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Abstract: Particle-reinforced Cu-based electrical contact materials prepared by traditional powder
metallurgical methods suffer the same critical problem, where the agglomeration of the addition
phases in the Cu matrix significantly deteriorates the performance of the composites and restricts
their application. In this work, CdMoO4/Cu matrix composites were fabricated by an in situ method
and followed by a powder metallurgical process. Firstly, CdMoO4/particles formed a nucleus and
grew up based on the surfaces of Cu particles, realizing the controllable in situ synthesis of mixed
powders with homogeneously dispersed CdMoO4 nanoparticles via a one-step reaction. Secondly,
the bulk CdMoO4/Cu composites were fabricated by pressing and sintering and then densified by
hot-extrusion and cold rolling processes. The microstructures and properties of the extruded and
rolled specimens were characterized, respectively. The results indicated that the rolled CdMoO4/Cu
composite exhibited excellent comprehensive properties of electrical conductivity and mechanical
properties for electrical contact materials. Moreover, the effects of the contact force on the static
contact resistance of the extruded and rolled composites were evaluated in the closed state of the
contact materials. It was found that the rolled CdMoO4/Cu contact materials possessed a stable
electrical contact characteristic with low and steady contact resistance. This work designed ternary
CdMoO4 particles to reinforce Cu-based composites with well-balanced performances by an in situ
synthesis method and this strategy can be extended to the design of ternary oxide/metal composites
utilized as electrical contact materials.

Keywords: Cu matrix composite; CdMoO4; in situ synthesis; static contact resistance

1. Introduction

Copper is an attractive candidate to supersede precious metals utilized as electrical contact
materials due to low cost and known superior electrical and thermal properties [1–3]. To satisfy
the design requirements of electrical contact materials, numerous ceramic particles, such as
Al2O3 [4], TiO2 [5], and ZrO2 [6], are generally introduced in the copper matrix to improve
mechanical strength, wear, and arc resistance. However, the issue of inhomogeneous distri-
bution of ceramic particles in the Cu matrix inevitably occurs in traditional preparation
technologies, which significantly deteriorates the mechanical properties of Cu-based com-
posites and limits their applications. To address this issue, an in situ method has aroused
enormous interest and emerged as an effective route to synthesize dispersion-strengthened
Cu-based composites. So far, extensive efforts have been dedicated to prepare TiO2/Cu [7],
TiB2/Cu [8,9], and Al2O3/Cu [10] composites by an in situ method. The results indicated
that the structures of the ceramic particle-reinforced Cu-based composites obtained by
an in situ method were significantly improved with homogeneously distributed ceramic
particles, and especially, these composites were proved to exhibit well-balanced electrical
conductivity and mechanical properties.
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Although the microstructures and properties of these oxide-reinforced Cu composites
have been improved, the strong interfacial bonding of phase interfaces was still a major
challenge due to the completely different characteristics of the constitutes. When sub-
jected to the impacts from the frictional force, the cyclic loading, and the impact force, on
one hand, the weak bonding between ceramic particles and the Cu matrix could easily
induce crack initiation and propagation, resulting in serious failure of these traditional
composites [11–13]. On the other hand, the weak interfacial adhesion provides a diffusion
path for oxygen, leading to the internal oxidation of the Cu matrix at high temperatures.
Additionally, under arc erosion, the reinforcement particles tend to agglomerate on the con-
tact surface, which is ascribed to the weak adhesion between reinforcement and Cu [14–17].
The agglomeration phenomenon gives rise to the increasing of contact electrical resistivity
and temperature, resulting in failure of contact material during long-time arc erosion. As
a consequence, the design of durable Cu matrix electrical contact materials has aroused
extreme interest.

In comparison to the binary ceramic phase, the ternary compound possesses potential
application in electrical contact materials due to its strong adherence to the metal matrix.
For example, a Mn+1AXn phase such as Ti3AlC2 and Ti3SiC2 has been added in Cu matrices,
which exhibited excellent arc-resistance performance [18–21]. A Zn2SnO4/Cu composite
has been proved to decrease the mass loss under arc discharges, which was contributed to
the strong ionic bonds across the phase interfaces [22]. In addition, Guo et al. [23] prepared
Cu-based electrical contact materials reinforced by La2NiO4, which decreased the contact
resistance to 21.6 mΩ from 29.5 mΩ for pure Cu, and simultaneously, the temperature rises
of the designed La2NiO4/Cu degraded significantly due to the separation of oxides under
arc erosion. However, so far, ternary compound-reinforced Cu-based composites applied in
electrical contact material are quite limited. For example, the Ti3SiC2/Cu electrical contact
materials were mainly utilized in the condition of vacuum [24]. For the La2NiO4/Cu
composite, it claimed that the addition of La2NiO4 leaded to a serious mass loss in contrast
to the pure Cu due to the self-cleaning functions [23]. As a result, the Ag/CdO and
Cu/CdO contact materials remain used in aerospace industries, and even in domestic
applications [25]. Thus, achieving highly reliable non-previous metal composites subjected
to arc erosion in air is always full of challenge and significance.

Combining the composition design and structure regulation, we describe an in situ
approach to directly produce the CdMoO4/Cu composite. Here, CdMoO4, exhibiting
a combination characteristic of CdO as an arc-extinguishing agent and MoO3 as flame retar-
dant, is proposed and expected to tailor the properties of Cu-based composite. Importantly,
the introduction of MoO3, as the constituent of ternary oxides, can remarkably decrease
the content of CdO in the composite. Simultaneously, CdMoO4/Cu mixed powders were
synthesized with a one-step process by an co-precipitation method, expecting to improve
the dispersion degree of reinforcement phases and enhance their adherence to the metal
matrix. Unlike a previous in situ method, in which the metal is easily to be oxidized in acid
solution and need to be reduced by hydrogen, the neutral conditions for CdMoO4 could
protect Cu powders from oxidizing in solution.

In this work, to solve the problems of agglomeration and poor dispersion of the
addition particles in the composites, we designed an in situ method with a one-step reaction
to synthesize CdMoO4/Cu mixed powders, by which the CdMoO4 could homogeneously
nucleate and grow on the surface of Cu particle to enhance the adhesion of phase interface.
After pressing and sintering, hot-extrusion and cold rolling processes were employed to
improve the properties, including density, electrical conductivity, and mechanical properties
of 2 wt.% CdMoO4/Cu composites, and especially, realize the industrial production for the
Cu-based electrical contact materials. To estimate the electric contact characteristic of the
designed electrical contact materials, the static contact resistances were measured and the
effects of the mechanism of the contact force on the static contact resistance of CdMoO4/Cu
were investigated. The purpose of this work is providing a simple and effective strategy
for Cu-based composites with homogeneously distributed CdMoO4 nanoparticles, and the
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strategy can be extended to other ternary oxide reinforced Cu-based composites to enlarge
their applications.

2. Experimental
2.1. Fabrication of CdMoO4/Cu Mixed Powders and Composites

CdMoO4/Cu mixed powders were fabricated as follows (Figure 1a): 0.03 mol of
Na2MoO4·2H2O and 0.06 mol of NaCl were added in 150 mL deionized water, and followed
by adding 200 g electrolytic Cu powders (20~40 µm). The mixture was stirred continuously
to form a suspension. Then, 0.03 mol CdCl2·2.5H2O were dissolved into 150 mL deionized
water to get a clear solution. After that, the CdCl2 solution were mixed with the above
suspension under continually stirring for 10 min. Finally, the powder particles in solution
were filtrated and repeatedly washed. Subsequently, the 2 wt.%CdMoO4/Cu composites
were prepared by powder metallurgy (Figure 1b–d), where 200 g electrolytic Cu powders
were added in the dried CdMoO4/Cu powders. Here, such a content of CdMoO4 was
promised to ensure a connected backbone structure of the Cu matrix, which, in view of
the percolation theory [26,27], could provide transport paths for electric current. Excess
CdMoO4 would completely encase the Cu particles and deduce the electrical and thermal
conductivity by decreasing the percolation backbone density of Cu. After mixing (see
reference [2]), the mixed powders were compacted under 250 MPa, and then green compact
with a diameter of 80 mm was sintered at 910 ◦C in Argon atmosphere for 45 min. Then,
the columnar specimen was processed into plate (6 × 50 mm2) by hot extruding at 800 ◦C.
Afterwards, the rod material was cold rolled to a belt shape CdMoO4/Cu composite with
a thickness of 2 mm, and then annealed at 500 ◦C for 30 min.
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Figure 1. Schematic diagram of the fabrication of (a) CdMoO4/Cu mixed powders by an in situ
method and (b–d) CdMoO4/Cu composites by powder metallurgy.

2.2. Characterizations

Five specimens with sizes of 2 × 10 × 10 mm3 were cut from the composites and
used for the measurement of the real density and hardness. The relative density of the
composites calculated by dividing the theoretical density into the real density, and the real
density was measured based on Archimedes principle. The hardness measurement was
carried on a Vickers hardness tester (HV-1000A, Hua Yin Test Instrument Co., Ltd., Yantai,
China), and ten positions were chosen for each sample and the hardness was achieved
by averaging the testing values. Five specimens in the sizes of 2 × 2 × 60 mm3 were cut
from the plates along the extrusion and rolling directions, respectively and were used to
measure the electrical conductivity by the four-probe method (Keithley 2420, Tektronix
Inc., Beaverton, OR, USA) which was expressed in %IACS (International Annealed Copper
Standard). Three samples for tensile testing with a gauge length of 18 mm and a cross-
section of 1.5 × 6 mm2 were cut from the plates along the extrusion and rolling directions,
respectively. Tensile tests were conducted at a strain rate of 5.6 × 10−4 s−1 using a universal
testing machine (Instron-5569R, Boston, MA, USA) at room temperature, and the tensile
test results were achieved by averaging the testing values. The static contact resistance
was measured by mean of low-voltage alternating current contactor [2] installed with
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four CdMoO4/Cu specimens as movable and stationary contact materials, respectively.
The adjustment of the gap distance between the contacts can realize the change of the
contact force. Under a certain contact force, the static contact resistance can be achieved by
the device of the simulation system with a four-probe method.

X-ray diffraction (D/Max 2500 system, Rigaku, Japan) was used to analyzed the
phases and structure of CdMoO4/Cu powders. The scanning electron microscope (SEM)
observation of the morphologies of the mixed powders and the fracture of the CdMoO4/Cu
composites was implemented on FEI Quanta 200F microscope (Waltham, MA, USA). Here,
the sizes of CdMoO4 particles and the grain were measured in Photoshop according the
ruler. The structure of the composites was characterized with metallographic microscope
(Axiovert 40 MAT, Zeiss, Oberkochen, Germany).

3. Results and Discussion
3.1. Characterization of the CdMoO4/Cu Mixed Powders and Composites

The morphologies of the raw Cu powders and as-prepared CdMoO4/Cu powders,
together with the XRD pattern of the obtained product, are shown in Figure 2. The den-
dritic morphology of the raw Cu in Figure 2a can provide large surface area for the growth
of CdMoO4. After the in situ reaction, CdMoO4 particles with the sizes of 550~650 nm
distributed uniformly on the surface of Cu powders (Figure 2b), especially between the
branches of the Cu powders, as shown in the regions of red circles. The result shows that the
in situ method can effectively solve the agglomeration of the CdMoO4 particles to ensure
a uniform structure of the composite. High-magnification SEM image in Figure 2b shows
that the CdMoO4 particles synthesized by an in situ method were hemispherical morphol-
ogy, indicating strong adhesion to the Cu powder. Simultaneously, it can be observed that
there exist gaps among the CdMoO4 particles without completely encasing the Cu powder
as expected, which is beneficial to guarantee the electrical conductivity of the designed
composites by forming continuous metallic passage. Additionally, Figure 2c shows that all
diffraction peaks of the as-synthesized powders correspond to these of CdMoO4 (JCPDS
no. 07-0209) and Cu (JCPDS no. 04-0836) without any impurities.
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Figure 2. SEM images of (a) raw Cu powders and (b) as-synthesized CdMoO4/Cu mixed powders.
(c) XRD pattern of the CdMoO4/Cu mixed powders. The inset in (b) is the high-magnification
SEM image of CdMoO4/Cu mixed powders and corresponding size distribution diagrams for
CdMoO4 particles.

Figure 3 shows the optical microstructures of CdMoO4/Cu composites, which were
etched by FeCl3 solution. In Figure 3a, the grain size of extruded composite is approxi-
mately 10 µm. It can be detected that the CdMoO4 particles were distributed at the grain
boundaries, while some of them are embedded in the grain interior, as shown in the reign of
red dashed circles. It needs to point that the black region in Figure 3 indicates the peeling of
the CdMoO4 particles from the composite surface after polishing. After rolled (Figure 3b),
CdMoO4 were distributed homogeneously, including the grain interior and grain boundary.
The CdMoO4 particles embedded in the grain interior are expected to improve the strength
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of the composite by hindering the movement of dislocations. Notably, the grain of the
CdMoO4/Cu composites was obviously refined to approximately 5 µm by a rolling process,
and the grain refinement can also contribute to the improvement of the strength of the
CdMoO4/Cu composite. Moreover, the porosity, as a defect in the composites prepared
via a powder metallurgical method, is one of the most important physical performance
indexes, and excessive porosities could degrade the mechanical property and arc-resistance
properties for the composites acting as electrical contact material. The relative densities
(see Table 1) of the prepared composites were measured to be 99.0 ± 0.4% and 98.7 ± 0.6%
for extruded and rolled specimens, respectively, which were significantly higher than those
of reported ceramic/Cu [28,29] and [30,31] composites with the relative densities listed in
Table 1. It reveals that the preparation technology involved in this work can effectively
improve the density and decrease the porosity of the composites, which is the fundamental
assurance of high reliability for electrical contact materials in practical applications.
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Figure 3. Optical images of the CdMoO4/Cu composites by powder metallurgy: (a) the hot-extrusion
state and (b) the rolling state. CdMoO4 particles are indicated by red dashed circles.

Table 1. Relative density and electrical conductivity of CdMoO4-reinforced Cu-based composites.

Relative
Density (%)

Electrical
Conductivity (%IACS) Reference

Extruded specimen 99.0 ± 0.4 93.2 ± 1.1 This work
Rolled specimen 98.7 ± 0.6 89.1 ± 1.5 This work

3~9 wt.% ZrO2/Cu 90.2~94.5 —— [28]
Ti3SiC2/Cu 92.52~95 —— [29]

10~12 wt.% Ti3AlC2/Ag 92.4~92.6 —— [30]
Ag/Ni10 91.8~98.6 —— [31]

2.5 wt.% TiO2/Cu —— 78 [32]
2.75 wt.%Al2O3/Cu —— 85 [33]
2.5 wt.% Y2O3/Cu —— 37.8 [34]

5 wt.%La2NiO4/Cu —— 85 [23]

3.2. Electrical Properties

The electrical conductivity of the extruded CdMoO4/Cu composite was measured to
be 93.2 ± 1.1%IACS; however, the rolling technique cause a slight decrease on the electrical
conductivity to a value of 89.1 ± 1.5%IACS. This highly relies on the changes of grain
sizes discussed above, where electron scattering is slightly enhanced by the increasing
grain boundary [35,36]. Nevertheless, the measured electrical conductivity is still higher
than that of TiO2/Cu [32], Al2O3/Cu [33], Y2O3/Cu [34], and La2NiO4/Cu [23] electrical
contact materials with values in the range of 34.7~85%IACS. The results reveal that the
continuous metallic matrix in CdMoO4/Cu composites provides a pathway for electrical
conduction, which fulfills the performance demands of contact materials.
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3.3. Mechanical Properties

The hardness of the extruded and rolled specimens was tested and is listed in Table 1.
In comparison of the rolled specimen, the extruded CdMoO4/Cu composite presents
a relative lower hardness of 83.6 ± 3.4 HV0.1, from which it can be speculated that welding
could easily occur between movable and stationary contact materials and thus, two contacts
fail to disconnect under arc erosion. However, when the composite was further processed
with cold rolling, the hardness of the composite was obviously increased 103.5 ± 1.8 HV0.1,
which is ascribed to the CdMoO4 embedded in the grain interior and the grain refinement
caused by cold rolling. Additionally, the measured results with small error bar can reflect
a uniform structure of the rolled CdMoO4/Cu composite.

Figure 4 depicts the strain-stress curves of the extruded and rolled CdMoO4/Cu
composites and the performance metrics are listed in Table 2. It reveals that the yield
strength (245.9 ± 6.2 MPa) of the rolled composite is 145% higher than that of extruded
composite (100 ± 3.7 MPa). Compared with the tensile strength of extruded compos-
ite (232.7 ± 5.7 MPa), the tensile strength of the rolled composite increases slightly to
261.8 ± 9.8 MPa. Except for the strength that decides the wear resistance and impact
resistance during arc erosion, suitable ductility can ensure the factual contact area between
the movable and stationary contact materials. The elongation of the extruded specimen is
found to be 29.5 ± 0.9%, close to the values from previous studies (32–35.7%) [2,7,37]. It can
be deduced that the in situ synthesized CdMoO4/Cu composites possess the ability of co-
ordinate deformation, which is ascribed to the good interfacial coherent between CdMoO4
and the Cu matrix. Note that, unlike the previous studies where the mechanical proper-
ties were improved except for the ductility, the elongation of the CdMoO4/Cu composite
increases from 29.5 ± 0.9 to 33.9 ± 0.8% after a rolling process, accompanying with the
increasing of yield strength and tensile strength. This highly depends on the refined grains
by a rolling process, which is consistent with the observation of the microstructure of the
rolled composite. This testing was repeated at least three times, and same phenomena were
achieved for the extruded and rolled CdMoO4/Cu specimens. The results indicate that
the mechanical performance, especially for the ductility, of the composites was remarkably
improved by the CdMoO4 particles by in situ fabrication.
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Table 2. Mechanical properties of CdMoO4-reinforced Cu-based composites.

Hardness
(HV0.1)

Yield
Strength (MPa)

Tensile
Strength (MPa) Elongation (%) Reference

Extruded specimen 83.6 ± 3.4 100.0 ± 3.7 232.7 ± 5.7 29.5 ± 0.9 This work
Rolled specimen 103.5 ± 1.8 245.9 ± 6.2 261.8 ± 9.8 33.9 ± 0.8 This work
2 wt.% SnO2/Cu 92.1 279.8 363.5 28.4 [2]

2 wt.% Zn2SnO4/Cu 103.8 289.4 369.2 35.7 [2]
0.82 wt.% TiO2/Cu 117.8 ± 6 290 —— 32 [7]

0.2~0.8 wt.% CNTs/CuTi 88.22~100.86 152~192 266~352 15.1~28.2 [37]

The fracture morphologies of the CdMoO4/Cu composites are shown in Figure 5.
The fracture behavior of the extruded composite reveals ductile properties with the ev-
idence of large dimple-like fracture structure (Figure 5a,c,e). With regard to the rolled
composite, smaller and deeper fracture dimples were generated, signifying that the rolling
process increases the ductility of CdMoO4/Cu composites. These results are well
consistent with those of the testing resulting of the mechanical performances of the
CdMoO4/Cu composites.
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3.4. Static Contact Resistance

Static contact resistance is an important evaluation index that significantly impacts
on the performance stability of contact materials under the connection state, and Figure 6
gives the static contact resistance of CdMoO4/Cu composites as a function of the contact
force. As demonstrated in this figure, similar features can be observed for the extruded and
rolled CdMoO4/Cu composites. Under the condition of the lower contact force (80 g), the
two CdMoO4/Cu composites exhibited high contact resistance (6.5 mΩ). With increasing
of the contact force, the static contact resistance of the composites decreased sharply until
the contact force reached to 90 g, and then, the contact resistance decreased slowly. Finally,
the contact resistances maintained stability in spite of the increasing of the contact force
between the two contact materials. Note that, the electrical contact characteristic of rolled
CdMoO4/Cu specimen enter the steady state rapidly under the contact force of 95 g,
resulting in a lower contact resistance of 1.6 mΩ, in comparison with that (2.5 mΩ) of
the extruded specimen (100 g). It indicated that the CdMoO4/Cu composite after rolling
exhibited a more stable electrical contact characteristic, which is ascribed to excellent
deformability for enlargement of the contact area. Additionally, the static contact resistance
(1.6 mΩ) of the rolled CdMoO4/Cu composites is close to the contact resistance (1.55 mΩ)
Cu contact materials as reported [38], and especially, the contact resistance of the prepared
CdMoO4/Cu composites is lower than that of commercial Ag/CdO12 (approximately
5 mΩ) [39] and Ag/12SnO2 (approximately 1.6 mΩ) [40] electrical contact materials.
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Figure 7 illustrate the schematic demonstration of the variation of the contact resistance
with the contact force, which can be generally divided into three stages according to the
dominant factors. First, under a low contact force (Figure 7a), the movable and stationary
contact materials contact with their sharp protuberances due to the surface roughness. In
this case, the current contract, resulting in an increasing of the flow path of the current,
and thus, additional resistance, namely shrinkage resistance, is generated at the contact
sites. Simultaneously, the surface films containing oxidation film, impurity, and chemical
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pollutants increase the contact resistance in the form of membrane resistance. At the second
stage with an increased contact force (Figure 7b), these surface films were crushed by the
contact force, decreasing the membrane resistance. Additionally, the contact area between
the movable and stationary contact materials is enlarged and the shrinkage resistance
is reduced. When further increasing the contact force (Figure 7c), sharp protuberances
become flat, and the occurrence of work hardening leads to saturation point of the contact
area [38], resulting in a stably contact resistance.
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Figure 7. Schematic diagram of formation of contact resistance with increasing of the contact force.
(a) Initial contact between the two contact materials, (b) Breakage of the film caused by increasing
contact force, (c) Plastic deformation of the contact zone.

4. Conclusions

CdMoO4/Cu composites were prepared by an in situ method and followed by
a powder metallurgical method. The effects of processing technologies on the structures
and properties of the CdMoO4/Cu composites were investigated. The conclusions are
as follows.

(1) CdMoO4/Cu mixed powders were successfully synthesized in a one-step reaction
by an in situ method. The hemispherical CdMoO4 particles with the sizes of 500 nm
grew uniformly on the Cu powders, realizing the controllable synthesis for ternary
CdMoO4/Cu mixed powders with homogeneously dispersed reinforced phases. The
proposed preparation method was determined to be a suitable technology for the
particle-reinforced Cu-based composites.

(2) The CdMoO4/Cu composites were fabricated by a powder metallurgy method. In
comparison with the extrude state of composite, the rolling process refined the grain
from 10 to 5 µm and the CdMoO4 particles embedded in the grain interior.

(3) The rolled CdMoO4/Cu composite was verified to possess excellent comprehensive
performances of relative density (98.7 ± 0.6%), electrical conductivity (89.1 ± 1.5%),
hardness (103.5 ± 1.8 HV0.1), yield strength (245.9 ± 6.2 MPa), tensile strength
(261.8 ± 9.8 MPa), and elongation (33.9 ± 0.9%).

(4) The variation tendencies of contact resistance of extruded and rolled CdMoO4/Cu
composites with the contact force were evaluated. Small contact area and surface film
caused a large contact resistance (approximately 6.5 mΩ) under a low contact force.
A large contact force was applied to break the film of the contact surface, sharply
decreasing the contact resistances. When hardening occurred and the contact area
reached a saturation state, the contact resistances maintained stability.

(5) In comparison with the extruded specimen, the rolled CdMoO4/Cu composite with
lower contact resistance (1.6 mΩ) exhibited a more stable electrical contact character-
istic, which is ascribed to excellent deformability for enlargement of the contact area.
The designed CdMoO4/Cu composite can be expected to use as electrical contact
materials with a low and stable contact characteristic.
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