
Citation: Liu, G.; Dou, X.; Qu, F.;

Shang, P.; Zhao, S. Bond Behavior of

Steel Bars in Concrete Confined with

Stirrups under Freeze–Thaw Cycles.

Materials 2022, 15, 7152. https://

doi.org/10.3390/ma15207152

Academic Editors:

Valentina Salomoni,

Patrizia Trovalusci, Antonella Cecchi,

Luca Lanzoni, Vittorio Gusella and

Sabrina Vantadori

Received: 11 September 2022

Accepted: 9 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Bond Behavior of Steel Bars in Concrete Confined with Stirrups
under Freeze–Thaw Cycles
Guirong Liu 1,2,3, Xiaoxue Dou 1, Fulai Qu 1,2,3,* , Pengran Shang 1 and Shunbo Zhao 1,2,3

1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China

2 International Joint Research Lab for Eco-Building Materials and Engineering of Henan, Zhengzhou 450045, China
3 Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, China
* Correspondence: qfl@ncwu.edu.cn

Abstract: In order to evaluate the influence of freeze–thaw action on the durability of concrete
structures, this paper presented an experimental study to investigate the effects of freezing–thawing
cycles and concrete strength on the bond behavior between steel bars and concrete confined with
stirrups. Through freeze–thaw cycles and center pullout tests, the failure mode of pullout specimen,
concrete strength, mass loss, dynamic elastic modulus, and bond–slip curves were analyzed. At
last, the bond–slip constitutive model was proposed for specimens with stirrup confinement under
freeze–thaw action. Main test results indicate that the failure mode and shape of bond–slip curves
are affected by stirrups. The bond strength hasa certain increase after 100 freeze–thaw cycles owing
to the constraining force from stirrups, whereas the splitting tensile strength significantly declines.
After 100 freeze–thaw cycles, the splitting tensile strength of C20 and C40 decreased by 40.8% and
46.5%, respectively. The formula was provided to calculate the bond strength of constrained concrete
after freeze–thaw cycles, and the damage coefficient and other related parameters in the formula
were suggested. The predicted bond–slip curves are close to the experimental results, which could
provide reference for the related research of bond performance after freeze–thaw action.

Keywords: freeze–thaw cycles; stirrup; bond strength; concrete; damage coefficient

1. Introduction

Concrete has the advantages of high compressive strength, convenience in construc-
tion, relatively low cost, and so on, which has been used as the main building material
worldwide. However, there exista large amount of tiny pores in concrete, and it is easy to
crack. Therefore, water and aggressive ions would penetrate into concrete, decreasing the
durability of concrete structures [1,2]. Freeze–thaw action is a major factor in the damage
of reinforced concrete structures (especially for dams, aqueducts, inverted siphons, tunnels,
and sluices) in cold regions [3–5]. Therefore, research on the frost resistance of concrete is
of great significance to the durability evaluation and life prediction of reinforced concrete
structures [6–9]. The hydrostatic pressure theory proposed by T.C. Powers believed that the
volume expansion of water in concrete pores after freezing at low temperature would cause
tensile stress around the concrete pores, resulting in cracks and changes in the internal
structure of concrete [10,11]. The existing research results have shown that the influence of
freeze–thaw cycles on the strength characteristics of concrete is obvious [12,13]. With the
increase in freeze–thaw cycles, the strength of concrete commonly decreased with varying
degrees. In addition, the corresponding damage degradation model was put forward
according to the experimental results [14–17].

Bond performance is a key factor for steel bars and concrete working together, which
allows longitudinal forces to transfer from steel bars to the surrounding concrete. Bond
failure should be avoided in the design or repair of reinforced concrete structures [18–20].
It is generally believed that the bond resistance between deformed reinforcement and
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concrete consists of three parts: the mechanical interaction, friction force, and chemical
adhesive [21,22]. Among these three parts, the first two parts account for a large proportion,
and the chemical adhesive is very small. Due to the fact that the mechanical interaction and
friction force are related to the strength of concrete, concrete strength has a great influence
on bond strength. Previous experimental research has studied the effect of concrete strength
on bond strength and concluded that the bond strength significantly increased with the
increase in compressive strength or splitting tensile strength [23–25].

At present, some studies [26–29] have been carried out on the bond between reinforce-
ment and concrete under the action of freeze and thaw. Experimental results demonstrated
that the bond behavior was severely deteriorated for the reason of concrete damage caused
by freeze–thaw action. The bond strength obviously decreased, and the corresponding slip
increased under the condition of freeze–thaw cycles [30]. Tu et al. [31] investigated the
effect of aggregate types on bond performance after frost damage and found that the ther-
mal insulation aggregate was beneficial for the bond behavior and mechanical properties
compared with the normal concrete. Xu et al. [32] studied the bond properties of deformed
steel bars in concrete subjected to frost damage under monotonic and cyclic loading. The
initial bond stiffness and ultimate and residual bond strength were analyzed based on
the experiment results. To improve the properties of concrete subjected to freeze–thaw
damage and rebar corrosion, Fan et al. [33] studied the effects of nanokaolinite clay on the
compressive strength, corrosion condition, and bond properties. While the applications
of recycled aggregate concrete have been proposed, many scholars [34–37] investigated
the influence of recycled aggregate on bond behavior in freeze–thaw environments. It is
widely accepted that the replacement ratios of recycled coarse aggregate have a great effect
on the bond behavior. The bond strength decreased and the slippage increased with the
replacement rate of recycled coarse aggregate.

In addition, studies of the effects of stirrups on bond behavior between different types
of bars and concrete were conducted by researchers [38,39]. The experimental and analytical
results indicated that the stirrup could maintain the constraint effect on the reinforcement after
the splitting crack occurred, thereby increasing the bond strength [40,41]. Zheng et al. [42] also
found that the effect of stirrups on bond strength was more obvious than that of the concrete
cover thickness. Under the condition of stirrup confinement, Qian et al. [43] have carried
out experiments of bar location on the bond–slip responses. The influence of stirrups was
mainly reflected by the cross-sectional area and spacing of stirrups [44–46]. According to the
test results of Xu [21,47], the bond strength was proportional to the stirrup cross-sectional
area and inversely proportional to the stirrup spacing. However, the variation of bond
behavior between reinforcement and concrete confined with stirrups after free–thaw damage
is not well-understood.

In this paper, the effect of freeze–thaw cycles on the bond behavior between steel bars
and concrete confined with stirrups was experimentally investigated. The failure mode of
pullout specimens, bond–slip curves, and concrete strengths were analyzed. Furthermore,
the bond strength of steel bars in concrete confined with stirrups under freeze–thaw action
was predicted based on the damage coefficient of the concrete. Finally, the bond–slip
constitutive model was developed. The present research could be beneficial for the residual
structural capacity and repair of reinforced concrete structure in severe cold regions.

2. Experimental Program
2.1. Specimen Design

In this study, a total of ten group pullout specimens were prepared to investigate the
bond properties considering the effects of concrete compressive strengths and freeze–thaw
cycles. Every group consists of three specimens; thus, thirty pullout specimens were prepared.
The details of the pullout specimens are shown in Figure 1. According to the standard
GB/T 50081-2019 [48], the main reinforcement is embedded in the center of the concrete
prism. Considering the space of the freeze–thaw testing machine, the pullout specimens were
designed as cubes with side lengths of 100 mm.
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Figure 1. Layout of steel bars and size of bond specimen (size: mm).

One HRB500 steel bar with a diameter of 12 mm was used as the main reinforcement
in the center, and two HPB300 stirrups with a diameter of 6 mm were arranged to consider
the influence of the stirrup constraint. The bonding length was set as four times of the
diameter of the main reinforcement, and a PVC tube was embedded in the loading end
to reduce the influence of the local stress on the bond. In addition, a total of sixty cubic
specimens (100 mm × 100 mm × 100 mm) were cast to measure the compressive strength
and splitting tensile strength, and six prism specimens (100 mm × 100 mm × 400 mm)
were cast to measure the mass loss and relative dynamic elastic modulus [49].

2.2. Materials

Two kinds of concrete with different concrete strength were adopted in this experiment.
The mix proportions are shown in Table 1. Ordinary Portland cement P. O 42.5 was used
as the cementitious material. The fine aggregate was river sand with a fineness modulus of
2.6, and the natural coarse aggregate was crushed stone with a particle size of 5–20 mm. A
naphthalene superplasticizer was added in C40 series of specimens. The water–binder ratios
for two series of specimens were 0.60 and 0.44.The measured 28 d compressive strength of
concrete is 20.20 MPa and 46.44 MPa. The air content measured in concrete is 4.5%.

Table 1. Mix proportion of concrete (kg/m3).

Specimen Series Water Cement Sand Stone Superplasticizer Air-Entraining Agent

C20 210 350 755 1086 0 0.375
C40 165 375 704 1200 3.375 0.375

The mechanical properties of the two steel bars used in the specimen are shown
in Table 2.

Table 2. Mechanical properties of steel bars.

Steel Type Diameter (mm) Yield Strength (MPa) Tensile Strength (MPa) Rate of Elongation (%)

HPB300 6 372.6 566.0 25.3
HRB500 12 619.0 727.5 15.7

2.3. Freeze–Thaw Test

The specimens of the freeze–thaw test were cured at a temperature of 20 ◦C and 95%
relative humidity. Then these specimens were immersed in water for 4 days before the freeze–
thaw tests. A quick-freeze method was used according to the standard for test methods of
long-term performance and durability of ordinary concrete (GB/T 50082-2009 [49]), as shown
in Figure 2.

The temperatures measured in the center of the concrete prism specimen (100 mm ×
100 mm × 400 mm) ranged from −20 ◦C to 7 ◦C, and each freeze–thaw cycle took 3 h.
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2.4. Pullout Tests

Central pullout tests were carried out on bond specimens after the freeze–thaw test.
Three displacement sensors were arranged at the free end to measure the displacement of
concrete and main reinforcement, and a load sensor was arranged at the loading end to
measure the bond force, as shown in Figure 3.
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The pullout tests were conducted by loading and displacement control. Before reaching
the maximum bond force, the loading was controlled at a rate of 7.5 kN/min. When
reaching the maximum bond force, the loading rate was controlled at a rate of 0.2 mm/min
until the slip reached 15 mm. During the loading process, the load and displacement data
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were automatically collected and stored by a data acquisition system. The bond stress can
be calculated as follows:

τ =
F

πdla
(1)

where F is the pullout force, d represents the diameter of the main reinforcement, and la is
the anchorage length or the bonding length of the main reinforcement.

3. Results
3.1. Failure Modes

The surface morphology of the specimen significantly changed after the freeze–thaw test,
as shown in Figure 4. For the unfreeze–thaw specimen, the surface was smoother and had
fewer pores. However, with the increase in freeze–thaw cycles, the pores on the surface of the
concrete increased, and the surface concrete spalled. When the freeze–thaw cycles reached
100 times, the concrete surface became rougher and the stones and sands were observed.
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of salt frost.

Pullout tests were conducted on bond specimens. It was found that the main rein-
forcements were pulled out for all specimens due to the confinement of stirrups located in
concrete, and cracks were not found on the surface of concrete. The pullout failure mode is
shown in Figure 5. The failure modes of the bond specimen mainly include splitting failure,
pullout failure, and splitting–pullout failure according to the previous studies [39,50,51].
Moreover, the failure mode is affected by the confinement condition, such as the concrete
cover and transverse reinforcement. When the specimen was well-confined, the pullout
failure mode usually occurred. When the specimen was in unconfined condition, the failure
mode was splitting failure instead of pullout failure [52,53].
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3.2. Concrete Strength

Concrete compressive strength and splitting tensile strength after different freeze–thaw
cycles are shown in Figure 6. It can be seen that the concrete compressive strength and
splitting strength had a different trend of declining with the increase in freeze–thaw cycles. This
conclusion is consistent with the findings of other literature [54–56]. After 100 freeze–thaw cycles,
the compressive strength of series C40 and C20 decreased to 77.8% and 86.9%, respectively,
whereas the splitting tensile strength of series C40 and C20 decreased to 53.5% and 59.2%,
respectively. It follows that the loss of splitting tensile strength is higher than that of compressive
strength under the same number of freeze–thaw cycles. The reason may be that the micro cracks
generated in concrete during the freeze–thaw progress had more unfavorable influence on the
splitting tensile strength [57,58].
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Based on the linear regression of experimental data, the splitting tensile strength after
N cycles of freeze–thaw damage could be expressed as follows:

ft,N = ft,0 ×
(

1 − k1 ·
N

100

)
(2)

where f t,0 is the splitting tensile strength before freeze–thaw, MPa; f t,N is the splitting tensile
strength after N cycles of freeze–thaw, MPa; and k1 represents the coefficient of strength
reduction, with k1 = 0.452 for C20 series and k1 = 0.426 for C40 series obtained by regression
of the test data.

The variation of bond strength with freeze–thaw cycles is shown in Figure 7. It can
be seen that the bond strength of the C20 and C40 series specimens increased at first
and then decreased with the increase in freeze–thaw cycles. The bond strength of the
C20 specimens after 100 freeze–thaw cycles was reduced by 0.6% compared with that of
unfrozen specimens. For the C40 specimens, the bond strength reached the maximum
value at 50 freeze–thaw cycles, and the bond strength increased by 9.31% after 100 cycles
compared with that of unfreeze–thaw action.

Previous studies [54,59] have shown that the bond strength of specimens is propor-
tional to the splitting tensile strength or the square root of the compressive strength of
concrete. The splitting tensile strength of concrete decreased with freeze–thaw cycles,
resulting in the decrease in the bond strength. However, the bond strength of steel bars in
concrete confined with stirrups in this test has an increasing trend. The possible reason for
this phenomenon is that freeze–thaw action could cause a certain degree of expansion of
concrete [44]. Due to the confinement of stirrups, this expansion trend is constrained, which
produces a certain pressure on the steel bars and thus greatly improves the bond strength
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between steel and concrete, as shown in Figure 8. The confinement effect of stirrups on
freeze–thaw concrete improved the bond strength, and its contribution is greater than
the “negative effect” of freeze–thaw damage on concrete. As result, the bond strength
increases up to 100 freeze–thaw cycles compared with unfrozen specimens. If the number of
freeze–thaw cycles continues to increase, the bond strength would decline due to excessive
damage of the concrete according to the current trend.
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3.3. Mass Loss and Dynamic Modulus of Elasticity

Mass loss and dynamic elastic modulus are important parameters to evaluate the
damage level of concrete subjected to freeze–thaw cycles. The mass loss of concrete, ∆WN,
is expressed as follows [49]:

∆WN =
W0 − WN

W0
× 100 (3)

where W0 is the mass of specimens before the freeze–thaw test, WN is the mass of specimens
after the N freeze–thaw test. The mass loss results are summarized in Table 3. It can be
found that the maximum mass loss was less than 1.0% for the specimens of C20 and C40
series. This indicates that the air-entraining agent has good effect on the frost resistance of
concrete from the perspective of mass loss.

Table 3. Mass loss of the specimens after freeze–thaw cycles.

Freeze–Thaw Cycles N
Weight Loss ∆WN/%

C20 Group C40 Group

0 0 0
25 0.13 0.25
50 0.38 0.41
75 0.50 0.36

100 0.11 0.46
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There will be a certain degree of damage in concrete under the action of freeze–thaw
cycles, thus resulting in the changes of the dynamic elastic modulus [60]. Figure 9 shows
the changes of the normalized dynamic elastic modulus with the number of freeze–thaw
cycles. It can be found that the relative dynamic elastic modulus decreased with increasing
freeze–thaw cycles, which indirectly reflects the damage inside the concrete.
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On the basis of concrete damage mechanics, the damage coefficient, DN, expressed by
the relative dynamic elastic modulus [49] was adopted:

DN = 1 − PN

P0
(4)

where P0 is the dynamic elastic modulus before freeze–thaw cycles, GPa; and PN is the
dynamic elastic modulus after N freeze–thaw cycles, GPa.

Based on the regression analysis of the experimental data, the relationship between
DN and N was established as follows:

DN = 1 − αNβ (5)

where N is the number of freeze–thaw cycles; α and β are influence parameters, in which
the value of α is 0.01 for two series of specimens, and the values of β for C20 and C40
concrete are 0.39 and 0.20, respectively.

3.4. Bond Strength Calculation

For concrete specimens without stirrups, the bond strength decreased with freeze–thaw
cycles. The bond strength after freeze–thaw action could be calculated by the splitting tensile
strength or compressive strength of concrete [18–21]. However, for concrete specimens confined
with stirrups, the bond strength was generally increased in the range of 100 freeze–thaw cycles
studied in this paper. This indicates that, although freeze–thaw causes deterioration in concrete,
the compressive stress on the main reinforcement increases due to the expansion of concrete.

Based on the existing bond strength calculation formula of ribbed steel bars in concrete
confined with stirrups [47], the following formula was used to calculate the bond strength
after freeze–thaw cycles:

τu =

(
0.82 + 0.9

d
la

)
·
(

k + 0.7
c
d
+ KsvN

Asv

c · ssv

)
ftN (6)

where k is a constant and its value is 0.9; c is the concrete cover of the main steel bar; KsvN
is the restraint enhancement factor of stirrups after freeze–thaw cycles; Asv is the section
area of stirrups; and ssv is the spacing of transverse stirrups.
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The restraint enhancement factor of stirrups KsvN is affected by the number of freeze–
thaw cycles, but it is essentially related to the concrete damage induced by freeze–thaw
action. The relationship between coefficient KsvN and DN was obtained by the analysis of
experimental data, as shown in Figure 10.
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The fitting function in this study is shown in Formula (7), with the correlation coeffi-
cient of 0.878.

KsvN = 4854DN + 20 (7)

It can be found that KsvN is equal to 20 when DN = 0, which is the same asthe coefficient
value of ordinary concrete without freeze–thaw cycles. According to Formula (7), the bond
strength after different freeze–thaw cycles can be calculated. Additionally, the calculated
results and experimental bond strengths are listed in Table 4. The average value of the ratio
between the calculated values and experimental data of the bond strength is 1.04, and the
correlation coefficient is 0.904. The formula given in this paper could be used to predict
the bond strength between reinforcement and concrete confined with stirrups subjected to
freeze–thaw damage.

Table 4. Calculation and experimental values of bond strength.

Group No. DN/% f tN/MPa τu,test/MPa τu,cal/MPa τu,cal/τu,test

C20F0 0 2.17 9.25 9.03 0.976
C20F25 2.11 1.91 9.86 13.18 1.337
C20F50 2.59 1.66 7.93 12.52 1.577
C20F75 2.30 1.48 9.55 10.59 1.110
C20F100 2.98 1.16 9.19 9.34 1.016

C40F0 0 3.16 22.39 13.14 0.587
C40F25 3.55 2.97 25.96 26.09 1.005
C40F50 5.05 2.29 27.12 24.58 0.907
C40F75 5.98 2.17 26.69 25.94 0.972
C40F100 6.19 1.87 24.48 22.85 0.934

3.5. Bond–Slip Curves

Two series of bond–slip curves of specimens with different concrete strength are shown
in Figure 11. It can be found that the bond strength and slip were different, but the curve
shapes were similar because of the confinement of stirrups. The bond–slip curve between
reinforcement and concrete confined with stirrups was composed of the elastic, sliding,
descending, and residual stages. For the descending stage, the bond stress slowly dropped
due to the confinement of stirrups, which exhibited better ductility. Moreover, the bond
strength increased with concrete strength, but the slip at the peak strength correspondingly
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decreased from about 1.2 mm to 0.6 mm. When the concrete strength is the same, the effect of
freeze–thaw cycles on the slip value corresponding to the ultimate bond stress is not obvious.
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3.6. Bond–Slip Constitutive Model

To analyze the mechanical properties of reinforced concrete structures under a freeze–
thaw environment, it is necessary to use the bond–slip constitutive model between rein-
forcement and concrete. A two-stage model (including ascending stage and descending
stage) was adopted, and the bond–slip relationship can be expressed by the following
equations [61,62]:

y = xA, 0 ≤ s ≤ su (8)

y =
x

B(x − 1)2 + x
, s > su (9)

where y = τ/τu; x = s/su; s is the slip between reinforcement and concrete; su is the slip
corresponding to the peak bond strength; and A and B are the parameters determined by
test results. The value of parameter A could be obtained by nonlinear curve fitting; A = 0.4
was adopted in this study for all groups of specimens considering the suggested value of
other literature [63,64].Parameter B was obtained according to the residual bond strength
τr and the corresponding slip sr. The expressions of τr and sr are given as follows according
to GB/T 50010-2010 [65]:

τr = τu/3 (10)

sr = 0.55d (11)

Based on the regression analysis of the test results, the value of B for C20 and C40
series was obtained as 0.58 and 0.22, respectively. The bond–slip constitutive model was
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established, and the predicted results are shown in Figure 11. The predicted curves agreed
well with the tested curves, which could be used for simulating the bond behavior between
reinforcement and concrete confined with stirrups after freeze–thaw action.

4. Discussion

Reinforced concrete structures in cold regions are usually subjected to freeze–thaw action,
which leads to the deterioration of concrete and the decrease in concrete strength. Since
bond performance is the basis for steel bars and concrete working together, the variation
of the bond between steel bars and concrete under freeze–thaw action deserves attention.
Previous research mainly focused on the bond performance of specimens without stirrups,
and the influence of stirrups was not considered. Considering the restraint effect of stirrups
on concrete during the process of concrete freeze–thaw damage and its influences on the bond
strength and bond–slip curve, this paper has carried out relevant research work.

Through the experimental phenomena of this paper, it was found that the pullout
failure occurred for the bond specimens due to the restraint effect of stirrups. This failure
mode is different from other studies in which splitting failure or splitting–pullout failure
occurs for specimens without stirrups or with small concrete cover [17,63]. In this study,
with the increase in freeze–thaw cycles, the bond strength of the C20 group changed little
compared with the nonfreeze–thaw specimens. On the other hand, for the C40 group of
specimens, the bond strength firstly increased and then decreased, and the bond strength
subjected to 100 freeze–thaw cycles did not decrease compared with the control specimens.
This may be due to the effect of confinement provided by stirrups on the bond strength
during the freeze–thaw progress. In addition, the freeze–thaw damage of concrete, such
as the generation and expansion of cracks, may be reduced due to the confinement of the
stirrups. However, the current study also found that the bond strength showed a downward
trend when freeze–thaw cycles exceeded a certain number of times. This indicates that the
negative influence of concrete damage exceeds the positive influence of stirrups.

The relative dynamic elastic modulus could reflect the damage degree of concrete subject
to freeze–thaw action; therefore, the damage coefficient DN, as shown in Equation (4), is
used as a variable to determine the restraint enhancement factor of stirrups KsvN expressed
as Equation (7). Then the ultimate bond strength is determined using Formula (6). This
formula can be used to evaluate the bond strength between ribbed bars and concrete with
or without stirrups subject to freeze–thaw cycles. It is found from the present study that
the constraint effect of stirrups mainly affects the descending stage of the bond–slip curve,
which is significantly different from the steeper descending stage of the curve of the specimen
without stirrups [30]. Based on the existing bond–slip constitutive model, a bond–slip model
under stirrup confinement was established. It should be noted that the descending stage of
this model is only applicable to specimens with stirrups.

This study has certain reference value for the evaluation of the mechanical performance
of reinforced concrete structures under freeze–thaw action and also can help researchers
to select the relevant parameters in the bond–slip constitutive model. There are several
factors affecting the bond performance between steel bars and concrete, such as the steel
bar diameter, bond strength, concrete cover, and stirrup ratio. Due to the limitation of
the present study, only part of the research was carried out, and the maximum number
of freeze–thaw cycles is set to 100. Therefore, further research should be carried out to
investigate the influence of these factors on the bond performance, and the number of
freeze–thaw cycles should be increased to obtain more comprehensive rules.

5. Conclusions

(1) Due to the confinement effect of transverse stirrups, the generation of cracks was ef-
fectively prevented, and steel bar pullout failure was observed for all bond specimens
in this study. This is different from the splitting–pullout failure mode of specimens
without stirrups. The shape of the bond–slip curve was affected by stirrups in concrete
and exhibited better ductility.
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(2) The internal pore structure of concrete was destroyed by freeze–thaw damage, which
made the compressive strength and splitting tensile strength decrease to some extent. In
this experiment, the compressive strength of C20 and C40 concrete after 100 freeze–thaw
cycles decreased by 22.2% and 13.1%, respectively. Furthermore, the splitting tensile
strength decreased by 46.5% and 40.8%, respectively. Freeze–thaw action had greater
influence on the splitting tensile strength than compressive strength of concrete.

(3) Transverse stirrups could effectively improve the bond performance between steel
bars and concrete. Under the action of 100 freeze–thaw cycles, the bond strength did
not decrease compared with that of nonfreeze–thaw specimens. However, the bond
strength had a descending trend based on the experimental data analysis.

(4) On the basis of the existing bond strength model for unfrozen concrete, the formula
expressed by the damage coefficient was given for calculating the bond strength after
freeze–thaw cycles considering the effects of concrete strength and stirrup confinement.
The comparison between calculation and experiment shows that the formula used in
this paper can effectively predict the bond strength confined with stirrups subject to
freeze–thaw cycles.

(5) The bond–slip constitutive model was developed for deformed steel bars. This model
is applicable for specimens with or without stirrups under freeze–thaw action. The
relevant parameter values were suggested by fitting the test curves. It was found
that the model had good accuracy and could provide references for the calculation of
reinforced concrete structures in cold regions.
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