice DIMs
(UL-DIMs) and a traditional solid DIM are presented for comparison. These DIMs are
composed of uniform lattice microstructures or solid microstructures. Various types of
DIMs and their corresponding objective displacements are listed in Table 4. The microstruc-
ture configurations have an evident influence on the topological shapes of DIMs and their
corresponding output displacements. Obviously, Case II has the largest output displace-
ment, 80.02% larger than Case IV, which obtains the smallest output displacement. These
samples apparently demonstrate that the OLM2 in Case II commendably balances the
compliant and stiff effective elastic properties. However, the objective output displace-
ments acquired by Cases I–V are suboptimal compared with the HL-DIM, as exhibited
in Figure 7. The optimized HL-DIM in Figure 5 possesses a better compliant effect with
an objective output displacement uout = 0.9292. Its objective output displacement exceeds
the objective displacements of Cases I–V by 13.96%, 7.90%, 18.31%, 94.23%, and 48.77%,
respectively. Attractively, the compliant effect of Case V (solid DIM) is inferior to that of
Cases I–III, but superior to that of Case IV. This situation indicates that the OLM4 in Case
IV is not suitable for the UL-DIMs design. The reason for this may be that the OLM4 only
guarantees the relatively stiffest horizontal or vertical effective elastic properties, but it
could not coordinate the compliant and stiff effective elastic properties. On account that
the design freedom increases, the HL-DIM consisting of various OLMs has a superior
compliant effect compared to the UL-DIM comprising a single OLM and the traditional
DIM with a solid microstructure. This example shows that the ICM method is suitable for
the design of HLCMs and can greatly improve the compliant performance.
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Table 4. Uniform DIMs with different lattice microstructures.

Case Material Microstructures DIM Objective Displacement
uout

I OLM1
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Besides, in order to confirm the effectiveness of the optimized result with homog-
enization theory, the HL-DIM with OLMs in Figure 5b is chosen to complete the finite
element simulation without homogenization theory. Figure 8 exhibits the vertical deforma-
tion fringe. The objective output displacement in numerical simulation is 0.9048, and the
objective output displacement with homogenization theory is 0.9292. The relative error is
merely 2.70%, which validates that the present method is effective.
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4.2. Compliant Gripper Mechanism

A CGM in Figure 9 is exhibited as the second benchmark. The geometrical sizes
contain L1 = 200, H1 = 200, L2 = 40, and H2 = 40, and there is a thickness of 1. The upper
and lower left corners are fastened. At the midpoint of the left margin, a unit load Fin is
imposed horizontally rightward. Due to the CGM also being symmetrical, we only consider
the upper half part. The aim is to make the downward displacement maximization at
the lower right corner of the upper half domain under a prescribed total volume fraction
constraint Rv = 0.3.
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Figure 10 demonstrates the iteration histories of the objective output displacements
and volume fractions for the solid CGM and hybrid lattice CGMs (HL-CGMs) with OLMs
or ALMs. The objective output displacements increase quickly in the initial stage; then
go through a short, slowly increasing plateau stage on account of negative displacements
transforming to positive displacements; and finally continue to increase until they converge
to 0.7714 (solid CGM), 0.9366 (HL-CGM with OLMs), and 1.1702 (HL-CGM with ALMs).
Noticeably, the volume fractions remain fairly stable except for the relating initial stage and
short plateau stage, which always meet the constraints during the iterative process. The
optimized HL-CGM with different OLMs is shown in Figure 11. A similar situation to
Figure 5 is observed. The cyanine regions distribute OLM1, which possesses the relatively
most compliant effective elastic properties. The gray regions are occupied by OLM4 with the
relatively stiffest horizontal or vertical effective elastic properties. Besides, the transitional
orange regions and magenta regions separately feature small quantities of OLM2 with inferior
most compliant effective elastic properties and OLM3 with subordinate stiffest vertical or
horizontal effective elastic properties. The partial enlargement areas I–IV in Figure 11b show
that the gradual change of different OLMs in the translational regions could be helpful to
realize better compliant performance. The percentages of various OLMs in Figure 11b are
shown in Figure 12. OLM1 and OLM4 account for 65.63% and 31.89%, respectively, but the
proportions of OLM2 and OLM3 with eclectic effective mechanical properties are merely
0.97% and 1.51%, respectively. This indicates that only OLM1 and OLM4 play a leading role,
whereas the compromised OLM2 and OLM3 could not be fully utilized.
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Figure 11. Optimized result with OLMs for the CGM: (a) layout of different OLMs; (b) optimized
orthogonal HL-CGM with partial enlargement areas I, II, III and IV.
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Figure 12. OLMs and ALMs percentages of HY-CGMs.

In order for all different types of microstructures to play important roles and take
full advantage of the constitutive materials, ALM1-ALM4 are applied to design the CGM.
Figure 13 exhibits the layout of the different ALMs and the optimized anisotropic HL-
CGM. ALM1 is primarily utilized in the blue regions, which demand the relatively most
superior horizontal mechanical properties. ALM3 is mainly placed in the red regions,
which demand the relatively most superior vertical mechanical properties. ALM2 and
ALM4 with relatively excellent shear resistance properties separately distribute in the green
and black regions. The partial enlargement areas I–V in Figure 13b show that the delicate
layout of different ALMs could be convenient to fulfill better compliant performance than
the OLMs by means of gradient changes in the translational regions. The percentages of
various ALMs in Figure 13b are also shown in Figure 12. ALM1 and ALM3 account for
11.09% and 9.23%, respectively. In view of the symmetry of the CGM, the percentages
of ALM2 and ALM4 are identical at 39.84%. For the HL-CGM with ALMs in Figure 13,
each ALM accounts for more than 9%. This situation indicates that ALM1, ALM2, ALM3,
and ALM4 make significant contributions to the compliant performance and are efficiently
utilized. In contrast to the HL-CGM with OLMs in Figure 11b, the HL-CGM with ALMs in
Figure 13b is superior. The objective output displacement of HL-CGM with ALMs is 1.1702,
exceeding the former by 24.94%. The compliant performance of the HL-CGM with ALMs
is obviously superior to that of the HL-CGM with OLMs.

Moreover, a traditional optimized CGM with only solid material is designed for
comparison with the abovementioned HL-CGMs with OLMs and ALMs by constraining the
equal volume fractions. The optimized solid CGM is displayed in Figure 14. The objective
output displacements acquired by the solid CGM are inferior compared with the HL-CGMs
with OLMs and ALMs, as exhibited in Figure 15. The optimized HL-CGMs with OLMs
or ALMs in Figures 11 and 13 possess superior compliant effects with objective output
displacements of 0.9366 and 1.1702, respectively. Their objective output displacements
exceed those of the solid CGM by 21.42% and 51.70%, respectively. This example shows that
the ALMs could make full use of constitutive materials, thereby significantly improving
the compliant performance of the CGM based on the ICM method.
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Figure 15. Objective output displacement comparison of different CGMs.

To reveal the superiorities of the HL-CGM with ALMs, two kinds of uniform lattice CGMs
(UL-CGMs) with ALM1 or ALM3 are presented for comparison. Because the design domain
of CGM is transversely symmetrical, only the upper half part is considered in the optimization
process. Because of ALM2 and ALM4 being transversely asymmetrical, UL-CGMs with ALM2
or ALM4 are unreasonable. Therefore, two kinds of HL-CGMs with ALM2 and ALM4 are
also proposed for comparison. Various types of CGMs and their corresponding objective
displacements are listed in Table 5. The objective displacements of Cases I–IV are 0.7509,
0.8866, 0.6133, and 0.8580, respectively. The microstructure configurations have an evident
influence on the topological shapes of CGMs and their corresponding output displacements.
Apparently, Case II has the largest output displacement, 44.56% larger than Case III, which
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obtains the smallest output displacement. However, the objective output displacements
acquired by Cases I–IV are suboptimal compared with the HL-CGM in Figure 13, the objective
output displacement of which is 1.1702 and exceeds the objective displacements of Cases I–IV
by 55.84%, 37.99%, 90.80%, and 36.39%, respectively. This situation indicates that the ALM3 in
Case III is not suitable for the UL-CGMs design. The reason for this may be that the ALM3
only guarantees the relatively stiffest vertical effective elastic properties, but it cannot adapt to
the macroscale topology. The HL-CGM consisting of ALM1, ALM2, ALM3, and ALM4 has a
superior compliant effect compared to the UL-CGM comprising a single ALM1 or ALM3 and
the HL-CGM with only ALM2 and ALM4.

Table 5. CGMs with different lattice microstructures.

Case Material Microstructures CGM Objective Displacement
uout

I ALM1
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5. Conclusions

This paper proposes a novel optimization method to design HLCMs with different
microstructures via a generalized multi-material-recognizing interpolation scheme using
the ICM method. The effective properties of multiple OLMs and ALMs were calculated by
means of the homogenization theory to coordinate the layout of the macroscale structure
and the selection of various lattice microstructures. The pivotal filter functions facilitated
achieving the multi-material modeling due to the independent continuous variables being
convenient to characterize different kinds of element properties. Sensitivity analysis and
linear programming were utilized to solve the parallel topology optimization model. Some
numerical examples were introduced to demonstrate the validation of the present method.
Compared with UL-DIMs with a single microstructure, HL-DIMs presented a superior
compliant performance. In addition, HL-CGMs with various ALMs possessed a superior
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compliant performance to those with different OLMs, revealing that ALMs could make
full use of the constitutive material and contribute to the improvement of the compliant
performance. This method offers a significant reference to optimize HLCMs and promotes
the development of the ICM method.
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