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Abstract: The paper presents the issues related to the design and assessment of the technical condition
as well as determination of the residual durability of pressure equipment. Based on a real a example,
a liquid nitrogen spherical tank, we present the development and applicability of the method for
assessment of the durability of the structure. In terms of the material itself, the authors analyze
macroscale (structural) factors of the geometry of the real structure (by 3D scanning: material wear
detection, deflections and deformations, etc.) and measured real operational loads to develop an
integrated method, including material model and behavior in its operational condition, delivering
a useful tool for macroscale structural analyses of the materials under complex load (mechanical,
thermal, chemical, etc.). As a result, a detailed analysis of the tank is presented. The paper gives
an idea of the method, its development, usefulness, and applicability of the presented approach
by indication of the mutual influence of pressure vessel components (e.g., stubs, manholes) and
operational loads, which may result in underestimating the strength and durability of the pressure
vessels in the design process and during operation.

Keywords: pressure vessels; fatigue calculations; FEA; residual life estimation

1. Introduction

Chemicals are present in large amounts in industrial installations as a processing
medium and as the process output as well. That rises the common safety demand, which
may be critical to any industrial installations and the operating team, as well as neighboring
habitats. The durability of storage installations may be influenced by the chemicals itself;
however, one needs to remember that high pressure levels of the working medium and its
cyclical change over time as a result of the course of technological processes, which may be
a critical factor for long-lasting safety of the installation. Equipment that belongs to this risk
group includes, among others, pressure tanks for liquid nitrogen. This article discusses the
issues of forecasting the durability of such a device subjected to many years of operation.

The pressure device design must take into consideration such facts as the necessity of
periodic inspections, the periodic/cyclic type of the load and many safety aspects. That
brought the necessity to develop design and operation requirements purely dedicated to
those kinds of structures. In light of standard documents EN 12953-3 [1] and EN 12953-4 [2],
which are commonly used to assess the durability of damage caused by fatigue of pressure
equipment, methods of identification of load cycles called “range-pair” are used, and
then to count the cycles loads called “rain-flow-load”. In the final stage, for each class of
load cycles, unit durability losses are determined, which in the final stage are summed
using the load accumulation method, e.g., the Palmgren–Miner linear failure accumulation
hypothesis [3,4]. The total loss of durability determined in this way should be less than 1. A
similar approach to durability assessment, differing mainly in the method of determination
the complex state of stress and deformation in specific areas of the structure (e.g., in the area
of welded joints), can be ASME standards: “Code Cases—Boilers and Pressure Vessels [5],
TRD 301 [6], or PN-EN 13445-5: 2021-10 [7].
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The issues of durability assessment of pressure vessels are also discussed in common
available publications. The vast majority of the durability assessment described in them is
based on the point values of deformations, stresses derived from the complex state of stress
and deformation of the structure, determined using the finite element method [8,9]. On the
other hand, further procedures in the durability assessment presented in the exemplary
publications [10] or [11] are analogous to those in standard documents. Another way to
approach the assessment of durability is using the so-called criteria functions, such as the
parameters of Coffin and Ostergren, which have been described in publications prepared
for NASA [12,13]. Articles [14,15] refer to the durability of the super-heater chamber, which
was determined on the basis of the critical plane defined with the use of two-directional
angles. For the hysteresis loop corresponding to this plane, the Ostergren parameter
was determined, which was then referred to the actual criterion function describing the
dependence of the Ostergren parameter on the number of cycles to failure determined on
the basis of tests on samples.

Moreover, for the evaluation of the durability of devices operating under thermo-
mechanical fatigue conditions, a new parameter called P was proposed in the publica-
tion [16]. This parameter takes into account the influence of the stress amplitude, the range
of plastic deformation and temperature.

Nevertheless, most of the published materials, including those mentioned above,
deal with material issues in microscale or local behavior of cylindrical components. In
the presented article, the authors target the gap between large amounts of research de-
scribing materials and structures in local (micro/mesoscale) and the practical application
of the knowledge in the structural integrity of the structures (macroscale). None of the
presented publications brings the applicability of the knowledge as a method useful for
the engineering staff facing structural long-life issues in real operation. We find it very
common that very detailed microscale models are not applicable in the case when real size
structure must be analyzed. In this paper, we present a practical method that uses the his-
tory of the equipment operation, basic mechanical and strength properties of construction
materials, and numerical methods in forecasting further available durability of pressure
equipment, including liquid nitrogen tanks, with respect to the development of knowledge
in computing, measurements and material sciences.

2. Materials and Methods

The proposed method for assessing the technical condition and durability of pressure
vessels after their long-term operation is based on the results of advanced simulation
analyses and experimental tests, experimental data in the field of the current technical
condition, history of operating loads, and other information relevant to the assessment. A
diagram of the proposed method is shown in Figure 1.

The first step of the proposed method is to identify the geometry of the pressure
equipment under test. The information obtained from the technical documentation is used
for this purpose. These are primarily constructional drawings. An additional activity
at this stage is verification and/or supplementary measurements on the tested facility.
An additional, unique action introduced by the authors into the proposed method is the
scanning of the device geometry. For this purpose, 3D laser techniques are used, which
allow us to recreate the real construction geometry of the object in the virtual space of the
computer-aided design system. The view of the point cloud obtained from the scan of an
exemplary industrial installation is shown in Figure 2. The used 3D laser scanner uses
808 nm wavelength, which measures the distance using the interferometry technology. The
head of the scanner rotates in horizontal and vertical axes. The combination of two-axis
rotation results in measurement of a spherical coordinate system. The interferometry is
realized by waveform digitizing technology (WFD), where a processor calculates distance
based on the time difference between reflected laser signal and referent signal. This
approach allows us to identify the real construction form of the object and validate the
geometric model, which will be the basis for the further calculations. The accuracy of 3D
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laser scanning is relatively high and depends on the size of the tested object, scanning
time, weather conditions (wind, rain, dust, scanned material reflectivity coefficient, etc.).
For industrial facilities shown in the figure below, with a size of several meters up to
several dozen meters, the accuracy ranges from a few mm to several cm. The scan of the
object also allows for the detection of inconsistencies with the design, and also makes it
possible to identify defects in the structure. These can be, for example, deformations, cracks
and other defects manifested by a change in the geometry of the object in relation to the
documentation/design version.
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On the basis of the identified geometry, a geometric model of the examined object is
built in a state corresponding to its real and current form. The geometric model is then used
to build a discrete finite element model. In order to obtain high accuracy of the strength
and durability calculations and to estimate the residual life, it is necessary to use detailed
modeling of the tested objects. Depending on the required detail of the calculations (global
or local analyzes), shell or volume models are used. In the case of pressure equipment, the
proposed approach is to combine these two approaches and refine the models in the area
of expected stress concentrations. These are usually areas of stubs, manholes, changes in
direction and splitting of pipelines, etc. The use of shell models allows us to determine the
effort of the walls of vessels, pipelines, supports, etc. with high accuracy. However, it is
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not possible to analyze in detail the influence of weld geometry in shell models. For this
reason, solid modeling is used in regions that require such detail.

The next step is to identify the loads acting on the structure. This stage depends on
the type of the tested object. The most complete source of information is the measurement
of the operational loads. This can be done by one’s own research, after installing a mea-
suring system that measures, e.g., pressure in the system, temperature, deformations and
other parameters that enable their interpretation as a load. It has to be noted that such
measurements provide information about the current load status. However, in the case of
objects after many years of operation, they do not provide certainty whether these loads
are representative of the entire period of operation. This has a very significant influence
on the subsequent analyses of the residual life of the tested object. The use of data from
monitoring systems for operating parameters of a given installation may be helpful here. If
these systems archive measurement data, we can obtain very important information on the
actual loads over a longer period of operation. This increases the accuracy of durability
analyses using the hypothesis of fatigue failure accumulation. However, the history of
loads from the entire service life of a given installation is rarely available. In such a situation,
representative load blocks are assumed, defined on the basis of the available history and
information on the operation technology. A quite typical situation in the operation of
industrial pressure installations is the periodicity of their operation, resulting from the
following factors:

• The nature of the technological process—periodicity is related to, e.g., the chemical
process occurring during the operation of the installation, which affects changes in
temperature, pressure, pulsation frequency, etc. The periodicity nature of such a
process allows for the identification of representative load blocks and determination
of their number, both in the past and planned future of exploitation.

• Installation outage cycles—in a typical approach to maintaining the technical condition
of an installation, fixed periods of operation are used, followed by downtime and
outage. In such a situation, it is possible to assume the cyclical nature of the load on
the object related to the outage cycle.

• Cycles of technical condition tests—in the case of pressure equipment, the regula-
tions/standards define the time intervals after which technical condition tests must
be carried out, including appropriate tests confirming the safety of operation. These
are, for example: pressure test, water test, NDT examinations and others. These tests
are usually carried out during outage works. Loads occurring during such tests may
also have an influence on the total durability of the installation, which, however, is
usually neglected in residual life, durability analyzes. This topic will be discussed in
more detail in the paper.

In the case of carrying out durability analyses along with the determination of the
residual life, the identified representative load blocks allow us to determine the number of
load cycles in individual ranges of amplitudes. A common method for determining the
load spectrum is the rainflow counting method [17].

As is known, damage to pressure installations occurs at points of stress accumulation.
In order to identify such places and determine the stresses distribution under operational
loads, various calculation methods, both analytical and numerical, are used. The analytical
methods have their limitations due to the lack of a strict solution in complex and statically
indeterminate load conditions. Therefore, the most effective calculation methods are numer-
ical methods, including the finite element method (FEM) [18]. Thanks to this, it is possible
identify the state of stress with high precision, depending mainly on the detail modeling
of the geometry, restraints and loads on the object. The already mentioned approach,
combining shell and volume modeling, seems to be optimal for pressure equipment. In
the case of pressure devices, it also allows for nonlinear analyses with consideration of the
geometrical and material phenomena. In this type of facility, we deal with such phenomena
(e.g., overstressing of the device during pressure tests).
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Correctly identified loads and stress distribution conditions with the use of numerical
methods in conjunction with data on load variability (rainflow) allows for fatigue analyses
with the use of damage accumulation hypotheses. The most popular include:

• Palmgren–Miner rule. The damage function is described by the expression:

DPM =
q

∑
i=1

ni
Ni

= 1 (1)

where:
DPM—function of fatigue damage (failure) according to Palmgren–Miner hypothesis
ni—number of cycles with stress amplitude of σai,
Ni—number of cycles to failure at stress amplitude of σai,
q—number of stress levels.
The main disadvantage of this theory is that the cumulative fatigue damage does not

include stresses below fatigue limit. Therefore, the following hypotheses are more useful
for cumulative fatigue damage:

• modified Palmgren–Miner rule—in this hypothesis the S-N curve of limited fatigue
strength is extended at the same angle, defined as m—cotangent of the S-N curve
slope angle. This modification of the hypothesis includes the stress-inducing loads
below the fatigue limit.

• Haibach hypothesis—the S-N curve of limited fatigue strength is extended at an angle
defined by exponent m’, which is related to exponent m in the following manner:

m’ = 2m − 1

• Corten–Dolan hypothesis, described by the dependency:

DCD =
q

∑
i=1

(
ni
Ni

)
ρ(σ)

(2)

where ρ(σ) is the exponent which depends on the stress at individual levels in the
time-trace, and which usually has a value of (0.8 ÷ 0.9) m.

• Serensen-Kogajev hypothesis, where the damage function has the form:

DS =
q

∑
i=1

ni
Ni

= as (3)

where:

as =
σamaxζ − kZg

σamax − kZg
(4)

σa max—largest amplitude in the time-trace,
k—coefficient describing the sensitivity of the hypothesis by determining the smallest

value of stresses that may cause fatigue damage (this value is usually assumed at 0.5),
ζ—duty cycle.
It is assumed that fatigue damage will occur when the sum D reaches the value of one.

There are cases where this value is lower than one.
Depending on the results obtained from the conducted analyses, knowledge about

the current technical condition of the facility and assessment of the safety of its further
operation can be done. In many cases it appears that the fatigue life has been reached or that
the residual life is unsatisfactory. In such a situation, it is possible to develop methods that
extend the time of safe operation. For this purpose, the same simulation and computational
tools are used in accordance with the method presented in Figure 1. Modeling various
variants of modifications, reinforcements, object repairs and their fatigue verification allows
for the development of an optimal modernization variant [19–21].
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A detailed description of the proposed method with examples of application is pre-
sented later in the article.

3. Numerical Analyses of Pressure Vessels

Pressure equipment, mainly vessels, as opposed to typical load-bearing structures
designed for high-cycle fatigue strength, are also subject to the phenomena of local plasticity.
Moreover, in this type of object, there may also be a need to take into account geometric
nonlinearities related to large deformations under load. Such situations especially occur
during commissioning overload tests, as well as during periodic operational safety tests.
With the complicated structure of the tank and the accompanying installation, as well as
with complex load conditions, it may turn out that the scale of these phenomena is greater
than assumed by the designer or operator of the equipment. In such a situation, a higher
local stress effort is observed, e.g., in the areas of stub pipes, manholes, etc., which in
an unfavorable situation may even lead to the occurrence of cyclic plastic deformations
during the operation of the object. This condition is unacceptable as it leads to accelerated
degradation resulting in often critical failures of the pressure equipment. In order to
assess and prevent such phenomena, the proposed computational method using advanced
numerical calculations can be used. The method enables a detailed analysis of the stress
effort of the object for its various operating and test conditions. It allows the modeling of
plasticity and hardening phenomena, also with cyclical load patterns. It requires detailed
modeling of geometry, especially in stress concentration regions. For this purpose, shell and
volume modeling are used. The view of an exemplary area of the pressure vessel modeled
using the shell and volume approach is shown in Figure 3. More detail can be obtained in
the volumetric model, but it requires much more computational resources, especially when
conducting nonlinear material and geometric analysis. Therefore, this modeling method is
usually used locally as a complement to the shell model.
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Figure 3. Geometrical model of part of the pressure vessel in area of stub and manhole modeled with
solid modeling approach (a) and shell modeling approach (b).

In this particular case the first calculations were made for a tank modeled with the use
of thin shell elements. On the basis of the obtained results, the occurrence of significant
plastic deformations of a cyclical nature in the area of the lower manhole and lower spouts
was found. Then, the obtained calculations were verified on a volumetric model taking into
account a larger number of geometric details discretized by means of HEXA 8 elements.

Figure 4a presents the symmetry conditions assumed for both the surface and outer
side edges of both the volumetric and surface parts of 1/9 of the liquid nitrogen tank model.
Under these symmetry conditions, appropriate volumetric finite elements (displacements
perpendicular to symmetry planes) and shell elements (displacements perpendicular to
symmetry planes and rotations along axes located in symmetry planes) were obtained. On
the other hand, Figure 4b,c show the loads applied to 1/9 of the tank model, which are
respectively liquid nitrogen hydrostatic pressure and pressure from gases located above
the liquid nitrogen surface on the vessel walls.
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Figure 4. (a) Symmetry conditions applied to the 1/9 liquid nitrogen tank model, (b) hydrostatic
pressure exerted by liquid nitrogen to the internal surfaces of the 1/9 liquid nitrogen tank model,
(c) pressure from gases located above the liquid nitrogen mirror applied to the surface of the 1/9
liquid nitrogen tank model.

Another phenomenon in pressure vessels that can be detected using numerical simula-
tions is the mutual overlapping of geometric notches, resulting in a greater than theoretically
determined local stress and strain effort. An example may be the location of several stub
pipes or manholes on the surface of the tank in close proximity to each other. Considering
each such element independently gives a standard and computationally correct result from
the point of view of design requirements. However, the overall analyses show that this
approach may lead to an underestimation of the stress and strain effort. Figure 5 shows an
example of the influence of the manhole, located at the bottom of the pressure vessel, on
the stress distribution around the connection stub located next to the manhole. There is an
extensive zone of plasticization between the manhole and the stub pipe, which would not
occur in the case of independent analyses of these two regions, without taking into account
their mutual influence. Such situations can lead to premature depletion of the service life
of the pressure vessel and its failure.

An example of stress distribution identification for various operation and testing
conditions in the spherical liquid nitrogen pressure vessel with the use of advance FEA
simulations is presented below. The vessel of 2000 m3 capacity and 17 m diameter is made
of steel plates. In the top and bottom areas there are multiply stubs and centrally located
man holes present. For geometrical modeling purposes the vessel was made as a shell
model for global calculations of the entire vessel. As a second step, local 3D modeling
was introduced for more detailed simulations in highly stressed areas. A shell model
was made by guiding the surfaces through the sheet metal middle thickness (Figure 6a).
Geometric models have been discretized primarily using thin shell linear surface elements
with thicknesses corresponding to the thicknesses of the actual structural plates of the
vessel. In addition, rod elements (Link 180) which includes stress–stiffness terms in any
analysis that includes large-deflection effects, were used to model cross-bars fixed within
the supports of the vessel (Figure 6b).
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Figure 6. Shell model of the full geometry of a spherical pressure vessel (a), discrete model of the
vessel (b).

For the definition of the finite element mesh for the considered models of liquid
ammonia tank, the overall size of 150 mm was assumed. On the other hand, in areas critical
in terms of potential stress concentrations, such as the places where the supports connect
with the spherical surface and the trunks in the upper and lower part of the tank, the mesh
was compacted to the size of 20 mm and 10 mm. Thanks to this approach, it was ensured
that the results in places would be more accurate.

The discrete model includes models of various grades of structural steels, which have
been used for the structural components of the vessel, such as steel plates for the vessel
sphere, stubs, man holes, vertical support columns.

Numerical calculations of the vessel structure were performed using the finite element
method in the Ansys Workbench environment. During this analysis, linear elastic material
models of individual steel grades were taken into account (no material nonlinearity), while
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maintaining geometric nonlinearity resulting from potentially large vessel displacements
under the load.

The following design cases were considered during simulations:

• Case 1—loading: gravity, gas pressure inside the vessel equal to 1.0 MPa (case with
unit load of internal pressure for further fatigue calculations),

• Case 2—loading: gravity, maximum operational gas pressure inside the vessel equal to
1.6 MPa (the case to assess the effect of maximum operational pressure in the vessel),

• Case 3—loading: gravity, hydrostatic pressure from liquid ammonia when the vessel
is filled to 21% of its volume, which is minimum design liquid level in the vessel (the
case to assess the effect of filling the vessel with liquid ammonia),

• Case 4—loading: gravity, hydrostatic pressure from liquid ammonia with the vessel
filling 69% of its volume, which is the maximum design liquid level in the vessel (case
to assess the effect of filling the vessel with liquid ammonia,

• Case 5—acting gravity, hydrostatic pressure from liquid ammonia, when the vessel is
filled to 69% of its volume, gas pressure inside the vessel is 1.6 MPa.

Case 1 is defined for further fatigue calculations. Cases 2–4 are defined to assess the
influence of operational loads (liquid level and gas pressure) on the stress distribution.
Case 5 refers to maximum operational loads condition.

The defined load case purposes are to determine their individual impact on the actual
state of stress in the structure of tanks of liquid nitrogen. This in turn allowed us to assess
which kind of stress mainly decides about the loss of durability of these structures.

Examples of calculation results for load case 5, in the form of equivalent stress contours
according to the Huber–Mises hypothesis are shown in Figure 7.
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Analyzing the obtained calculation results, it was noticed that the most stressed
regions of the vessel are the places where the vessel shell connects with the stub pipes in
the lower and upper part of the vessel, centrally located manholes and support columns.
Moreover, for design case 5 (during the maximum working load of the vessels), obtained
stress level indicates presence of local plastic zones (stress level above yield point).

Due to the occurrence of exceedance of the yield point under operational loads, a
material nonlinear analysis of the vessel was carried out with consideration of 3D modeling
approach in the highly stressed areas (bottom stubs and manhole areas). For this purpose
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and with consideration of the complexity of these calculations, the 1/9 model of the vessel
geometry was used for this simulation. Material nonlinearity of selected steel elements of
the vessel was assumed in the area of the shell connection with the support and in the area
of the lower manhole and nearby stubs. The exact distribution of materials with nonlinear
characteristics considered in the model is presented in Figure 8.
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Figure 8. Distribution of materials with nonlinear characteristics on the vessel structure model in the
lower manhole and nearby stubs (the designation NL next to the name of the steel grade means a
nonlinear material model).

For the simulation of the overload of the reservoir during the water test, taking into
account plastic deformations, elastoplastic models of materials were defined, taking into
account the effect of kinematic strengthening. As a result, the data including deformations
and the corresponding stresses were entered into the calculation program as actual values,
which are summarized in Table 1.

Table 1. Values of deformations and actual stresses of individual construction materials of tanks
introduced into elastoplastic models taking into account the phenomenon of kinematic strengthening.

1 Type of Steel
Yield Point

(Actual Values) Re
[MPa]

Endurance Limit
(Actual Values)

Rm [MPa]

Plastic Deformation at the
Moment of Sample Breaking

(Actual Values) [mm/mm]

Relative
Extension

[%]

1 ALDUR 58D 402 752 0.230 26.3
2 ALDUR 58G 402 681 0.196 22.0
3 ALDUR 50D 353 616 0.255 29.4
4 R St 37-2 255 432 0.188 21.0
5 ST 37 230 370 0.205 23.0
6 St 45.8/II 254 525 0.188 21.0
7 C22 245 518 0.170 19.0
8 Alfrog44 264 527 0.220 25.0

While the axisymmetric model enabled us to run the simulation with 1/9 geometry,
the simulation time was relatively acceptable while all the material model was nonlinear.
It was also beneficial due to the fact that part of the model was modeled with use of the
solid finite elements. Figure 9 depicts the generic view of the 1/9 of the geometry and the
close-up to the solid to shell transition area.
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Figure 9. Geometric model of spherical tanks used in the stress analysis (a) solid surface model—
general view (b) area detailed by means of a volumetric model.

The geometry prepared in this way was discretized using HEXA 8 volumetric elements
with 3 degrees of freedom in the node (detailed area of the tank model), thin shells with
6 degrees of freedom in the node and thicknesses corresponding to the thickness of the
sheets (the remainder of the model with a lower level of detail) and rod-shaped tensile
stiffening the columns support the structure. The model developed in this way consisted
of 302 732 terminated elements and 339 145 nodes, which gave the number of degrees of
freedom equal to 1 085 004. The discrete model is presented in Figure 10 (rod, shell and
solid elements) and the detailed view of the solid discretization is presented in Figure 11.
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Due to the prevailing kinematic character of the hardening of the construction material,
this hardening model was used in numerical calculations. It consists in the displacement of
the plastic surface in the direction of the load, with the simultaneous lack of change in both
its size and shape Figure 12.

Materials 2022, 15, x FOR PEER REVIEW 13 of 19 
 

 

  

(a) (b) 

Figure 11. Solid element (a) general view, (b) detailed view of the stub. 

Due to the prevailing kinematic character of the hardening of the construction 
material, this hardening model was used in numerical calculations. It consists in the 
displacement of the plastic surface in the direction of the load, with the simultaneous lack 
of change in both its size and shape Figure 12. 

 
Figure 12. Distribution mechanism of kinematic strengthening. 

The yield criterion for kinematic hardening can be described by the following 
equation: 𝐹  𝑠 𝛼 : 𝑠 𝛼 𝜎 0  (5) 

where s is the deviatory stress, бy is the uniaxial yield stress, α is the back stress (location 
of the center of the yield surface). 

The back stress is described by the equation below: Δ𝛼 𝐶Δ𝜀   (6) 

The nonlinear analysis carried out for 1/9 of the vessel part consisted of 259 steps. All 
testing and operational conditions were considered within these steps. Analyses included 
water and pressure tests of the vessel during which it is filled with water in 100% of its 
volume. Between these two tests, one operating condition is simulating (with maximum 
operating liquid volume of 69% and 1.6 MPa of gas pressure) This is to control the 
overstress of the vessel, which allows to reduce its stresses as a result of loads appearing 
during normal operation. The following two water tests the load scheme included 4 

Figure 12. Distribution mechanism of kinematic strengthening.

The yield criterion for kinematic hardening can be described by the following equation:

F =

√
3
2
(s − α) : (s − α)− σy = 0 (5)

where s is the deviatory stress, σy is the uniaxial yield stress, α is the back stress (location of
the center of the yield surface).

The back stress is described by the equation below:

∆α =
2
3

C∆εpl (6)

The nonlinear analysis carried out for 1/9 of the vessel part consisted of 259 steps. All
testing and operational conditions were considered within these steps. Analyses included
water and pressure tests of the vessel during which it is filled with water in 100% of its
volume. Between these two tests, one operating condition is simulating (with maximum
operating liquid volume of 69% and 1.6 MPa of gas pressure) This is to control the overstress
of the vessel, which allows to reduce its stresses as a result of loads appearing during normal
operation. The following two water tests the load scheme included 4 operational load
cycles (2 cycles with 16 MPa, gas pressure and 2 with reduced pressure of 1.4 MPa). The
entire load scheme with detailed description is presented in Figure 13.
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Selected results of numerical calculations for contour’s specific forms of von Mises
stresses are shown in the figures below (Figure 14).
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Figure 14. Contours of von Mises stresses within the lower manhole of the vessel for the time
t = 9150 s, for which they reach the maximum value (a), for the time t = 83,910 s—corresponding to
the condition of the unloaded tank (gravity only) residual stresses (b).

For two of areas with significant plastic strains observed, more detailed analyses are
presented below:

• P1v1—stub to vessel shell connection area,
• P4v2—bottom manhole to vessel shell connection area.

In order to conduct an in-depth analysis of the formation and development of plastic
strains in the abovementioned areas the courses of changes of the plastic strains dur-
ing the entire simulation (loading cycles shown in Figure 13) were determined. Time
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traces of changes of the generalized plastic strain for the above points are presented
(Figures 15 and 16).
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Based on the obtained calculation results, the following conclusions can be given:

• in the area of the lower stub to shell connection (point P1v1), cyclic plastic deformations
are observed for test conditions. This means that each tests causes plastic deformation
of this area, which is not expected.

• higher than expected plastic deformations are caused by location of the stub near the
manhole, which changes stress distribution in this area significantly.

• in the remaining areas of the vessel, no development of plastic zones was found after
overstressing the vessel (the first water test).
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As shown in the presented example only detailed, nonlinear simulations can identify
areas where potential failure may occur. Cyclic plastic deformation leads to cracks in few
cycles. With such information from FEA simulation, it is possible to avoid or minimize
such cyclic plastic deformation conditions.

Another very important topic related to safety of operation of pressure vessel is
residual life estimation. This subject is discussed in the next chapter.

4. Fatigue Calculations of Pressure Equipment

Many years of operation in variable load conditions requires an assessment of the
residual life, taking into account the history of loads. In such a case, the best basis for
calculations is a detailed identification of the stress/strain distribution, with the use of shell
and/or volume models (discussed in Section 3 of the paper) and a representative history of
loads. With such data available, it is possible to estimate the service life using the fatigue
accumulation hypotheses described in the paper. An example of such a calculation for a
pressure vessel is shown below.

4.1. Loads Identification for Fatigue Calculations

In the presented example it was possible to obtain history of loads of the circular
pressure vessel (presented in Section 3) from the last 3 years of operation. These data
consist of:

• percentage change of the liquid level in the vessel,
• the vessel internal pressure,
• number of emptying of the vessel per year,
• number and conditions of tests (water, pressure tests).

Example of time loads in a form of internal pressure in the vessel is presented in
Figure 17.
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4.2. Fatigue Calculations

In the fatigue calculation, cumulative damage approach described in Section 2 was
used. For stress identification in the vessel structure, FEA model and simulation results
described in the Section 3 were used. As a result, stress range variations for separate loads
were obtained. As a next step, rainflow counting was applied to enable calculations of
fatigue damage in each location of the pressure vessel. Figure 18 presents example of
the stress range rainflow chart is presented for point P1v1. In these calculations fatigue
properties of welded connections as well as out of welds areas were considered based on
EN 1993-1-9:2005 standard (Eurocode 3: Design of steel structures—Part 1–9: Fatigue).
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As a result, cumulative damage, which consists of damages from all loads, was
calculated and residual fatigue life obtained as well. As expected, the most critical location,
where the lowest residual fatigue life was calculated, is the area of the lower stub to shell
connection (point P1v1), which equals:

Nfat = 190 year

Based on these calculations, it was also possible to estimate the impact of periodic
water and pressure tests of the vessel. It was calculated that each such test reduces fatigue
life for 17 years of operation.

5. Discussion and Conclusions

The presented method makes it possible to detect phenomena that are difficult to take
into account or have not been included in the research on this type of object conducted so
far. It is particularly important to be able to assess the mutual influence of irregularities in
the construction of a pressure vessel (e.g., stubs, manholes). The presented calculations of
the pressure vessel show that this influence is significant and may lead to underestimating
the strength and durability of the pressure vessels in the design process. Thanks to detailed
numerical models and advanced nonlinear simulations, it was possible to determine the
weakest area of the vessel, which has not been identified previously. The stub located next
to the manhole turned out to be the most critical area of the vessel with the lowest residual
life calculated of 190 years of operation in typical conditions. In the calculations, it was
assumed that loads (amplitude, number of cycles) will not change in the future. Moreover,
it was determined that periodic pressure tests required by regulations reduce this residual
life for 17 years of operation due to periodical plastic de-formation present during such
overload tests. Based on obtained results, the decision was made to change pressure and
water testing methods and parameters to acoustic emission method, to avoid the primary
method negative impact on durability.

Detailed knowledge about the condition of the pressure vessel allows for its safe
operation. It also allows us to make justified and correct decisions about operating life.
Precise identification of weak points and the possibility of their modification before damage
occurs, allows us to extend this time of safe operation, and thus make better use of the
installation. The use of detailed numerical models (shell and solid modeling), taking into
account the actual geometry of the tested object (3D scanning) and the use of representative
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load traces (operation history, measurements), ensure very good precision of the entire
investigation.

An additional advantage of the presented approach is the possibility of assessing and,
if necessary, correcting the scope and/or the method of operating tests of the pressure
vessel, in the event of their negative impact on durability. In such a case, the test conditions
may be modified or the test method may be changed (e.g., the acoustic emission method
may be used instead of the pressure test).

The presented example of pressure vessel calculations shows the abovementioned
phenomena and describes the details of the application of the developed method.

The presented method for the assessment of the technical condition of pressure equip-
ment may be further developed through the use of new research, measurement and cal-
culation techniques. It depends on the research object, phenomena occurring in it (e.g.,
thermal phenomena), as well as expectations as to the detail of the obtained results of the
investigations. It can also be used for development of methods that increase durability
and extend the time of safe operation of pressure equipment. Additionally, the presented
method stands as a great basis for the development of the technical condition monitoring
systems of pressure equipment.
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