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Abstract: Mechanically treated fly ash (FA) was utilised to provide Al and Si atoms for zeolite
synthesis. A combination of mechanical fly ash activation and classical hydrothermal synthesis led
to favourable dissolution of activated fly ash and improved crystallization of zeolites. The milling
activation step induced structural changes in FA to promote its reactivity in alkaline solution. The
conversion of milled FA into zeolite materials was finally completed in the second step, during
hydrothermal synthesis. The effect of such factors as crystallization temperature, milling time, and
solution conditioning were systematically studied. The physicochemical properties characterising the
obtained zeolite materials were determined via particle size distribution (PSD), nitrogen adsorption–
desorption, X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and powder
X-ray diffraction (XRD). As a result, the best samples achieved a high degree of crystallinity and
an extensive specific surface area of 292 m2/g, 87.4 m2/g, 41.9 m2/g for Na-X, Na-P1, and Na-
A, respectively. The obtained results provide new and useful data for utilising fly ash resources
and synthesising other practical zeolites through an innovative, mechanochemically assisted, and
template-free approach.

Keywords: mechanical activation; mechanochemistry; fly ash; fly ash utilisation; zeolite; fly ash-based
zeolites

1. Introduction

Renewed interest in mechanosynthesis over recent years has attracted scientific at-
tention as a promising alternative to traditional synthesis routes and aims to rationalise
previously unknown mechanisms. Traditionally, grinding is a way to induce mechanochem-
ical reactions in which transport of energy and mass occurs with low solvent quantities
or under solvent-free conditions [1]. IUPAC (International Union of Pure and Applied
Chemistry) defines a mechanochemical reaction as a ‘chemical reaction that is induced by
the direct absorption of mechanical energy (shearing, stretching, and grinding are typical
methods for the mechanochemical generation of reactive sites)’ [2]. The bond creation
and rupture also includes grinding and milling processes, increasing the area of contact
through reducing the size of the reactants. The term ‘milling’ is generally reserved for
high speed/speed processes (such as ball-milling), while ‘grinding’ is used in the case of
low-energy ones, involving mortar and pestle. However, their use in mechanosynthesis
makes the repeatability of grinding conditions difficult. Nowadays, commercially available
milling devices, such as planetary ball mill, mixer (shaker) extruder, cryomill, etc., ensure
good reproducibility of the synthesis parameters (grinding time, speed of rotation, and/or
substrate fragmentation) [1,3].

Up to now, mechanochemistry has been used in different scientific and industrial
fields—such as metallurgy; mineral processing; and the synthesis of carbon materials,
graphene, MOFs (metal–organic frameworks), alloys, and diverse organic–inorganic hy-
brid nanomaterials [1,3]—or to follow the properties of ground fly ashes as an additive
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in construction materials [4–6]. Ball milling has also been recently utilised during the
mechanochemically assisted synthesis of numerous zeolites, mainly high-silicon zeo-
lites [3,7–9]. Nada et al. [3] produced mordenite and ZSM-5 zeolite via mechanochemical
activation of chemical reagents. The procedure they outlined was without the use of any
templates, crystal seeds, or solvents. They obtained crystalline zeolite products with a
specific surface area of about 300 m2/g. Pan et al. [7], on the other hand, also obtained
zeolite ZSM-5 based on mechanical processing of the starting reagents. However, the
authors used kaolinite as the starting material for zeolite synthesis, without the addition
of organic templates. Moreover, Pashkova et al. [8] obtained the zeolite type of SSZ-13.
They carried out hydrothermal synthesis to obtain zeolite SSZ-13, which was preceded
by mechanical treatment of the chemical reactants. Moreover, Ren et al. [9] proved that
mechanical activation of chemical reactants followed by heating at 180 C leads to zeolite
type ZSM-5.

In spite of this progress, the mechanosynthesis of zeolites is still quite understudied.
Due to the unique properties of zeolites (skeleton types, chemical composition, porosity,
and stability), the mechanochemistry of zeolites appears to be worthy of further investi-
gation. The milling activation process leads to structural changes in the starting reagents
to promote their reactivity for direct transformation into zeolite materials. The crystal
structure characterising solid reagents is destroyed by grinding force; at the same time,
water may be added in small amounts or, alternatively, it may also be released from the
hydrated derived reagents. The addition or release of water may aid in the reactions
that occur between materials, ultimately leading to the occurrence of target materials and
intermediates [1].

Coal fly ash (CFA) is produced during the combustion of coal in power plants and
thermal power plants, as well as a principal waste product obtained when combusting fossil
fuels. Among waste materials, CFA has gained significant interest due to its increasing
production, which is related to the growing demand for energy consumption. The main
CFA producers include China (500 Mt) and India (140 Mt), as well as the USA and Europe
(114 Mt) [10–12]. According to the “Circular Economy” concept, intensive efforts are being
undertaken globally to increase CFA recycling, forming new materials characterised by
industrial and economic value [10,13]. A variety of methods for reusing this likely toxic
waste were proposed (including cement and concrete production [5,13], roads, asphalt mix
filler [6], geopolymers [14–16], bricks [17], lightweight aggregate [18], and environmental
applications [19,20]. Among many different methods of fly ash disposal, converting coal
fly ash into zeolite appears to be of greatest benefit while supporting the growing global
demands towards sustainability [11].

Zeolites are microporous, crystalline aluminosilicate materials with a well-established
3D structure. They are composed of tetrahedral silicon- and aluminium-oxygen TO4
(T = Si, Al), which are linked with each together via corners sharing O atoms and forming
channels, chambers, and cages present in the crystal framework of zeolites. Zeolites
may be grouped into synthetic and natural ones. Natural zeolites are mainly of volcanic
and hydrothermal origin. They can be found in both metamorphic rocks or sedimentary
formations [3,11,21]. Synthetic zeolites are produced by various methods, such as classical
hydrothermal synthesis, fusion method, molten salts method, and microwave-assisted
method [11,22–26]. These employ various chemicals, temperatures, and process times;
it is possible to produce different zeolite types. The most widely employed method of
zeolite preparation, i.e., hydrothermal synthesis, involves using chemical reagents or
is based on waste materials, e.g., clays or fly ash. According to the conditions of the
synthesis reaction (reaction time, temperature, substrate ratio), several zeolite types of
different purity and properties may be produced from the derived substrates. Based
on fly ash, gmelinite, cancrinite, chabazite, analcime, Na-P1, Na-A, Na-Y, Na-X, and
sodalite zeolites can be produced via different routes. These zeolites have been used in
various chemical industry areas, e.g., shape-selective catalysis ion exchange, separation, and
adsorption [11,22,27,28]. Type A zeolite is formed by tetrahedrons that are joined together
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by double 4-membered rings. The pore diameter is determined by the eight-membered
oxygen ring with diameters from 0.23 to 0.42 nm. The X-type zeolite is formed by tetrahedra
linked together by 6-membered rings, forming a hexagonal prism. This arrangement of
structural units forms a second type of chambers called supercells about 1.3 nm in diameter,
which are, in turn, connected by four 12-membered rings about 0.74 nm in diameter.
The NaP1 zeolite is dominated by the tetrahedron system, which forms a 4-membered
ring, the rings combine to form 8-membered rings with dimensions of 0.31 × 0.45 nm
and 0.28 × 0.48 nm, respectively [29]. To the best of our knowledge, there are a limited
number of papers available on zeolite mechanochemically assisted synthesis [3,7,8] and
preparation of zeolites by mechanochemistry is underdeveloped so far. Mechanosynthesis
by definition is considered to be a more sustainable and environmentally friendly method
than traditional hydrothermal synthesis, so it seems to be necessary to study in detail the
mechanosynthesis of zeolites based on waste materials (fly ash) conversion.

This paper investigates the use of an innovative mechanochemically assisted, template-
free, and rapid synthesis of zeolite-type materials, based on fly ash (FA) utilisation. Zeolite
mechanochemically assisted hydrothermal synthesis yielded LTA—Na-A, GIS—Na-P1, and
FAU—Na-X zeolites. Moreover, the phase evolution of fly ash and zeolite with increasing
temperature and conditioning of the reaction solution was followed. This strategy provides
a detailed approach to FA utilization at laboratory scale with fast, efficient, and organic
template-free route.

2. Materials and Methods
2.1. Mechanical Activation of Fly Ash

Fly ash (FA) powder was collected from Jaworzno Thermal Power Station (Jaworzno,
Poland). As received FA (denote further as FA0) was milled using a Pulverisette-5 planetary
ball mill (Fritsch, Germany), with the use of zirconia balls (20 mm) and 80 mL zirconia
pot. The preparation of mechanically treated fly ash powders was carried out under the
conditions below: milling time 1, 2, and 3 h at 400 rpm, without the use of any milling
medium and with ball/powder ratio of 2:1 (Figure 1). Then, the obtained milled fly ashes
were labelled as FA1, FA2, and FA3 (for 1, 2, and 3 h of milling time), respectively.

Figure 1. Graphical summary of zeolite phase formation by mechanochemically assisted coal fly
ash conversion.

2.2. Conversion of Milled FA into Zeolite Type Materials

The Na-A, Na-P1, and Na-X zeolite materials (denoted hereinafter as Na-A, Na-P1,
and Na-X, respectively) based on milled fly ash, were obtained via a series of experiments.
Generally, mechanochemically treated fly ash in the amount of 10 g was subjected to mixing
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with the NaOH solution. NaOH of analytical grade was acquired from P. P.H. “Stanlab”,
Lublin, Poland. The Na-A zeolite was synthesised using an additional source of Al, i.e.,
aluminium foil, to decrease the molar ratio of Si/Al. The considered zeolite types involved
the process conditions shown below (for FA0, FA1, FA2, and FA3 fly ash samples), and
based on the results of our previous experiments [30,31]:

• Synthesis of Na-A phase: 40, 60, 80, 100 ◦C; 3 M NaOH solution.
• Synthesis of Na-P1 phase: 80, 100, 120, 140 ◦C; 2 M NaOH solution.
• Synthesis of Na-X phase: 60, 80, 100, 120 ◦C; 3 M NaOH solution.

The hydrothermal conversion was conducted as a function of temperature (set indi-
vidually for each zeolite phase) and solution conditioning. The resulting suspensions were
subsequently transferred to an autoclave made of Teflon-lined stainless steel, and then
placed for 24 h in the oven at different crystallization temperatures, according to the desired
conditions. Following the hydrothermal synthesis, surplus alkaline solution was removed
before rinsing the final material several times using distilled water followed by drying at
105 ◦C (Figure 1). The prepared zeolite materials were subjected to further analyses.

2.3. Materials Characterization

X-ray diffraction (XRD) was employed to determine the mineral composition, us-
ing X-ray diffractometer Panalytical X’pert PRO MPD (Multi-Purpose Diffractometer—
Panalytical X’pert PRO MPD) (Panalytical, Eindhoven, The Netherlands) with a goniometer
PW 3050/60 in the angle range of 5–65 2θ, with a step size of 0.02. The employed source of
X-radiation corresponded to a copper lamp (CuKα = 0.154178 nm). The obtained diffraction
data were processed by using the X’ Pert High Score software (version 4.1). Mineral phases
were identified by means of PCPDFWIN PDF-2 release database ver. 1.30 formalized by
JCPDS/ICDD.

A Quanta 250 FEG (Field Emission Gun) scanning electron microscope (SEM) by FEI
(Hillsboro, OR, USA), including a chemical composition analysis system based on energy
dispersion scattering EDS-EDAX, was used to investigate the morphology of the primary
mineral components.

Energy dispersive X-ray fluorescence spectroscopy was employed to determine the
chemical composition. It was performed using an Epsilon 3× ED-XRF spectrometer (Pana-
lytical, Eindhoven, The Netherlands) with an X-ray tube, including a 50 kV Rh anode as
the excitation source. Calculation of the obtained results was carried out with respect to the
values of LOI (loss on ignition).

The low-temperature nitrogen adsorption/desorption isotherm was used to determine
the textural parameters, characterizing the investigated materials. A Micromeritics ASAP
2020 (Micromeritics, Norcross, USA) analyser was used to perform measurements. Prior to
the test, the outgassing of the samples was performed at a temperature of 250 ◦C for 24 h
under high vacuum conditions. The standard Brunauer–Emmett–Teller (BET) equation
was used to calculate the specific surface areas (SBET) for N adsorption data with relative
pressure p/po range of 0.05–0.3.

The particle size distribution (PSD) characterizing milled and raw and FA samples
was measured by means of the laser diffraction method on a Mastersizer 3000 analyser,
with a HYDRO EV unit (Malvern, Panalytical, UK).

3. Results
3.1. FA Characterization

Table 1 shows the content of chemical elements in fly ash. The primary components of FA
include SiO2 and Al2O3 with significant amounts of Fe2O3 (7.22%), CaO (3.05%), K2O (3.02%),
and unburned carbon (3.29%), respectively. According to numerous studies [6,11,31,32], the
tested fly ash belongs to class F due to oxide content, i.e., SiO2 + Al2O3 + Fe2O3 above 70%.
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Table 1. Chemical composition of FA Jaworzno (%).

Component Content (%)

Na2O 0.49
MgO 0.95
Al2O3 25.80
SiO2 51.64
P2O5 1.76
SO3 0.66
K2O 3.02
CaO 3.05
TiO2 1.85

Fe2O3 7.22
Loss on ignition (LOI) 3.29

The mineralogy characterizing various phases of raw and milled FA samples is pre-
sented in Figure 2a. The identified primary crystalline phases include mullite and quartz.
The XRD pattern indicates that amorphous aluminosilicate glass is present in substantial
amounts (a broad characteristics hump between 18–30◦ 2θ). No visible changes in the
peak positions, intensities, and shapes of the crystalline phases can be detected, as the
mechanical treatment time is increased. Therefore, it may be stated that the structural
changes, which could possibly impact the FA reactivity, are absent. However, mechanical
treatment of FA significantly decreases the particle size for all milling conditions applied
(Figure 2b and Table 2) (Dx10, Dx50 and Dx90 means that 10, 50 and 90% particles are
smaller than measured value). There is a significant decrease in the values of Dx50 and
Dx90 at all stages of milling. A slight reduction in diameter of particles can be seen until
3 h (FA3) of milling, when the particles begin interacting via weak Van der Waals-type
adhesion forces [14,15]. Thus, ball milling may be ineffective in further reducing particle
size. The FA milling results for 2 and 3 h (FA2 and FA3) differ minimally, with regard to
particle size. One should bear in mind that with prolonged mechanical activation time, the
milled particles will likely begin agglomerating easily due to substantial surface energy,
which may cause an increase in particle size [33,34]. Hence, mechanical treatment that
is too long is not economical in relation to energy efficiency and saving. Thus, it may be
stated that the mechanical treatment of 2 h improved particle size reduction, contributed to
fly ash homogenization, increased FA reactivity, and obtained high quality final (zeolite)
materials [7]. The results obtained are in agreement with specific surface areas (SBET) of
FA samples (Table 2). The raw FA has the lowest specific surface area, probably because
cenospheres are present in the original FA. The SBET of milled FA powder samples increased
after mechanical treatment because of the occurrence of finer fraction. However, the SBET
value has no linear correlation with time of milling as a result of particle agglomeration.

Table 2. Change in specific surface areas (SBET) and particle diameters of FA in relation to milling time.

FA Features FA0 FA1 FA2 FA3

Dx90 (µm) 146.0 23.9 19.6 17.6
Dx50 (µm) 30.5 6.0 4.6 3.8
Dx10 (µm) 4.4 1.3 1.1 1.0

SBET (m2/g) 3.88 5.56 6.75 5.24

The comparison of raw and milled FA morphology was conducted by means of SEM
micrographs to determine the changes in structure resulting from mechanical treatment.
The raw fly ash SEM micrograph presented in Figure 3a shows that received FA parti-
cles are primarily spherical and granular, characterised by a relatively smooth surface
texture and a wide range of particle size, as indicated by PSD (Figure 2b). The smooth
surface exhibited by the as-received FA particles may occur because they are covered with
amorphous glassy phase. This coating contributes to a smooth raw FA surface. The sphere-
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shaped particles observed in raw FA are generally formed when the inorganic fraction is
suddenly cooled during coal combustion. Spherical FA particles are hollow or solid. The
former, i.e., cenospheres, sometimes comprise smaller particles (plerosheres) [11,31,35]. The
morphology of milled FA samples (Figure 3b–d) is greatly altered, whereas particle size
decreases when milling time increases. The FA particles change shape from spherical to
non-spherical as a result of comminution and agglomeration (Figure 2a–d). The particles
that were originally spherical were crushed and attained irregular shape, as confirmed by
numerous studies [14,33,34]. The coarser fraction of FA comprises spherical particles that
break down into smaller sizes, and the particle shape irregularity is increased with milling.
As a result of further milling, agglomeration of particles begins followed by deposition of
loose fine particles on the surface of larger particles [15]. This transformation is in line with
the PSD and SBET results for milled FA. Chu et al. [36] also confirmed high content of finer
particles within the milled FA samples and indicated only a slight particle shape difference
between various milling devices (attrition and vibration mill).

Figure 2. (A) XRD patterns, and (B) particle size distribution (PSD) (inset is the mean particle size
Dx50) of raw and milled FA powders.

3.2. Effect of Ball-Milling and Crystallization Temperature

Zeolites are known to be highly sensitive to crystallization temperature due to their
metastable behaviour [10]. They are thermodynamically unstable compared to dense
structures, such as quartz and mullite present in FA. As such, according to the Ostwald
rule of stages, zeolites transform from low- to high-density (i.e from less to more stable)
structures [37]. To examine the FA milling time and crystallization temperature effect on
FA conversion into zeolitic materials, experiments were carried out by altering the milling
time and crystallization temperature, with a constant crystallization time (24 h). Hence,
the crystallization temperature conditions were selected individually for each zeolite type
based on preliminary studies and literature data [7,11,32,38] and milling times were 0,
1, 2, and 3 h, as presented in Sections 2.1 and 2.2. The XRD patterns of the as-received
zeolitic materials are depicted in Figures 4–6. The XRD data (Figures 4–6) reveal that the
insolubility of fly ash powders in NaOH solution was greatly enhanced via mechanical
treatment, owing to much smaller particles of the reactive glassy and crystalline phases
and narrower particle size distribution in the ball-milled FA sample than untreated one
(as indicated in Section 3.1) [14]. It is also known that Na+ ions stabilize the sub-micron
building units of the forming crystal structure of zeolites. In addition, hydrated Na+ cations
constitute a structure directing agent substituting the organic template, and a charge
balancing agent [22]. The OH− ions, as a very strong mineralizing agent, can induce and
accelerate the dissolution of solid fly ash into gel, as well as the gel phase conversion to
liquid phase. Furthermore, high-energy ball milling provided a sufficient amount of energy,
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causing a significant rupture of external Si-O/Al-O bonds in FA particles. After milling, the
crushed FA particles were treated with NaOH solution, and then the reaction mixture was
submitted to hydrothermal conditioning. Sodium hydroxide solution gradually dissolved
the aluminosilicate glass in FA. Loosely bonded Si-O, as well as Al-O surface species of the
fly ash particles, could easily react with NaOH solution to form zeolite phases, which was
due to the fact that the larger surface area of finer particles were exposed to the alkaline
solution by ball milling activation. Silicates and aluminates were transferred into gel via
polycondensation reactions. Finally, the dissolved amorphous phase transformed into
crystalline phases on the surface of FA particles, as well as the nucleation process of zeolite
structures beginning [7]. The vast majority of milled fly ash components were converted
into zeolites at the relevant temperature for each zeolite type (Figures 4–6).

Figure 3. SEM micrographs of fly ash morphology (a) FA0 (raw), (b) FA1 (1 h of milling), (c) FA2 (2 h
of milling) and (d) FA3 (3 h of milling) (magnification 4000, inset 16,000).

As indicated in the Section 2.2, different process conditions were applied to investigate
the influence of temperature and mechanical treatment on the FA transformation into
individual zeolite phases (the corresponding FA samples were designated as FA0, FA1, FA2,
and FA3 for 0, 1, 2, and 3 h of milling). In the case of newly formed metastable Na-A-type
zeolite (Figure 4), its structural transformations to the more stable and denser sodalite can
be observed with increasing temperature (within the temperature range 40–100 ◦C). When
the crystallization temperature reached 60 ◦C, the Na-A zeolite constituted the primary
crystalline phase, accompanied by minor sodalite, quartz, and mullite phases. As the
temperature increased above 60 ◦C, the main peak of sodalite (dhkl = 3.65) continuously
intensified, with a simultaneous decrease in the Na-A zeolite peaks (FA0–FA3, Figure 4). It
is possible to explain this phenomenon by accounting for the metastability characterizing
the Na-A zeolite phase. Na-A zeolites underwent gradual decomposition with increasing
reaction temperature, contributing to liquid phase supersaturation with aluminosilicate
anions, thus, enabling the formation of sodalite nuclei. Hence, crystallization at a temper-
ature of 60 ◦C was favourable for the synthesis of Na-A zeolite with good crystallinity.
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On the contrary, Na-P1 zeolite phase (Figure 5) did not evolve to sodalite phase (in the
temperature range 80–140 ◦C), but at 140 ◦C, analcime started to occur alongside Na-P1
phase, for FA2 and FA3. The finer fraction of FA2 and FA3, elevated synthesis temperature
up to 140 ◦C and low NaOH concentration (2 M) may have been responsible for the for-
mation of analcime as a more stable and denser phase, compared to sodalite and Na-P1.
In the case of Na-X zeolite type, Na-X zeolite was the dominant crystalline phase at 80 ◦C
(Figure 6). With increasing temperature, Na-X zeolite decomposed gradually, making the
formation of sodalite nuclei possible. Overall, the crystalline end products exhibited high
sensitivity to FA mechanical activation and crystallization temperature. For the formation
of the monozeolite phase, crystallization temperatures of 60 ◦C, 80 ◦C, and 120 ◦C are
favourable for synthesizing Na-A, Na-X, and Na-P1 zeolite type crystals. Consistent with
literature reports [10,37], sodalite is a competing phase to Na-A and Na-X zeolite type,
while Na-P1 zeolite tend to follow the sequence Na-P1→ analcime, with the increase in
temperature. FA milling treatment and temperature increase resulted in enhanced levels of
both the nucleation and crystallization rate. Furthermore, hydrothermal treatment of FA
powders resulted in forming more thermodynamically stable phases, such as sodalite and
analcime [7,10,37].

Figure 4. The effect of FA milling and temperature on FA conversion into Na-A zeolite phase.
Clarifications: A—zeolite Na-A, M—mullite, Q—quartz, S—sodalite, P—zeolite Na-P1.

3.3. Effect of Ball-Milling and Solution Conditioning

As evidenced in the previous section, the FA milling-activation step results in struc-
tural changes of the starting reagents to promote their reactivity in solution for the direct
transformation into zeolitic materials. In order to make the FA dissolution in alkaline
solution easier, a solution conditioning step is desirable, in addition to increasing the
temperature [35,39–42]. Based on the results presented in Section 3.2, the FA conversion
products were examined after 0 h, 24 h and 13 days of solution conditioning (Figures 7–9)
and under hydrothermal conversion at 60, 80, and 120 ◦C for Na-A, Na-P1, as well as
Na-X-type zeolites, respectively. As far as the Na-A phase is concerned (Figure 7), the X-ray
patterns revealed that Na-A zeolite was the primary crystalline phase, accompanied by
minor fly ash impurities at no conditioning and 24 h conditioning time. After 13 days of
solution conditioning, for FA0, Na-X was the dominant phase, alongside weakly formed
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Na-A, whereas for FA1, FA2, and FA3, Na-X and Na-A co-occurred as competing phases.
When the influence of solution conditioning on FA conversion into the zeolite Na-P1 was
examined (Figure 8), no marked differences regarding the quality of the crystalline end
products were found for FA1, FA2, and FA3. Only in the case of FA0, after 13 days of
solution conditioning, Na-X and Na-P1 appeared as competing phases. Moreover, a neg-
ative effect of solution conditioning time on FA conversion into zeolite Na-X was noted
(Figure 9). Simultaneously, with prolonged solution conditioning, minor competing phases,
Na-P1 and Na-A (for FA0), were identified. The solution-conditioning step seems to be
desirable to increase the amount of Al3+ and Si4+ extracted from FA into the solution of
alkaline substrate and required especially for Na-A zeolite crystal growth. In most cases
studied, the products obtained were mixtures of zeolites and FA residues, because mullite
and quartz remained partially undissolved under the conditions applied. On the whole, for
the applied synthesis conditions, 24 h of solution conditioning proved to be most effective
in terms of milled FA conversion into Na-A-type zeolite, whereas the non-conditioning of
the solution seems to be positive for forming Na-P1 and Na-X type zeolites.

Figure 5. The effect of FA milling and temperature on FA conversion of into Na-P1 zeolite phase.
Clarifications: X—zeolite Na-X, M—mullite, Q—quartz, An—analcime, P—zeolite Na-P1.

3.4. Characterization of FA-Derived Zeolitic Materials

Section 3.2 and 3.3 outlined that fly ash samples were successfully converted into
zeolite phases with the assistance of mechanical activation. The wide hump (between 18 and
32 degrees 2θ) observed for the FA XRD patterns disappeared (Figure 2a), and the intensity of
quartz and mullite peaks decreased markedly. As shown in Figures 4–9, the intense sharp
diffraction peaks show the occurrence of Na-A, Na-P1, and Na-X zeolites, as well as the
dissolution of the partially crystalline phases and amorphous—both largely transformed
during the zeolite formation process. The amorphous glass phase was observed to be
the primary source of Al and Si atoms for zeolite crystallization because this phase is
characterized by highest instability and solubility in FA. Mullite and quartz were noticed
to be significantly less or non-reactive in alkaline solutions.
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Figure 6. The effect of FA milling and temperature on FA conversion into Na-X zeolite phase.
Clarifications: X—zeolite Na-X, M—mullite, Q—quartz, S—sodalite.

Figure 7. The effect of FA milling and solution conditioning on FA the conversion into Na-A zeolite
phase. Clarifications: A—zeolite Na-A, M—mullite, Q—quartz, S—sodalite, P—zeolite Na-P1.
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Figure 8. The effect of FA milling and solution conditioning on the FA conversion into Na-P1 zeolite
phase. Clarifications: X—zeolite Na-X, M—mullite, Q—quartz, P—zeolite Na-P1.

Figure 9. The effect of FA milling and solution conditioning on the FA conversion into Na-X zeolite
phase. Clarifications: X—zeolite Na-X, M—mullite, Q—quartz, S—sodalite.

Scanning electron microscopy (SEM) images were carried out only for the most promi-
nent as-synthesized zeolite crystal products (Figure 10). Morphological observation of
zeolite crystals allowed identifying individual representatives within this mineral group.
SEM images (Figure 10) reveal a visible transformation of the crushed and spherical parti-
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cles typical of raw and milled FA (Figure 3) into (i) cubic LTA-type zeolite crystallites for
Na-A [32], (ii) lamellar aggregates with plate-like crystalline GIS structures for Na-P1 [35],
(iii) quite irregular, sharp-edged FAU forms for Na-X [32]. According to the literature,
the morphology presented is a typical morphology for Na-A, Na-P1, and Na-X type zeo-
lites [11,31,32]. However, a tendency for smaller Na-A type zeolite crystals to grow with
increasing milling time can be observed (Figure 10a–c). The SEM images also reveal that a
residuum is present, corresponding to unreacted aluminosilicate glass.

Figure 10. SEM images of zeolite products morphology, (a–c) Na-A, (d–f) Na-P1, (g–i) Na-X (magnifi-
cation 8000, inset 30,000) for FA0, FA2, and FA3 as substrates, respectively.

The equation below was used to calculate the quantitative content (% crystallinity) of
every synthesised zeolite product:

% crystallinity =
A
A0
× 100% (1)

where A is the average sum of peak areas of the seven main diffraction peaks while Ao
is the greatest selected value of A that is the reference corresponding to 100% Equation
(1) [22]. Relative crystallinity (%) was plotted as a function of specific surface area (SBET)
and is presented in Figure 11. The crystallinity characterising the most crystalline zeolite
products, Na-A_FA3, Na-P1_FA2, and Na-X_FA2, was determined as 100%. The residues
of each synthesis reaction were mullite, quartz, and amorphous aluminosilicate glass from
the synthesis mixture, which were presented at the XRD pattern (Figures 4–9), as well as
SEM images (Figure 10). In the case of the Na-P1 zeolite (Figure 11), the lack of FA milling
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yielded a zeolite material with a crystallinity of 90% and specific surface area of 61.1 m2/g.
The first hour of milling resulted in the reversal of this relationship, i.e., increased specific
surface area to 71.3 m2/g and a simultaneous decrease in crystallinity to 82%. Prolongation
of fly ash milling time to 2 h increased both parameters (SBET and % crystallinity) and
obtained zeolite material containing almost 100% of Na-P1 phase with specific surface area
of 87.4 m2/g. In contrast, further increasing the fly ash milling time to 3 h decreased both
parameters, resulting in a material with similar parameters as the 1 h milling (3 h milling:
75 m2/g and 83%). For the zeolite material Na-X (Figure 11), for milling times of 0 h and 1 h,
we observed an increase in crystallinity from 67 to 80% and a decrease in specific surface
area from 217 to 206 m2/g, which is the inverse of that for Na-P1, at the same milling times.
Increasing the milling time to 2 h, as in the case of the Na-P1 zeolite, resulted in a material
with the highest crystallinity around 100% and the highest specific surface area of 292 m2/g.
In contrast, extending the milling time to 3 h resulted in a reduction in both parameters
to 83% for crystallinity and 246 m2/g for specific surface area. However, for Na-A zeolite,
as the milling time increased, the crystallinity correlated inversely with SBET. Consistent
with the XRD, SEM, and crystallinity results, the specific surface area (SBET) of the zeolite
products (Figure 11) indicates that the optimal FA milling time is 2 h for Na-P1 and Na-X
type zeolites. The case of Na-A-type zeolite is quite different. As the milling time of FA
increases, the zeolite crystals obtained are smaller and smaller, with a tendency towards
the formation of nanocrystals. SBET values decrease with increasing FA milling time for
Na-A zeolite. Furthermore, Na-A zeolite exhibits a three-dimensional cubic structure, as
well as pore diameter of 3.5–4 Å [43] (Selim et al., 2017), so the channels of the Na-A zeolite
can be partially blocked by a nitrogen molecule with the kinetic diameter of 3.64 Å. The
lower SBET values for both Na-A-FA2 (42.8 m2/g) and Na-A-FA3 (41.9 m2/g) zeolites are
probably related to the smaller particle sizes and their higher tendency to agglomerate.
However, on the basis of the combined XRD, SEM, and SBET results, it may be concluded
that for the 3 h milled fly ash, the highest conversion rate of FA into Na-A type zeolite was
obtained. Pore size distribution for samples obtained under optimal conditions is presented
in Figure 12. In general, the optimal conditions for mechanochemically assisted synthesis
of the monomineral zeolite phases are as follows (Table 3): 3 h of FA milling, 3 M NaOH,
24 h of solution conditioning, and 60 ◦C for NaA; 2 h of FA milling, 2 M NaOH, no solution
conditioning, and 120 ◦C for NaP1; 2 h of FA milling, 3 M NaOH, no solution conditioning,
and 80 ◦C for NaX.

Figure 11. Relationship between specific surface area (SBET) and (%) crystallinity of the synthesized
crystalline product of Na-A, Na-P1, and Na-X zeolites.
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Figure 12. Pore size distribution for samples obtained under optimal conditions.

Table 3. Crystallinity, specific surface area (SBET), and average pore sizes (Dav) for samples obtained
under optimal conditions.

Sample Crystallinity [%] SBET [m2/g] Dav [nm]

NaA 100 42 5.71

NaP1 100 87 7.16

NaX 100 292 9.16

4. Conclusions

This study presents new insight into the influence of the mechanical activation of FA
on the zeolite crystallization process, offering a prospective method of controlling the final
crystal morphologies (as summarized in Figure 1). The mechanical treatment of fly ash
results in increased specific surface area, finer particle size, and better availability of FA
reactive components to hydrothermal conversion. During ball milling, the FA particles
were broken into finer fractions by continuous friction, however, too long mechanical
treatment is considered to be not economical in regard to energy efficiency and saving.
SEM images and XRD patterns reveal that mechanical activation greatly influenced the
zeolite crystallization process, as well as the crystalline end products (Na-A, Na-P1, and
Na-X type of zeolites). The increase in FA milling time causes the decrease in crystal size of
Na-A zeolite type with higher crystallinity, which may subsequently enhance the zeolite
performance for specific applications. A mechanochemically assisted synthesis method
can help rationally tailor the final crystal structure of zeolites and their properties without
losing phase purity. Moreover, this innovative and comprehensive approach opens up new
directions for synthesising zeolites, as well as other materials, including nanomaterials and
functional materials. Moreover, extending the utilisation of fly ash resources or alternative
difficult-to-manage wastes into other practical zeolite materials can be considered a process
that is sustainable and may contribute to circular economy. To sum up, the optimum
conditions for the mechano-assisted synthesis of fly-ash based zeolite phases are as follows:
3 h of FA milling, 3 M NaOH, 24 h of solution conditioning, and 60 ◦C for NaA; 2 h of FA
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milling, 2 M NaOH, no solution conditioning, and 120 ◦C for NaP1; 2 h of FA milling, 3 M
NaOH, no solution conditioning, and 80 ◦C for NaX.
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