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Abstract: In the paper, a solution of the fractional dual-phase-lag heat conduction problem is pre-
sented. The considerations are related to the heat conduction in a multi-layered spherical medium
with azimuthal symmetry. The final form of the analytical solution is given in a form of the double
series of spherical Bessel functions and Legendre functions. Numerical calculations concern the study
of the effect of the order of the Caputo derivative on the temperature distribution in a composite
solid sphere, hemisphere and spherical cone.
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1. Introduction

Mathematical modeling of the heat conduction is an important stage in the design of
systems subjected to thermal loads, because it allows the appropriate selection of materials
to avoid adverse phenomena related to the occurrence of thermal stresses. For example,
the temperature distribution in the tested system may lead to the formation of thermal
stresses, which may cause micro-cracks in the components of this system [1–3], and cyclical
changes in the thermal load of the device may cause undesirable vibrations of the compo-
nents of this device [4–6]. On the other hand, the heat source causing high temperature of
biological tissue may destroy diseased tissue, but it may also damage healthy tissue [7,8].
Different mathematical models are used to accurately describe the heat conduction in the
considered bodies.

The classical mathematical model of heat conduction is derived from Fourier’s law of
the heat conduction. The Fourier law establishes a proportionality between the heat flux
vector and the temperature gradient [9]

q(r, t) = −λ∇T(r, t), (1)

where q is the heat flux vector, λ is the thermal conductivity of the material, r is the point
in the considered region, t is the time, ∇ is the gradient operator and T is the temperature.
Although the Fourier law quite accurately describes the heat conduction in most practical
macroscopic problems, the relationship (1) implies an unrealistic infinite speed of the
heat propagation; this means that the sudden temperature change at some point in the
domain will be felt everywhere and instantaneously at distant points in the domain—hence,
Fourier’s law can be treated as having the unphysical property [10]. To eliminate this
drawback of the mathematical model, the Fourier law (1) is replaced by the following
relationship [11]

q
(
r, t + τq

)
= −λ∇T(r, t + τT), (2)
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where τq and τT are the phase lags. Relationship (2) for τq > 0 and τT > 0 is the dual-phase-
lag constitutive equation for the heat conduction. The introduction of these phase lags into
this model is interpreted as the relaxation times accounting for the effects of thermal inertia.
The left and right sides of Equation (2) are expanded into the Taylor series. Depending on
the assumed number of the terms of this series, the different forms of the dual-phase-lag
model can be obtained. In Ref. [10], the authors discussed different forms of the dual-
phase-lag model as well as presented their characteristics. In this work, the first-order
approximation of the functions occurring on the left- and right-hand side of Equation (2) is
considered, which leads to the constitutive equation for the heat conduction in the form

q(r, t) + τq
∂q(r, t)

∂t
= −λ

(
∇T(r, t) + τT

∂

∂t
∇T(r, t)

)
. (3)

In addition, the energy equation is introduced [12]

−∇ · q(r, t) + g(r, t) = ρCp
∂T(r, t)

∂t
, (4)

where g(r, t) is the volumetric rate of the heat generation, ρ is the density of the material
and Cp is the specific heat capacity. Eliminating the heat flux from Equations (3) and (4),
we obtain the heat conduction equation in the form

τq

κ

∂2T(r, t)
∂t2 +

1
κ

∂T(r, t)
∂t

= τT
∂

∂t
∇2T(r, t) +∇2T(r, t) +

τq

λ

∂g(r, t)
∂t

+
1
λ

g(r, t), (5)

where ∇2 is the Laplace operator and κ = λ
/(

ρCp
)

is the thermal diffusivity.
The dual-phase-lag heat shown in Equation (5) has been applied in mathematical

modeling of the heat transfer in functionally graded materials [13–15], ultrafast pulse-
laser heating problems [16,17], porous media [18–20], nanocomposites [21,22], and living
tissue [23–25]. If τq = τT = 0 in Equation (5), then the classical parabolic heat conduction
equation is obtained. For τT = 0 and τq > 0, one obtains the single-phase-lag equation
of hyperbolic type. The wave character of this heat conduction equation was used in the
investigations of propagations of heat waves in papers [26,27].

A generalization of the dual-phase-lag model of the heat conduction is obtained by
replacement of the derivatives in the constitutive equation and energy equation by the
derivatives of non-integer order. In the present paper, the Caputo derivative of non-integer
order α is used and is defined by [28]

C
0 Dα

t f (t) ≡ dα f (t)
dtα

=
1

Γ(m− α)

t∫
0

(t− τ)m−α−1 dm f (τ)
dτm dτ, m− 1 < α < m . (6)

The properties of the derivative can be found in many books devoted to fractional calculus,
for instance in the books [28–31].

Replacing the time derivatives in the constitutive Equation (3) and energy Equation (4)
by the Caputo time fractional derivatives, one obtains

q(r, t) + τqνα−1 ∂αq(r, t)
∂tα

= −λ

(
∇T(r, t) + τTνα−1 ∂α

∂tα
∇T(r, t)

)
, (7)

−∇ · q(r, t) + g(r, t) = ρCpνα−1 ∂αT(r, t)
∂tα

, 0 < α ≤ 1, (8)

where the coefficient ν is introduced to keep the accordance of dimensions. Combining
Equations (7) and (8), one obtains the heat conduction equation with the Caputo fractional
derivatives in the form
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∂α

∂ tα

(
∂α

∂ tα
+

1
τqνα−1

)
T(r, t) =

κτT

τqνα−1

(
∂α

∂ tα
+

1
τTνα−1

)
∇2T(r, t)

+
κ

λνα−1

(
∂α

∂ tα
+

1
τqνα−1

)
g(r, t).

(9)

We use this equation for modeling the heat conduction in a multi-layered body. According
to the authors’ knowledge, this approach to the problem of two-dimensional time-fractional
heat conduction in a multi-layered medium was not used in the literature. Due to the
definition of the Caputo derivative, we can note that the differential Equation (9) describes
the temperature distribution in a body, taking into account the history of changes of
the temperature.

The fractional Equation (9) describes the heat conduction in a region which is specified
by the considered medium. In this paper, we consider the fractional heat conduction
in a spherical body. The Laplace operator which occurs in Equation (9) in the spherical
co-ordinates is defined as follows

∇2 =
1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+

1
sin ϕ

∂

∂ϕ

(
sin ϕ

∂

∂ϕ

)
+

1
sin2 ϕ

∂2

∂θ2

]
, (10)

where r is the radial coordinate, ϕ is the polar and θ is the azimuthal angle coordinate.
Assuming that the temperature distribution in the body is azimuthally invariant (azimuthal
symmetry), the last term in the bracket in Equation (10) can be dropped. A simplified form
of the Laplace operator can be obtained by introducing a new variable µ which is related to
the polar angle ϕ by the relationship

µ = cos(ϕ) . (11)

Taking into account the azimuthal symmetry, the Laplace operator in the new coordinates
can be written in the form

∇2 =
1
r2

[
∂

∂r

(
r2 ∂

∂r

)
+

∂

∂µ

((
1− µ2

) ∂

∂µ

)]
. (12)

In this paper, we present a dual-phase-lag fractional heat conduction model for a multi-
layered spherical body with azimuthal symmetry. An analytical solution of the problem
is derived in the form of the double series of spherical Bessel functions and Legendre
functions. Numerical computations of the temperature distribution in the body include
a composite solid sphere, hemisphere and spherical cone. Effects of the fractional order
of time-derivatives and phase lagging occurring in the heat conduction model on the
temperature distribution in the considered bodies are investigated numerically.

The problem considered in this paper is a continuation of the research that has been
presented in papers [32–36]. A solution of the fractional heat conduction problem in the
solid sphere was presented in [32]. The authors studied a fractional single-phase lag heat
conduction problem in the whole-space 1D domain [34], in the slab [35] and in the hollow
cylinder [33]. A fractional dual-phase-lagging heat conduction in the whole-space 1D
domain was presented in [36].

2. Formulation of the Problem

Let us consider the fractional heat conduction in a spherical body (with coordinates
r ≡ {r, ϕ} consisting of n concentric spherical layers which are defined by: ri−1 6 r 6 ri
(i = 1, . . . , n), 0 6 ϕ 6 ϕ̄, where 0 < ϕ̄ 6 π. The body is a full solid sphere when ϕ̄ tends
to π, for ϕ̄ = π/2, the body is a hemisphere, and for 0 < ϕ̄ < π/2, the body is a spherical
cone (Figure 1).
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(a) (b)

Figure 1. Multi-layered spherical cone under considerations: (a) 3D graph, (b) main cross-section.

The heat conduction in the i-th spherical layer is governed by the following time-
fractional differential equation

∂α

∂tα

(
∂α

∂tα
+

1
τqνα−1

)
Ti =

κiτT

τqνα−1

(
∂α

∂tα
+

1
τTνα−1

)
∇2Ti +

κi

λiνα−1

(
∂α

∂tα
+

1
τqνα−1

)
gi, (13)

where Ti ≡ Ti(r, µ, t) is the temperature, λi is the thermal conductivity, κi is the thermal
diffusivity, gi ≡ gi(r, µ, t) is the volumetric heat source in the i-th layer and α ∈ (0, 1]
denotes the fractional order of the Caputo derivative, µ ∈

[
µϕ, 1

]
and µϕ = cos(ϕ̄).

The fractional differential Equation (13) for i = 1, . . . , n is complemented by boundary
and initial conditions and the conditions providing the perfect thermal contact of the
neighboring layers. The conditions are as follows:

|T1(0, µ, t)| < ∞, (14)

∂Ti(r, µ, t)
∂µ

∣∣∣∣
µ=µϕ

= 0, (15)

Ti(ri, µ, t) = Ti+1(ri, µ, t) , i = 1, . . . , n− 1, (16)

λi
∂Ti(r, µ, t)

∂r

∣∣∣∣
r=ri

= λi+1
∂Ti+1(r, µ, t)

∂r

∣∣∣∣
r=ri

, i = 1, . . . , n− 1, (17)

λn
∂Tn(r, µ, t)

∂r

∣∣∣∣
r=rn

= a∞(T∞(µ)− Tn(rn, µ, t)), (18)

where a∞ and T∞ are the outer heat transfer coefficient and ambient temperature, respec-
tively. It should be noted that in general, the boundary conditions (17) and (18) should be
formulated using the dual-phase-lag model [37,38]. However, if values of the relaxation
times are identical in two neighboring layers, than we can assume the simplification in the
above boundary conditions. The initial conditions are assumed in the form

Ti(r, µ, 0) = Fi(r, µ) , i = 1, . . . , n, (19)

∂αTi(r, µ, t)
∂ tα

∣∣∣∣
t=0

= Gi(r, µ), i = 1, . . . , n. (20)

3. Solution of the Problem

An analytical solution to the initial-boundary problem (13)–(20) can be presented in
the form of a sum

Ti(r, µ, t) = φi(r, µ, t) + ψi(r, µ) , i = 1, . . . , n, (21)
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where the function φi satisfies the fractional differential Equation (13) and homogenous
boundary conditions (transient problem) and ψi is a solution of a steady-state problem.
Substituting the function Ti in the form (21) into Equation (13), we receive differential
equations for the functions φi and ψi. For the function φi, one obtains an equation with
fractional time derivative

∂α

∂tα

(
∂α

∂tα
+

1
τqνα−1

)
φi =

κiτT

τqνα−1

(
∂α

∂tα
+

1
τTνα−1

)
∇2φi +

κi

λi να−1

(
∂α

∂tα
+

1
τqνα−1

)
gi, (22)

and for the function ψi, one obtains the Laplace equation

∇2ψi(r, µ) = 0. (23)

Suppose that φi is a function of the form

φi(r, µ, t) = Λ i(r, µ) θ(t). (24)

Taking into account Equation (24) in the homogenous differential equation obtained by
omitting the last term in Equation (22) and separating the space and time variables, we
receive the Helmholtz equation for the function Λi

∇2Λi(r, µ) + Ω2
i Λi(r, µ) = 0, (25)

where Ωi = ω
/√

κi, whereas ω is the separation constant.
In turn, introducing functions M(µ), RΛ

i (r), Rψ
i (r), we write the functions ψi and Λi as

ψi(r, µ) = Rψ
i (r)M(µ), Λi(r, µ) = RΛ

i (r) M(µ). (26)

Substituting the functions ψi and Λ i into Equations (23) and (25), separating the variables
and assuming the separation constant as β(β + 1) where β is a real number, one obtains the
three homogenous differential equations: Lagrange equation, Euler equation and spherical
Bessel equation:

d
dµ

((
1− µ2

) d
dµ

)
M(µ) + β(β + 1)M(µ) = 0, µϕ 6 µ 6 1, (27)

d
dr

(
r2 d

dr

)
Rψ

i (r)− β(β + 1)Rψ
i (r) = 0, ri−1 6 r 6 ri, i = 1, . . . , n, (28)

1
r2

d
dr

(
r2 d

dr

)
RΛ

i (r) +
(

Ω2
i −

β(β + 1)
r2

)
RΛ

i (r) = 0, ri−1 6 r 6 ri, i = 1, . . . , n. (29)

The functions M, RΛ
i , and Rψ

i satisfy boundary conditions which are obtained by
taking the functions (21), (24) and (26) in conditions (14)–(18). The function M satisfies the
conditions:

|M(µ)| < ∞, µ ∈
[
µϕ, 1

)
, (30)

M′
(
µϕ

)
= 0. (31)

The functions RΛ
i (r), Rψ

i (r) satisfy the same conditions at r = 0 and at interfaces r = ri,
i = 1, 2, . . . , n− 1 (the superscripts are omitted):

|R1(0)| < ∞, (32)

Ri(ri) = Ri+1(ri) ,
dRi(ri)

dr
= ϑi

dRi+1(ri)

dr
, i = 1, . . . , n− 1, (33)
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where ϑi =
λi+1

λi
. Moreover, the function RΛ

n (r) satisfies the homogenous condition at
r = rn

dRΛ
n (rn)

dr
= − a∞

λn
RΛ

n (rn), (34)

and the function Rψ
n(r), as the radial part of the function ψn(r, µ) = Rψ

n(r) M(µ), satisfies
the condition

∂ψn(rn, µ)

∂r
=

a∞

λn
(T∞(µ)− ψn(rn, µ)). (35)

The solutions of Equations (27)–(29) with appropriate conditions among (30)–(35) are
presented in Section 3.1.

3.1. Solution of the Lagrange Equation

The solution to Equation (27), which satisfies the condition (30), is the function

M(µ) = A1 Pβ(µ), (36)

where Pβ(µ) is the Legendre function of the first kind and A1 is a constant. Using the
derivative of the Legendre function [39]

dPβ(µ)

dµ
=

β + 1
1− µ2

(
µPβ(µ)− Pβ+1(µ)

)
, (37)

and the boundary condition (31), one obtains the following equation

µϕPβ

(
µϕ

)
− Pβ+1

(
µϕ

)
= 0. (38)

The roots of this equation for µϕ = −1 (solid sphere) are βm = m, m = 0, 1, 2, . . . and for
µϕ = 0 (hemisphere) are βm = 2m, m = 0, 1, 2, . . .. In these cases, the eigenfunctions Pm(µ)
and P2m(µ) where m is a positive integer number are the Legendre polynomials. The roots
to Equation (38) for µϕ ∈ (−1, 0) ∪ (0, 1) are numerically determined.

The functions Pβm(µ), m = 0, 1, 2, . . ., create an orthogonal set of functions. The or-
thogonality condition of the functions can be derived using an indefinite integral of the
product of functions Pβ(µ) and Pβ′(µ) where β 6= β′. Utilizing Equation (27), this integral
can be expressed as follows

∫
Pβ(µ)Pβ′(µ)dµ =

1− µ2

(β− β′)(β + β′ + 1)

(
Pβ(µ)

dPβ′(µ)

dµ
− Pβ′(µ)

dPβ(µ)

dµ

)
+ C, (39)

where C is an arbitrary constant. Taking into account the antiderivative given by
Equation (39) and the boundary condition (31), one obtains

1∫
µϕ

Pβ(µ)Pβ′(µ) dµ = 0 for β′ 6= β. (40)

In order to find the antiderivative of the square of the Legendre function, the integral
occurring in Equation (39), employing Equation (37), is rewritten in the form∫

Pβ(µ)Pβ′ (µ)dµ

=
1

β + β′ + 1

(
(β′ + 1)Pβ(µ)Pβ′+1(µ)− (β + 1)Pβ+1(µ)Pβ′ (µ)

β′ − β
− µPβ(µ)Pβ′ (µ)

)
+ C.

(41)
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Evaluating limits of the expressions occurring on the left and right-hand sides of
Equation (41) as β′ tends to β, the square of the norm Nµ

m of the Legendre function for
m = 1, 2, . . ., one obtains in the form

Nµ
m =

1∫
µϕ

(
Pβm(µ)

)2dµ

=
βm + 1

2βm + 1

Pβm+1
(
µϕ

) dPβ

(
µϕ

)
dβ

∣∣∣∣∣
β=βm

− Pβm

(
µϕ

) dPβ+1
(
µϕ

)
dβ

∣∣∣∣∣
β=βm

,

(42)

where βm are the roots of the Equation (38). For m = 0, we have Nµ
0 = 1− µϕ. Finally,

the orthogonality condition of the functions Pβm(µ), m = 0, 1, 2, . . ., can be written as

1∫
µϕ

Pβm(µ)Pβn(µ) dµ = Nµ
m δm n, for m, n = 0, 1, 2, . . . , (43)

where δm n is the Kronecker delta.

3.2. Solution of the Euler Equation in the Multi-Layered Spherical Region

The general solution to the Euler Equation (28) for β = βm, m = 0, 1, 2, . . ., is given by

Rψ
i, m(r) = B1 i

(
r
ri

)βm

+ B2 i

(
r
ri

)−(βm+1)
, ri−1 6 r 6 ri, i = 1, . . . , n, (44)

where B1 i, B2 i are arbitrary constants. Using boundary conditions (32), one obtains a set of
2n− 2 equations with unknowns: B1 i, B2 i, i = 1, . . . , n− 1. These equations are as follows

B1, i + B2, i − dβm
i B1, i+1 − d−(βm+1)

i B2, i+1 = 0, (45)

B1 ,i − B2, i

(
1 +

1
βm

)
− B1 ,i+1ϑid

βm
i + B2 ,i+1ϑi

(
1 +

1
βm

)
d−(βm+1)

i = 0, (46)

where di =
ri

ri+1
. Due to the condition (32), we assume B2 1 = 0 in Equations (44)–(46).

The system of Equations (45) and (46) is complemented by an equation which is
obtained on the basis of the boundary condition (35) for the function ψn. The functions ψi
are given by Equation (26) as a product of two functions. To fulfil the condition (35), we
assume that

ψi(r, µ) =
∞

∑
m=0

Rψ
i,m(r) Pβm(µ), i = 1, 2, . . . , n. (47)

Substituting the function ψn into the condition (35), multiplying the received equation by
Pβm′

(µ), integrating with respect to µ in the interval
[
µϕ, 1

]
and using the orthogonality

condition (43), one obtains the condition for the function Rψ
i,m(r)

dRψ
n,m(rn)

dr
+

a∞

λn
Rψ

n,m(rn) =
a∞

Nµ
mλn

1∫
µϕ

T∞(µ)Pβm(µ) dµ. (48)

Employing Equation (44) for i = n in Equation (48), the following condition is obtained(
1 +

βm λn

a∞ rn

)
B1, n +

(
1− (βm + 1) λn

a∞ rn

)
B2, n =

Im

Nµ
m

, (49)
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where Im =

1∫
µϕ

T∞(µ)Pβm(µ)dµ. For the function T∞ defined by

T∞(µ) =

{
0, µϕ ≤ µ ≤ µ0,
(µ− µ0)Ta, µ0 < µ ≤ 1,

(50)

the integral Im may be expressed in an analytical form as

Im =


1
2
(1− µ0)

2Ta for m = 0,(
βm
(
µ2

0 − 1
)
+ 2µ2

0
)

Pβm(µ0)− 2µ0Pβm+1(µ0)

βm(β2
m + βm − 2)

Ta for m = 1, 2, . . ..
(51)

Equation (49) together with Equations (45) and (46) form a system of 2n− 1 equations
which is solved for β = βm, m = 0, 1, 2, . . . with respect to B1 ,1, B1 ,2, B2,2, . . ., B1 n, B2 n.
Hence, the functions ψi, i = 1, . . . , n are now fully defined by Equation (47), whereas the
functions Rψ

i m are given by Equation (44).

3.3. Solution of the Spherical Bessel Equation in the Multi-Layered Region

The general solution to Equation (29) can be written as follows

RΛ
i,m(r) = C1, i jβm(Ωi,m r) + C2, i yβm(Ωi,m r), for ri−1 ≤ r ≤ ri,

i = 1, . . . , n, m = 0, 1, 2, . . . ,
(52)

where Ωi,m = ωm
/√

κi, C1, i, C2, i are constants, and jβm and yβm are spherical Bessel
functions of the first and second kind, respectively. The spherical Bessel functions are
defined by (see Ref. [9])

jβ(z) =
√

π

2 z
Jβ+1/2(z), yβ(z) =

√
π

2 z
Yβ+1/2(z), (53)

where Jβ and Yβ are the Bessel functions of the first and second kind, respectively. The func-
tions RΛ

i,m(r) are defined for r ∈ [ri−1, ri], i = 1, 2, . . . , n, wherein r0 = 0. As the function
yβ(z) tends to infinity when z tends to zero, i.e., lim

z→0
yβ(z) = −∞, then taking into account

the condition (14), we assume C2, 1 = 0 in Equation (51) for i = 1.
Substituting the function RΛ

i,m into the continuity conditions (33) and the boundary
condition (34), we obtain a system of 2n− 1 homogenous equations with unknown C1, 1,
C1,2, C2, 2, . . ., Cn, 1, Cn, 2. This system of equations in the matrix form can be written as

A · C = 0, (54)

where C = [C1,1 C1,2 C2,2 . . . C1,n C2,n]
T is the column matrix of the unknowns and

A =
[
aij
]

16 i,j6 2n−1 is the coefficients matrix of the equations system. The non-trivial
solution of Equation (54) exists if the characteristic equation is satisfied

det(A) = 0. (55)

Next, this equation is solved numerically with respect to ω for β = βm, m = 0, 1, 2 . . ..
Next, for the roots ωj, m, j = 1, 2, . . . , m = 0, 1, 2, . . . of Equation (55), the coefficients
C1,2, C2,2, . . . , C1,n, C2,n (index m is omitted) are successfully determined as a solution of
Equation (54) with C1,1 = 1. Taking into account the eigenvalues ωj, m and the coefficients
C1,i, C2,i in Equation (51), we obtain the functions RΛ

i, j, m. These functions satisfy the orthog-
onality condition which can be derived using the differential Equation (29), the conditions
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at the interfaces (33) and the boundary condition (34). The orthogonality condition has
the form

n

∑
i=1

λi
κi

ri∫
ri−1

r2RΛ
i, j, m(r) RΛ

i, j′ , m(r)dr = Nr
j,mδj,j′ , j, j′ = 1, 2 . . . , m = 0, 1, 2 . . . , (56)

where

Nr
j,m =

n

∑
i=1

λi
κi

ri∫
ri−1

r2(C1, i jβm

(
Ωi,j,m r

)
+ C2, i yβm

(
Ωi,j,m r

))2 dr. (57)

The functions Λi, defined by Equation (26), can be now written as

Λi, j, m(r, µ) = RΛ
i, j,m(r)Pβm(µ). (58)

3.4. Solution of the Time-Fractional Differential Equation

The functions Λi, j, m are used to express the functions φi in the double series form

φi(r, µ, t) =
∞

∑
j=1

∞

∑
m=0

θj, m(t)Λi, j, m(r, µ), (59)

where the functions θj, m satisfy the nonhomogeneous Equation (22). Substituting the
functions (59) into Equation (22) and using the orthogonality conditions (43) and (56), we
receive the fractional differential equation for the functions θj, m in the form

dα

dtα

(dαθj, m(t)
dtα

)
+

1
τqνα−1

(
1 + τTω2

j, m

)dαθj, m(t)
dtα

+
ω2

j, m

τqν2α−2 θj, m(t)

=
1

να−1Nr
j,mNµ

m

(
dα

dtα
+

1
τqνα−1

) n

∑
i=1

ri∫
ri−1

r2RΛ
i, j, m(r)

 1∫
µϕ

gi(r, µ, t)Pβm(µ)dµ

dr.
(60)

This differential equation is complemented by initial conditions which are derived using
Equations (19), (20) and (59) and the orthogonality conditions (43) and (56). The initial
conditions for the function θj, m have the form

θ̂0
j,m ≡ θj, m(0) =

1
Nr

j,m

n

∑
i=1

λi
κi

ri∫
ri−1

r2RΛ
i, j,m(r)

 1
Nµ

m

1∫
µϕ

Fi(r, µ)Pβm(µ)dµ− Rψ
i,m(r)

dr, (61)

θ̂α
j,m ≡

∂α

∂tα
θj, m(t)

∣∣∣∣
t=0

=
1

Nr
j,mNµ

m

n

∑
i=1

λi
κi

ri∫
ri−1

r2RΛ
i, j′ ,m(r)

1∫
µϕ

Gi(r, µ)Pβm(µ)dµdr. (62)

In order to determine a solution of the initial value problem (60) and (61), we apply the
Laplace transform technique. The Laplace transform f̄ (s) of the function f (t) is defined as

f̄ (s) = L[ f (t)] =
∞∫

0

f (t)e−stdt. (63)

The Laplace transform of the Caputo derivative of order α ∈ (0, 1] is given by

L
[

C
0 Dα

t f (t)
]
= sα f̄ (s)− sα−1 f (0). (64)
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The application of the Laplace transform to Equation (60) allows us to express the transform
θ̄j,m(s) in the form

θ̄j,m(s) =
1
s

(
1−

ω2
j,m

τqν2α−2 K̄j,m(s)

)
θ̂0

j,m + sα−1K̄j,m(s)θ̂α
j,m

+
1

να−1Nr
j,m Nµ

m

(
sα +

1
τqνα−1

)
K̄j,m(s)

n

∑
i=1

λi
κi

ri∫
ri−1

1∫
µϕ

r2RΛ
i,j,m(r)Pβm (µ)ḡi(r, µ, s)dµ dr

− 1
να−1Nr

j,m Nµ
m

sα−1K̄j,m(s)
n

∑
i=1

λi
κi

ri∫
ri−1

1∫
µϕ

r2RΛ
i,j,m(r)Pβm (µ)gi(r, µ, 0)dµdr,

(65)

where

K̄j,m(s) =

[
s2α +

1
τqνα−1

((
1 + τT ω2

j, m

)
sα +

ω2
j, m

τqν2α−2

)]−1

. (66)

For the purpose of determining the inverse Laplace transform L−1[θ̄j, m(s)
]
, we

find firstly four inverse transforms: Kj, m(t) = L−1[K̄j, m(s)
]
, K∗j,m(t) = L−1[sαK̄j, m(s)

]
,

K∗∗j,m(t) = L−1
[
s−1K̄j, m(s)

]
and K∗∗∗j,m (t) = L−1

[
sα−1K̄j, m(s)

]
. Introducing notation:

ϑj, m = p2
j, m − qj, m with pj, m =

1
2τqνα−1

(
1 + τTω2

j, m

)
and qj, m =

ω2
j, m

τqν2(α−1)
, we rewrite

K̄j, m(s) as

K̄j,m(s) =
1

2
√

ϑj, m

(
1

sα + z−j,m
− 1

sα + z+j,m

)
, (67)

where z±j, m = pj, m ±
√

ϑj, m. Employing the Laplace transform pair given by

L
[
tβ−1Eγ

α, β(−z tα)
]
=

sα γ−β

(sα + z)γ , (68)

where Eγ
α, β is a three parameter Mittag–Leffler function, which is also known as the Prab-

hakar function [28], and we obtain the inverse transform Kj,m(t) = L−1[K̄j, m(s)
]

for
ϑj, m 6= 0 in the form

Kj,m(t) =
tα−1

2
√

ϑj, m

(
Eα, α

(
−z−j,m tα

)
− Eα, α

(
−z+j,m tα

))
. (69)

If ϑj, m = 0, then on the basis of (67), we have

Kj,m(t) = t2α−1E2
α, 2α

(
−pj,m tα

)
. (70)

Similarly, we receive

K∗j,m(t) = L−1[sαK̄j,m(s)
]

=


tα−1

2
√

ϑj, m

(
z+j,mEα, α

(
−z+j,mtα

)
− z−j,mEα, α

(
−z−j,mtα

))
, ϑj,m 6= 0,

tα−1E2
α, α

(
−pj,mtα

)
, ϑj,m = 0.

(71)

Using the property of the Laplace transforms, we can find the inverse Laplace trans-
form L−1

[
s−1K̄j, m(s)

]
as an integral of the function Kj,m(t). Utilizing the formula for

integration of the Mittag–Leffler and Prabhakar functions
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t∫
0

uβ−1Eγ
α,β(z uα) du = tβEγ

α, β+1(z tα), (72)

in Equations (69) and (70), we obtain

K∗∗j,m(t) = L−1
[

1
s

K̄j,m(s)
]

=


tα

2
√

ϑj, m

(
Eα, α+1

(
−z−j,mtα

)
− Eα, α+1

(
−z+j,mtα

))
, ϑj,m 6= 0,

t2αE2
α, 2α+1

(
−pj,mtα

)
, ϑj,m = 0.

(73)

The inverse Laplace transform L−1
[
sα−1K̄j, m(s)

]
can be obtained using Formula (68)

K∗∗∗j,m (t) = L−1
[
sα−1K̄j,m(s)

]
=


1

2
√

ϑj, m

(
Eα,1

(
−z−j,mtα

)
− Eα,1

(
−z+j,mtα

))
, ϑj,m 6= 0,

E2
α,1
(
−pj,mtα

)
, ϑj,m = 0.

(74)

Employing the functions Kj,m, K∗j,m, K∗∗j,m and the Laplace transform θ̄j, m given by
Equation (65), we can write the functions θj, m as

θj, m(t) =
[
1− qj, mK∗∗j, m(t)

]
θ̂0

j,m + K∗∗∗j, m (t)θ̂α
j,m

+
1

να−1Nr
j,mNµ

m

n

∑
i=1

λi
κi

ri∫
ri−1

1∫
µϕ

r2RΛ
i, j,m(r)Pβm(µ)

t∫
0

(
K∗j, m(τ) +

Kj,m(τ)

τqνα−1

)
gi(r, µ, t− τ) dτ dµ dr

− 1
να−1Nr

j,mNµ
m

K∗∗∗j, m (t)
n

∑
i=1

λi
κi

ri∫
ri−1

1∫
µϕ

r2RΛ
i, j,m(r)Pβm(µ)gi(r, µ, 0)dµ dr.

(75)

If the functions gi are given by

gi(r, µ, t) =
{

Q1 for i = 1,
0 for i = 2, . . . , n.

(76)

where Q1 is a constant, then the functions θj, m can be written in the form

θj, m(t) =
(

1− qj,mK∗∗j,m(t)
)

θ̂0
j,m

+
λ1Q1δm, 0

τqν2α−2κ1Nr
j,0Ω3

1, j, 0

(
sin
(
Ω1, j, 0r1

)
−Ω1, j, 0r1 cos

(
Ω1, j, 0r1

))
K∗∗j,0(t).

(77)

Taking the function θj, m into account in Equation (59), we obtain the function φi. This
function and the function ψi given by Equation (47) are used in Equation (21), which
determines the temperature Ti in the i-th layer of the body under consideration.

4. Numerical Examples and Discussion

The presented analytical solution of the fractional heat conduction problem was used
to compute the temperature distributions in a layered spherical cone to investigate the effect
of the phase-lags and the order of the fractional time-derivative on the heat conduction
in the medium. The analysis concerns the heat conduction in the cone of constant initial
temperature with an inner or outer heat source. We introduce the non-dimensional time
t̄ = t κn/b2, the non-dimensional radii r̄ = r/b and r̄i = ri/b where ri determines the
boundary of the i-th spherical layer, i = 1, . . . , n. Temperature T in the cone is defined as
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T(r̄, µ, t̄) = Ti(r, µ, t) where r = r̄ b, t = t̄ b2/κn and i is the layer number; i.e., the condition
ri−1 < r ≤ ri is fulfilled. The spherical cone under consideration consists of five concentric
layers wherein r̄i = 0.2 i, i = 1, . . . , 5. The physical data assumed in the computation are
given in Table 1.

Table 1. Thermal diffusivity and thermal conductivity of the spherical layers of the cone applied in
the numerical examples.

i 1 2 3 4 5

κi

[
m2
/

s
]

3.3× 10−6 6.0× 10−6 1.1× 10−5 2.0× 10−5 4.0× 10−5

λi
[
W
/
(mK)

]
16.0 24.0 36.0 54.0 81.0

The role of the fractional order occurring in the mathematical model of the fractional
heat conduction and its effect on the temperature distribution in the spherical cone was
investigated for α ∈ [0.4; 0.6]. Computer simulation data were generated by the Mathemat-
ica software.

The first example concerns the heat conduction in a spherical cone without inner
and outer heat sources. The cone is specified by the radius b = 0.5 m and the half-angle
at the apex of the cone ϕ̄ = π/3. The initial temperature, the ambient temperature and
the heat transfer coefficient were assumed as: Fi(r, µ) = T0 = 20 ◦C, Ta = 0 ◦C and
a∞ = 1200 W/(m2K), respectively. The computations were performed for the phase lags
τq = 5 s, τT = 1 s (artificial values, identical for each layer) and six different values of
the order of fractional derivative: α = 0.4; 0.425; 0.45; 0.475; 0.5; 0.525; 0.55; 0.575; 0.6.
Figure 2 presents the dimensionless temperatures in the cone T̄ = T/T0 versus r̄ = r/b
for the non-dimensional time variable t̄ = 1; 5; 10; 20. The results show the effect of the
order of fractional derivative occurring in the heat conduction equation on the temperature
distribution in the cone. The temperatures in the points of the cone tend with time to a
steady state for each value of the derivative order α. It can be noted that temperature
decreases faster for larger values of the order α occurring in the mathematical model of the
heat conduction.

In the case of the heat conduction in the spherical cone without an inner heat source,
we predict that the function φi occurring in Equation (21) satisfies the condition

lim
t→∞

φi(r, µ, t) = 0, (78)

for i = 1, . . . , n and all r ∈ [0, b] and µ ∈
[
µϕ, 1

)
, i.e., the steady state of temperature

distribution: Ti(r, µ, t) = ψi(r, µ) occurs in the cone. For the purpose of the formal proof of
this statement, the asymptotic formula may be used for the Mittag–Leffler function Eα,β
given by

Eα,β(z) = −
m

∑
k=1

z−k

Γ(β− kα)
+ O

(
|z|−m−1

)
, |z| → ∞. (79)

Employing this formula in Equation (72), we obtain that lim
t→∞

K∗∗j,m(t) = 1/qj,m. Taking

into account the first term on the right-hand side of Equation (76) for consideration of
the heat conduction without an inner source, we have lim

t→∞
θj, m(t) = 0 for j = 1, 2, . . . and

m = 0, 1, 2, . . . Hence, on the basis of Equation (59), the condition (78) is fulfilled. Thus,
the steady-state temperature distribution in the i-th layer of the solid sphere is given by
Equation (21) in which the first term on the right-hand side can be omitted. In this case,
the temperature in the considered region is independent from the phase-lags and the order
of fractional derivatives which occur in the heat conduction model. In Figure 3, the 3D
graph and contour plot of the function Ti = ψi(r, µ) illustrating the change of temperature
in a hemisphere when its surface is heated by an outer heat source defined by Equation (50)
with µ0 = 1/2 and Ta = 40 ◦C shown. The physical data that characterized the hemisphere,
which were used in computation, are the same as in the first example.
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Figure 2. Dimensionless temperatures T̄ = T/T0 in the cone without inner and outer heat sources
with initial temperature T0 = 20 ◦C versus r̄ = r/b for six values of the order of fractional derivative
α and four values of the non-dimensional time: (a) t̄ = 1; (b) t̄ = 5; (c) t̄ = 10; (d) t̄ = 20.

Figure 3. Temperature distribution T/Ta in the hemisphere without an inner heat source when its
surface is heated by an outer heat source defined by Equation (50) with µ0 = 1/2 and Ta = 40 ◦C,
as a function of non-dimensional space variables (r̄, ϕ).

The Robin condition (18) on the spherical surface of the cone describes the heat
exchange with the environment. If the ambient temperature is higher than the temperature
of the spherical surface of the cone, then the spherical surface is heated, and the heat
flows in the cone in the radial direction. In Figure 4, curves are presented that illustrate
the changes of temperatures in the cone when the ambient temperature is specified by
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Equation (50) with T0 = 0 ◦C and Ta = 20 ◦C. The calculations were performed assuming
that there is no internal heat source.

Figure 4. Dimensionless temperatures T̄ = T/20 ◦C in the cone without inner heat sources with
initial temperature T0 = 0 ◦C, versus r̄ = r/b for six values of the order of fractional derivative α and
four values of the non-dimensional time: (a) t̄ = 0.05; (b) t̄ = 0.25 ; (c) t̄ = 0.5; (d) t̄ = 1.

The next example concerns the spherical cone heated by the internal heat source
described by Equation (76). The curves in Figure 5 present temperature distributions in
the spherical cone for volumetric heat source Q1 = 2× 106 W/m3 and four values of
dimensionless time. Decreasing the temperature while increasing the radial distance from
the heat source follows as a result of the heat exchange through the spherical surface of the
cone with the environment of zero temperature. It should be noted that the temperatures in
a part of the cone close to the heat source are higher for the higher fractional orders of the
heat conduction models, and the temperatures in a part of the cone close to the spherical
surface are higher for the lower orders of the conduction models.
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Figure 5. Dimensionless temperatures T̄ = T/20 ◦C in the cone with an inner heat source described
by Equation (76) with Q1 = 2× 106 W/m3, versus r̄ = r/b for six values of the order of fractional
derivative α and four values of the non-dimensional time: (a) t̄ = 0.25; (b) t̄ = 0.5 ; (c) t̄ = 1;
(d) t̄ = 1.5.

5. Conclusions

The analytical solution of the heat conduction problem for a spherical cone with an
internal and external heat source is presented. The problem formulation and its solution
include also the special cases for the hemisphere and solid sphere. The fractional heat
conduction model with a Caputo time-derivative includes phase-lags of the temperature
and heat flux. The solution in the form of a double series of spherical Bessel functions and
Legendre functions was derived. Numerical investigation of the effect of the fractional order
of the time derivative occurring in the heat conduction equation is presented. According
to the mathematical model, the fractional order of the differential equation has significant
importance for temperature distribution in the spherical cone. It was stated that the
higher order of fractional derivative in the heat conduction model leads to the higher
temperature in the heated body and lower temperature in the cooled body. As was expected,
for each value of the derivative order α, the temperature in all points of the cone tends with
time to a steady state. However, as can be seen in presented examples, the temperature
decreases/increases faster for larger values of the order occurring in the mathematical
model of the fractional heat conduction.

In the future, we would like to develop a numerical model for solving the considered
problem and make a comparative analysis of the obtained results. We think that in the case
of a numerical solution, the constant values of parameters in the considered model can
be replaced by functional dependencies, e.g., the temperature-dependent thermophysical
parameters of materials in each layer. In addition, in the future research, we would like
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to include, among others, an external moving heat source in the heat conduction model
presented in this paper and find analytical and/or numerical solutions for them. We would
like to find the practical applications of the considered fractional heat conduction model,
e.g., in modeling the influence of solar energy on the heating of the spherical cone [40].
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