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Abstract: The construction of subways, hydroelectric stations and water substations is exposed to
stray currents, which can accelerate concrete corrosion. The influence of stray currents on reinforced
concrete structures is unclear. In this paper, the influence of concrete strength grade, reinforcement
diameter and stray current intensity on the extent of reinforcement corrosion and calcium ion
dissolution were investigated, and the damage of reinforcement and calcium ion corrosion to concrete
strength was investigated by simulating a stray current environment and conducting an electrified
acceleration test. The test results show that the higher the strength grade of concrete, the lower
the stray current intensity and the smaller the corrosion rate and calcium ion dissolution rate of
reinforcement; with the increase in the diameter of reinforcement the corrosion rate decreases, but
the calcium ion dissolution rate is not affected by reinforcement diameter. The damage effect of
reinforcement corrosion on concrete compressive strength is more obvious than that of calcium
ion corrosion.

Keywords: stray current; water environment; corrosion of steel bars; calcium ion erosion; compressive
strength damage

1. Introduction

The metros in Chinese cities use direct current traction power supply systems. How-
ever, the insulation between the walking track and the metro bed is not completely sealed,
and there will be part of the direct current based from the walking track leakage [1]. In the
power stations and substations, there will be part of the current leakage from the circuit
due to high-voltage transmission lines and a variety of power equipment grounding and
leakage. All of the above lead to the generation of stray currents [2].

The concrete structures of subways, hydropower stations and water substations often
work in water-saturated environments and suffer from the corrosion of stray currents [3].
The concrete structures being in a water-saturated environment will cause the concentration
of liquid phase lime in the cement-based materials to decrease, the solid phase lime to
dissolve, the cement hydration products to decalcify, transform or decompose, resulting in
an increase in concrete porosity and the corrosion of the cement-based materials [4]. When
the reinforced concrete structure has stray currents, its durability is affected more by stray
currents than general environmental factors [5].

In recent years, with regard to the research on the durability of reinforced concrete
under the action of water-saturated environments and stray currents, some studies have
found that when the concrete structures working under water-saturated environments are
corroded by stray currents, the reinforcement in the concrete will accelerate corrosion and
the concrete itself will undergo electrochemical corrosion [6,7]. Ekstrom [8] pointed out that
the corrosion parameters of reinforced concrete in water-saturated environments are greater
than those in soil environments. Aghajani [9] showed that the hydration product Ca(OH)2
of concrete was decomposed under the action of stray currents, which deteriorated the pore
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structure of concrete. The research of Yang [6] shows that the expansion of the corrosion
products of reinforcement caused by stray currents leads to the destruction of concrete
structures. Dolara [10] pointed out that the concrete structure may be damaged by stray
currents because the average potential of the reinforcement exceeds the limit.

However, in stray current environments, the reinforcement corrosion and calcium
ion corrosion of concrete structures in water-saturated environments occur at the same
time [11]. Most of the current studies do not consider the influence of reinforcement corro-
sion and calcium ion corrosion on concrete performance, and its performance degradation
mechanism is not clear. Therefore, it is imperative to study the influence of stray currents
and calcium ion corrosion on concrete performance in water-saturated environments.

In this paper, the influence of reinforcement corrosion and calcium ion corrosion on
water-saturated concrete strength under stray currents is studied.

2. Experimental
2.1. Experiment Material

The cement was P·O 42.5 ordinary Portland cement. Its chemical composition is shown
in Table 1. The fine aggregate was medium sand, with fineness modulus of 2.4 and silt
content less than 1.7%; the coarse aggregate was pebble with the maximum particle size of
10 mm. There were two kinds of test water, one was tap water used for the preparation of
concrete specimens, and the other was deionized water used for electrochemical tests.

Table 1. Chemical composition of cement (%).

Chemical Composition CaO SiO2 Al2O3 SO3 FeO MgO K2O LOI

P·O 42.5 62.1 21.3 5.7 3.6 2.3 2.0 0.3 2.9

2.2. Experiment Design

In order to simplify the later calculation, the cube specimens’ dimensions were 100 mm
×100 mm ×100 mm. They were cured under standard conditions for 28 days. The length
of the reinforcement was 80 mm. After derusting and weighing, the external conductor was
connected. The erection size was 70.7 mm × 10 mm × 1 mm acrylic plate to ensure that the
reinforcement was in the center of the concrete after pouring, as shown in Figure 1.
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Figure 1. Schematic diagram of erection reinforcement. (a) Erection reinforcement; (b) Three dimen-
sional schematic diagram of test piece.

The specific grouping and main parameters are shown in Table 2. There were 25 test
pieces in each group. The energization time of every 5 test pieces was the same, and the
energization time was set to 30, 45, 60, 80 and 100 h. In addition, three groups of plain
concrete specimens without reinforcement were cast as the control group.
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Table 2. Test grouping and mix proportion.

Group Strength
Grade

Reinforcement
Diameter (mm)

Power on
Voltage (V)

Water–Cement
Ratio

Mix Proportion

Sand
Ratio (%)

Cement
(kg/m3)

Sand
(kg/m3)

Stone
(kg/m3)

Water
(kg/m3)

C25-12-40 C25 12 40 0.66 39 303 730 1167 200
C30-12-20 C30 12 20 0.58 36 345 659 1197 200
C30-12-30 C30 12 30 0.58 36 345 659 1197 200
C30-12-40 C30 12 40 0.58 36 345 659 1197 200
C30-14-20 C30 14 20 0.58 36 345 659 1197 200
C30-14-30 C30 14 30 0.58 36 345 659 1197 200
C30-14-40 C30 14 40 0.58 36 345 659 1197 200
C30-16-20 C30 16 20 0.58 36 345 659 1197 200
C30-16-30 C30 16 30 0.58 36 345 659 1197 200
C30-16-40 C30 16 40 0.58 36 345 659 1197 200
C35-12-40 C35 12 40 0.52 33 385 590 1225 200
C35-14-40 C35 14 40 0.52 33 385 590 1225 200

Before the test, the test pieces were immersed in deionized water for 270 h, so that the
test pieces were nearly water saturated [12,13], and then a resistivity test was conducted on
the concrete test pieces to obtain the resistivity of the concrete before being corroded by
stray currents. Next, five test blocks from the same group were placed in the electrolytic cell
side by side in order. The reinforcement was perpendicular to the bottom of the electrolytic
cell, and a 750 mm steel bar was placed on the long side of the electrolytic cell × 150 mm
stainless-steel plate with alligator clips for connecting wires. Deionized water was injected
into the electrolyzer, and the water surface was intended to be 10 mm higher than the upper
surface of the concrete specimen. The test device is shown in Figure 2.
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Figure 2. Test device. (a) The test piece is immersed in water; (b) Corrosion test of steel bar
electrification.

2.3. Test Method

During the electrification test, the corrosion current flowing through the specimen and
the development of cracks on the concrete surface were measured. When each group of tests
reached the preset test energization time, the power supply was turned off, the test block
was taken out of the electrolytic cell, a resistivity test and compressive strength test were
conducted on the test block, and the calcium ion dissolution amount in the electrolytic cell
was measured. The calcium ion dissolution rate was calculated according to Equations (1)
and (2). After the compressive strength test was completed, the reinforcement from the
concrete was taken out and the corrosion rate of the reinforcement was calculated according
to Equation (3).

Cca2+ =
m
M
× 100% (1)

M = 0.001× B× 62.1%× 1000 (2)
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γ =
M0 −M1

M0
(3)

where CCa2+ is the calcium ion dissolution rate (%); M is the initial mass of CaO contained
in a single concrete specimen (mg); m is the mass of CaO dissolved from a single concrete
specimen (mg); B is the amount of cement in concrete mix proportion (kg/m3); 62.1% is the
mass fraction of CaO in cement clinker; γ is the corrosion rate of reinforcement (%); M0 is
the original mass of reinforcement (g); M1 is the mass of reinforcement after corrosion (g).

3. Test Results and Analysis
3.1. Analysis of Influence Factors of Reinforcement Corrosion and Concrete Corrosion

Through the test of 9 groups of specimens after corrosion, a total of 45 data of re-
bar corrosion rates and 45 data of calcium ion dissolution rates were obtained, and the
change rules of rebar corrosion rate and calcium ion dissolution rate under different
strength grades, rebar diameters and energizing voltage with energizing time were obtained
(Figures 3 and 4). The abscissa corresponding to the dotted line in Figure 3 represents the
time when the earliest crack occurred in the specimen. It can be seen from Figures 3 and 4
that the change laws of the corrosion rate of reinforcement and the calcium ion dissolution
rate of each group of test pieces with the energization time are basically similar. During the
early stages of energization, the corrosion quality increases nonlinearly, and the corrosion
rate increases continuously. With the increase in power over time, the corrosion rate begins
to decrease gradually. The dissolution rate of calcium ions decreases with time, and the
dissolution rate reflects the decrease in electric field force.
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From Figure 3, it can be concluded that:
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1. With the same diameter of reinforcement and the same energizing voltage, the smaller
the strength grade of concrete, the more serious the corrosion of reinforcement and
the smaller the critical corrosion rate at the time of concrete cracking. For example,
after 100 h of power on, the corrosion rate of reinforcement in C25 concrete is 2.32%,
and the rate in C35 concrete is 1.98%. Compared with the latter, the corrosion rate
of reinforcement in the former increases by 17.17%. This is because the corrosion
rate of reinforcement is affected by the water–cement ratio of concrete. The water–
cement ratio of C25 concrete is 0.52, and the water–cement ratio of C35 concrete
is 0.66. The smaller the water–cement ratio, the denser the concrete paste and the
greater the concrete resistance, making the current through the reinforcement in the
concrete smaller;

2. With the same strength grade and energizing voltage, in the same energizing time,
the larger the diameter of the reinforcement in the concrete specimen, the lower
the corrosion rate and the later the crack occurs. It can be seen from Figure 4b that
when the energizing voltage is 40 V, the corresponding earliest crack time of C35
concrete with reinforcement diameters of 12 mm, 14 mm and 16 mm is 50.2 h, 52.5 h
and 53.2 h, respectively. The larger the diameter of the reinforcement, the smaller
the corrosion rate when cracking, indicating that under the same corrosion rate, the
larger the diameter of the reinforcement, the greater the rust expansion force caused
by corrosion;

3. With the same strength grade and reinforcement diameter, under the same energizing
time, the greater the energizing voltage, the more serious the corrosion of reinforce-
ment in the test piece. For example, the final corrosion rate of reinforcement under
40 V corrosion is 2.18 times that of 20 V. It can be seen from Figure 4c that the critical
corrosion rate of reinforcement when concrete cracks under high voltage is small,
because the higher the voltage, the fluffier the corrosion products [14], and the greater
the compressive stress on the surrounding concrete, resulting in a reduction in the
critical corrosion rate of cracking.

From Figure 4, it can be concluded that:

1. The corrosion degree of low-grade concrete specimens is more serious than that of
high-grade concrete specimens. For example, when the reinforcement diameter is
12 mm, the energizing voltage is 40 V and the energizing time is 100 h, the calcium
ion content of C25 test piece is 0.561%, the calcium ion content of C30 test piece is
0.464%, and the calcium ion content of C35 test piece is 0.384%. This is because the
water–cement ratio of the concrete with small strength grade is large, the porosity
in the cement stone matrix is large, and the calcium ion in the concrete is easier to
penetrate into the pore solution;

2. At the same strength level and energizing voltage, the different diameters have no
obvious effect on the corrosion results. For example, the calcium ion dissolution rates
corresponding to the diameters of the three kinds of reinforcement after 100 h of
power on are 0.384, 0.387%, and 0.385%, respectively, and the difference from the
average is within 0.1%;

3. When the voltage applied to the test piece is different, the dissolution rate of calcium
ions is different. In the selected voltage range, the higher the voltage, the higher the
dissolution rate of calcium ions. For example, when the voltage is 20 V, the dissolution
rate of calcium ions is 0.27%, while the value is 0.374% when the voltage is 30 V, and
the corresponding dissolution rate is 0.464% when the voltage is 40 V.

Nonlinear regression fitting was carried out on the 9 groups of data in the above
analysis and the regression equations of each parameter on the corrosion rate and calcium
ion dissolution rate of reinforcement were obtained, as shown in Equations (4) and (5).

γ( fc, d, U, t) = 0.665 + 0.00112t− 0.00141 fcd + 0.00059Ut− 0.00018 f 2
c (4)

CCa2+( fc, U, t) = 0.128− 0.0083 fc + 0.004995U + 0.002691t + 0.000051Ut (5)
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where fc is the original compressive strength (MPa); d is the diameter of reinforcement
(mm); U is the corrosion voltage (V); t is the power on time (h); γ is the corrosion rate
of reinforcement (%); CCa2+ is the calcium ion dissolution rate (%). The determination
coefficient R2 of the model γ( fc, d, U, t) is 0.931; the determination coefficient R2 of the
model CCa2+( fc, U, t) is 0.950, which indicates that the two regression equations are highly
reliable and can accurately predict the change law of the corrosion rate of reinforcement
and the calcium ion dissolution rate.

3.2. Analysis of the Interaction between Corrosion of Reinforcement and Calcium Ion Corrosion
3.2.1. Influence of Reinforcement Corrosion on Calcium Ion Dissolution

The larger the corrosion current flowing through the concrete, the faster the ion
migration and the more calcium ions are dissolved [8]. When the energizing voltage is
kept constant, the corrosion current increases slightly at the initial stage of energization
and decreases gradually after reaching the peak value. At the same time, there is a certain
synchronization among the changes in corrosion current, corrosion rate of reinforcement
and calcium ion dissolution rate. The changes in corrosion rate, corrosion current and
increase value of calcium ion dissolution rate with time of C30-14-20, C30-14-30 and C30-
14-40 test pieces are shown in Figure 5.
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Figure 5. Change curve of corrosion rate of reinforcement. (a) Corrosion rate of reinforcement;
(b) Corrosion current; (c) Change value of calcium ion dissolution rate.

It can be seen from Figure 5a,b that the corrosion current will increase at the initial
stage and then decrease with the increase in the corrosion rate of the reinforcement. This is
because in the early stage of rebar corrosion, the corrosion has little effect on the circuit resis-
tance. At the same time, under the action of the electric field, a stable current transmission
path is formed in the concrete, which makes the corrosion current increase continuously.
With the increase in the steel corrosion rate, the total resistance in the circuit increases and
the corrosion current begins to decrease. When the corrosion current of C30-14 specimen
begins to decrease, the corrosion rate of reinforcement is between 0.281% and 0.379%. It
can be seen from the above analysis that, under the condition that the energizing voltage in
this test remains unchanged, the corrosion current in other stages will decrease with the
increase in the corrosion rate of the reinforcement, except the initial stage of rust corrosion.
It can be seen from Figure 5b,c that the calcium ion dissolution rate is consistent with
the change law of corrosion current. This is because the corrosion current determines the
migration speed of ions in concrete.

Under the condition of keeping the electrified voltage constant, the corrosion of
reinforcement affects the corrosion indirectly by affecting the corrosion current, and with
the development of reinforcement corrosion, the dissolution rate of calcium ions gradually
decreases. Therefore, it can be predicted that the corrosion behavior of calcium ions in
concrete under stray currents will slow down with the increase in corrosion degree of
reinforcement.



Materials 2022, 15, 7287 7 of 10

3.2.2. Influence of Calcium Ion Dissolution on Reinforcement Corrosion

Three groups of concrete specimens, C30-14-20, C30-14-30 and C30-14-40, before and
after the electrical test were tested by an RST Electrochemical Workstation, and the AC
impedance spectra of the specimens were obtained, as shown in Figure 6. The change in
the calcium ion dissolution rate of C30-14-20, C30-14-30 and C30-14-40 concrete specimens
with the specimens is shown in Figure 7.
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Figure 6. Concrete resistivity. (a) C30-14-20 AC impedance spectrum; (b) C30-14-30 AC impedance
spectrum; (c) C30-14-40 AC impedance spectrum.
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Figure 7. Change of calcium ion dissolution rate.

It can be seen from Figures 6 and 7 that after the concrete is corroded, the calcium
ion dissolution rate increases continuously with the change in the electrification time, and
the corresponding concrete electrochemical impedance spectrum shows that the point
resistance value constantly shifts to the left side of the abscissa, indicating that the concrete
resistivity decreases during the electrification process.

In the AC impedance spectrum, the real resistance corresponding to the smallest
imaginary impedance is called the volume resistance and is represented in the diagram
as the real resistance at the junction of the high and low frequency regions. The volume
resistance is equivalent to the DC resistance of the component under test [15]. According to
Figure 7, the volume resistance loss rate of three groups of concrete specimens is obtained,
as shown in Table 3.
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Table 3. Volume resistance loss rate of concrete under different voltages (%).

Number
Power on Time (h)

30 45 60 80 100

C30-14-20 0.66 2.76 6.19 7.99 9.50
C30-14-30 0.93 4.64 8.01 10.77 12.03
C30-14-40 1.18 5.68 9.11 11.60 13.49

The data of calcium ion dissolution rate and volume resistance loss rate of three groups
of concrete specimens are fitted with Exp function to obtain the functional relationship
between volume resistance loss rate Dr and calcium ion dissolution rate, as shown in
Equation (6). Figure 8 is a comparison of the volume resistance loss rate test value and
the predicted value. It can be seen from Figure 8 that the test value is in good agreement
with the predicted value of the formula, and there is a good correlation, indicating that
the fitting formula can be used to estimate the volume resistance loss rate of concrete, and
can provide a basis for the subsequent research on the electrical resistance performance of
concrete under different calcium ion dissolution rates.

Dr = 29.67× e∧
(
− 0.45

CCa2+ + 0.069

)
(6)
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Figure 8. Relationship between calcium ion dissolution rate and volume resistance loss rate.

As far as this experimental device is concerned, the concrete specimen, electrolyte,
reinforcement and stainless-steel plate can be regarded as a circuit with series resistance.
Although the concrete resistance gradually decreases with the increase in the calcium ion
dissolution rate, the corrosion of reinforcement leads to the increase in the interface resis-
tance between reinforcement and concrete. The corrosion current does not increase with
the decrease in the concrete resistivity, so it can be seen that the total resistance of the circuit
increases during the electrification process, indicating that the decrease in the concrete
resistance is smaller than the increase in the reinforcement concrete interface resistance.

To sum up, calcium ion corrosion slows down the increase in the total resistance
value of the circuit, thus slowing down the decrease in the corrosion current of the rein-
forcement, and then indirectly affects the corrosion of the reinforcement by affecting the
corrosion current.

3.3. Damage Analysis of Concrete Compressive Strength under Stray Current Corrosion

Under the action of stray currents, the corrosion of reinforcement in concrete and
the calcium ion corrosion behavior of concrete will damage the compressive strength of
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concrete. The loss of concrete compressive strength is the result of the joint action of
reinforcement corrosion and calcium ion corrosion.

It can be seen from the analysis in Section 2.1 that the smaller the diameter of the
reinforcement or the larger the energizing voltage, the smaller the critical corrosion rate
and the calcium ion dissolution rate at the time of concrete cracking. Therefore, it can be
inferred that when the corrosion rate of the reinforcement and the calcium ion dissolution
rate are the same, the damage effect of the two on the concrete is affected by the diameter
of the reinforcement and the stray current intensity, and the damage effect is more signif-
icant with the decrease in the diameter of the reinforcement or the increase in the stray
current intensity.

According to the test data of 13 groups of test pieces, the three-dimensional curved
surface relationship between the corrosion rate of reinforcement, calcium ion dissolution
rate and concrete damage degree can be drawn, as shown in Figure 9.
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It can be seen from Figure 9 that the damage degree of concrete is closely related
to the change in corrosion rate of reinforcement and calcium ion dissolution rate. The
damage degree of concrete increases with the increase in the corrosion rate of reinforcement
and calcium ion dissolution rate. When the energizing time, energizing voltage and
reinforcement diameter are the same, the corrosion rate of reinforcement and calcium ion
dissolution rate of C25 concrete are larger than those of C30 and C35, and the damage
degree of concrete even reaches 0.38. It can be seen that the corrosion of reinforcement and
calcium ion dissolution have a significant impact on the compressive strength of concrete.
At the same time, the maximum calcium ion dissolution rate in the 13 groups of data is
0.47%. However, from the comparative analysis, it can be seen that the damage effect of
reinforcement corrosion on concrete compressive strength is more obvious than that of
calcium ion corrosion.

4. Conclusions

The influence of reinforcement corrosion and calcium ion corrosion on concrete
strength under the action of stray currents was studied by simulating stray current environ-
ments and accelerating tests. The following conclusions were reached:

1. The higher the strength grade, the lower the corrosion of the internal reinforcement
and its electrochemical corrosion. With the increase in reinforcement diameter, the
corrosion rate decreases, but the calcium ion dissolution rate is not affected by rein-
forcement diameter. The greater the stray current intensity, the greater the corrosion
rate of reinforcement and the dissolution rate of calcium ions and the smaller the
critical corrosion rate of reinforcement when concrete cracks under strong currents;
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2. The corrosion behavior of calcium ions in concrete under the stray current will slow
down with the increase in the corrosion degree of reinforcement;

3. Through nonlinear regression fitting of the test data, the regression equations of the
original compressive strength, reinforcement diameter, corrosion voltage, electrifica-
tion time and other parameters on the corrosion rate and calcium ion dissolution rate
of reinforcement were obtained;

4. The damage degree of concrete is closely related to the corrosion of reinforcement
and the dissolution of calcium ions. The damage effect of rebar corrosion and calcium
ion dissolution on concrete strength is affected by stray current intensity and rebar
diameter. When the rebar corrosion rate and calcium ion dissolution rate are the
same, the smaller the rebar diameter or the larger the stray current intensity, the more
significant the damage effect is. Moreover, the damage effect of rebar corrosion on
concrete compressive strength is more obvious than that of calcium ion dissolution.
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