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Abstract: Application of nanocarriers for drug delivery brings numerous advantages, allowing both
minimization of side effects common in systemic drug delivery and improvement in targeting, which
has made it the focal point of nanoscience for a number of years. While most of the studies are focused
on encapsulation of hydrophobic drugs, delivery of hydrophilic compounds is typically performed
via covalent attachment, which often requires chemical modification of the drug and limits the release
kinetics. In this paper, we report synthesis of biphilic copolymers of various compositions capable
of self-assembly in water with the formation of nanoparticles and suitable for ionic binding of the
common anticancer drug doxorubicin. The copolymers are synthesized by radical copolymerization
of N-vinyl-2-pyrrolidone and acrylic acid using n-octadecyl-mercaptan as a chain transfer agent. With
an increase of the carboxyl group’s share in the chain, the role of the electrostatic stabilization factor
of the nanoparticles increased as well as the ability of doxorubicin as an ion binder. A mathematical
description of the kinetics of doxorubicin binding and release is given and thermodynamic functions
for the equilibrium ionic binding of doxorubicin are calculated.

Keywords: targeting; doxorubicin delivery; release kinetics; poly(N-vinyl-2-pyrrolidone-co-acrylic
acid) nanoparticles

1. Introduction

Pharmacologically active water-soluble drugs are highly bioavailable [1]. At the same
time, the rapid distribution of water-soluble drugs in the body reduces the effective con-
centration of the active drug directly on the pharmacological target and contributes to
toxicity [2]. While targeted delivery of drugs poorly soluble in water has been widely
addressed with the introduction of nanosized carriers [3–6] and liposomes [7–9], the control
of the release of pharmacologically active substances with high water solubility presents
significant difficulties [10]. Doxorubicin, which has a wide spectrum of antitumor activ-
ity [11,12], is one of the water-soluble anticancer drugs. At the same time, doxorubicin is
characterized by high cumulative cardiac toxicity [13–15], which limits the possibilities for
its use in chemotherapy for tumors.

Rapidly advancing nanomedicine methods make it possible to reduce the cardiac
toxicity of doxorubicin by incorporating it into nanoscale aggregates and providing delivery
targeting. Nanoparticles of gold [16], iron oxide [17], magnesium aluminum layered double
hydroxides [18,19], lipids [20] and oil-in-water microemulsions [21,22] are promising as
carriers for doxorubicin loading. Conjugates with biological molecules, such as human
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serum albumin (HSA), bovine serum albumin (BSA), milk beta-lactoglobulin (β-LG) [23],
apoferritin [24] and glycosaminoglycans, as well as platelets [25], have also been studied
as potential doxorubicin carriers. Inclusion of doxorubicin into hydrogels can also be
used to ensure controlled release [26–28]. Another group of carriers is represented by
polymers, with which doxorubicin can be bound by either chemically stable [29] or labile
covalent bonds in biological systems [30], as well as by hydrogen and ionic bonds [31–34].
For example, covalent immobilization of doxorubicin through a hydrazine linker on low
molecular weight heparin, which has antimetastatic activity, opens up the possibility of a
pH-dependent release of the anticancer drug [35].

Although the search for new approaches to the immobilization of doxorubicin contin-
ues, the amphiphilic block copolymers consisting of hydrophobic blocks built by residues
of lactic and glycolic acids and hydrophilic domains based on polyethylene glycol [36,37],
as well as pegylated liposomes [38], including commercial brands Doxil® and Myocet®

are considered the gold standards of doxorubicin carriers. However, the use of pegylated
block copolymers and liposomes is limited by accelerated clearance associated with the pro-
duction of PEG-directed immunoglobulins in some patients [39]. The latter circumstance
provided the need to search for alternative carriers for doxorubicin free of polyethylene
glycol domains. For example, the copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl
ether proved to be an effective carrier for the covalent immobilization of doxorubicin to
form a copolymer with its own biological activity [29]. Reversible immobilization can be
achieved using copolymers of N-(2-hydroxypropyl)methacryl-amide, which form hydro-
gen bonds with doxorubicin, also due to electrostatic interactions when polyurethanes with
carboxyl groups in the side chain are used as polymer carriers [40]. Electrostatic interac-
tions determine the efficiency of graphene oxide nanoparticles in the immobilization of
doxorubicin, the surface of which contains predominantly carboxy groups [41]. In general,
the electrostatic immobilization of doxorubicin cations on negatively charged nanoparticles
is one of the rapidly developing approaches, due to its versatility [40–45].

Although many publications indicate the high efficiency of ion binding of doxoru-
bicin [42–50], the quantitative side of electrostatic immobilization has not been studied in
detail to date. The present article deals with the release kinetics of doxorubicin bound by the
coronae of aggregates of the amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic
acid containing hydrophobic n-octadecyl-thio groups. The introduction of hydrophobic
end n-octadecyl-thio groups is achieved by using n-octadecyl-mercaptan as a chain transfer
agent. In addition, the use of N-vinyl-2-pyrrolidone residues to form a hydrophilic domain
is an alternative to pegylation that is of interest in the treatment of patients capable of
producing PEG-directed immunoglobulins.

2. Materials and Methods
2.1. Materials

Acrylic acid, azobisisobutyro-nitrile and n-octadecyl-mercaptan from Sigma-Aldrich
were used. N-vinyl-2-pyrrolidone and 1,4-dioxane were purchased from Himmed. Acrylic
acid and N-vinyl-2-pyrrolidone were purified by vacuum distillation; azobisisobutyro-
nitrile and n-octadecyl-mercaptan were used without further purification. Doxorubicin
hydrochloride was manufactured by Synbias Pharma (Kyiv, Ukraine). Hydro-phthalate
buffer (pH = 4), phosphate buffer (pH = 7) and tetraborate buffer (pH = 9) were produced
by the “Ekroskhim” company (St. Petersburg, Russia).

2.2. Synthesis of Copolymers of N-vinyl-2-pyrrolidone and Acrylic Acid of Various Compositions

10 g (0.09 mol) of N-vinyl-2-pyrrolidone (VP), as well as specified amounts of acrylic
acid (AA), n-octadecyl-mercaptan (n-ODM), and azobisisobutyro-nitrile (AIBN) were dis-
solved in 40 mL of 1,4-dioxane (Table 1).



Materials 2022, 15, 7136 3 of 17

Table 1. Amounts of substances used in the synthesis of amphiphilic copolymers of N-vinyl-2-
pyrrolidone (VP) and acrylic acid (AA) of various compositions (x(r) being the mole fraction of acrylic
acid in the reaction mixture; n-ODM—n-octadecyl-mercaptan; AIBN—azobisisobutyro-nitrile).

x(r), mol% AA, g n-ODM, g AIBN, g

0 0 0.257 0.100
2.4 0.162 0.258 0.102
4.7 0.323 0.259 0.103
9.1 0.646 0.260 0.106
13 0.969 0.261 0.110

The copolymerization was carried out for 3 h at 343 K followed by the dilution of the
reaction system with 250 mL of distilled water and the evaporation of 1,4-dioxane on a
rotary evaporator. Purification of the amphiphilic copolymer was performed by dialysis
against distilled water using a 500 MWCO membrane (Labware supplier store) followed
by lyophilization (Alpha 1–4 LD plus, Martin Christ, Osterode am Harz, Germany). The
precipitated copolymer was further purified from the unreacted n-octadecyl-mercaptan by
washing with three 30 mL portions of diethyl ether each.

2.3. The Electrostatic (Ionic) Immobilization of Doxorubicin

0.1 g of an amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid of a given
composition was dissolved in 5 mL of a buffer solution with a specified pH. Separately,
0.01 g of doxorubicin hydrochloride was dissolved in 5 mL of a buffer solution with the
same pH value. Electrostatic immobilization of protonated doxorubicin was achieved by
mixing the prepared solutions.

2.4. Doxorubicin Release Kinetics Study

The solutions prepared according to method 2.3 were mixed and placed in a dialysis
bag (Labware supplier store 500 MWCO). The kinetics of dialysis at 310 K was studied by
measuring absorbance at 480 nm wavelength. The dialysis kinetics were studied in the
presence of N-vinyl-2-pyrrolidone copolymers containing 3.9 mol%, 5.6 mol%, 9.8 mol%
and 15.8 mol% of acrylic acid residues in the chain (pH = 7).

Separate kinetic measurements were carried out at various concentrations (2.5 × 10−3

g.mL−1; 5.0 × 10−3 g.mL−1; 1.5 × 10−2 g.mL−1) of the N-vinyl-2-pyrrolidone amphiphilic
copolymer containing 3.9 mol% of acrylic acid residues in the chain at 310 K (pH = 7).

In addition, the release rates of doxorubicin were determined at 278 K, 298 K and
323 K in the presence of 10−2 g.mL−1 of an amphiphilic N-vinyl-2-pyrrolidone copolymer
containing 3.9 mol% acrylic acid residues (pH = 7). The effect of the medium pH on the
release rate of doxorubicin was determined in buffer solutions with pH = 4 and pH = 9 at
310 K in the presence of 10−2 g.mL−1 of an amphiphilic N-vinyl-2-pyrrolidone copolymer
containing 3.9 mol% acrylic acid residues.

2.5. Study Methods

Doxorubicin release kinetics were monitored using a UV-vis spectrophotometer (Ep-
pendorf BioSpectrometer, Hamburg, Germany) and particle size distribution and ζ-potential
were determined by dynamic laser light scattering on a NANO-flex II device (Colloid
Metrix, Meerbusch, Germany, (Authors express their gratitude to the D.I. Mendeleev Cen-
ter for the collective use of scientific equipment for assistance in carrying out this research)).
The surface tension at the water/air interface was measured by the pendant drop method
using the KRUSS DSA30 automated drop shape analyzer at 296 K. Atomic force microscopy
(AFM) and transmission electron microscopy (TEM) were used to obtain micrographs of
nanoparticles of an amphiphilic N-vinyl-2-pyrrolidone copolymer containing 3.9 mol%
acrylic acid residues in the chain.

To prepare the sample for the AFM imaging, freshly cleaved mica sheets were treated
with 2.5 mM NiCl2 solution in water for 1 min, rinsed and dried. The samples were
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diluted with water and applied onto the prepared mica sheets. The incubation time
was 20–40 s, then the liquid was removed, and the substrate was dried with a stream of
air. The measurements were carried out using a Solver PRO-M atomic-force microscope
equipped with a Smena scanning head (NT-MDT, Zelenograd, Russian Federation). The
NSG10 cantilevers (NT-MDT, Zelenograd, Russian Federation) with a typical force constant
k = 11.8 N/m and a curvature radius less than 10 nm were used. Imaging was done in
semi-contact mode at 512× 512 points and 1.2–1.4 Hz scanning frequency. The images were
processed using FemtoScan Online Software (Advanced Technologies Center, Moscow,
Russian Federation) [51].

For TEM imaging, carbon-coated grids (Ted Pella, Redding, CA, USA) were treated
using a glow discharge device Emitech K100X (Quorum Technologies Ltd., Lewes, UK)
at 25 mA. The suspension of the nanoparticles (Section 2.3) was deposited onto the grid
for 0.5–1 min, then the grids were treated with 1% uranyl acetate for 1–2 min, blotted and
dried. Images were obtained using a JEM-1011 (Jeol, Tokyo, Japan) transmission electron
microscope equipped with an Orius SC1000W camera (Gatan Inc., Pleasanton, CA, USA).
The acceleration voltage was 80 kV; the images were processed using ImageJ software [52].
The TEM measurements were carried at the User Facilities Center “Electron microscopy in
life sciences”, Lomonosov Moscow State University (Moscow, Russian Federation).

Cytotoxicity was determined using the MTT assay in vitro on the HepG2 cell line
purchased from SPUTNIK (Moscow, Russian Federation) in accordance with the classical
method described previously in [53,54].

3. Results and Discussion
3.1. Nanoparticles of Amphiphilic Copolymers of N-vinyl-2-pyrrolidone and Acrylic Acid of
Various Chain Compositions

It was previously shown by the 1H NMR, 13C NMR, IR and MALDI-TOF spectroscopy
methods that the radical copolymerization of N-vinyl-2-pyrrolidone and acrylic acid ini-
tiated by AIBN in the presence of n-octadecyl-mercaptan yields amphiphilic copolymers
(Scheme 1) capable of forming nanosized aggregates in aqueous solutions [50,55].
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Scheme 1. Synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and acrylic acid. 

In the present publication the amphiphilic copolymers of N-vinyl-2-pyrrolidone con-
taining various amounts of acrylic acid residues were synthesized by varying the N-vinyl-
2-pyrrolidone/(acrylic acid) ratio in the initial reaction mixture (Scheme 1). As can be seen 
in Figure 1, the copolymer is enriched with acrylic acid residues when its mole fraction in 
the reaction system is up to 13 mol% after copolymerization to a deep conversion of 
comonomers and subsequent purification by dialysis. In this case, dialysis purification can 

Scheme 1. Synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and acrylic acid.

In the present publication the amphiphilic copolymers of N-vinyl-2-pyrrolidone con-
taining various amounts of acrylic acid residues were synthesized by varying the N-vinyl-
2-pyrrolidone/(acrylic acid) ratio in the initial reaction mixture (Scheme 1). As can be seen
in Figure 1, the copolymer is enriched with acrylic acid residues when its mole fraction
in the reaction system is up to 13 mol% after copolymerization to a deep conversion of
comonomers and subsequent purification by dialysis. In this case, dialysis purification
can lead to a composition of the resulting amphiphilic copolymers different from that
prescribed by the copolymerization constants.

The number-average molecular weight of the random copolymers was determined
by end group analysis [55], which was about 6500 ± 500 regardless of the N-vinyl-2-
pyrrolidone/(acrylic acid) ratio in the initial reaction mixture.

At the same time, the intensity diameter distribution of nanoparticles is very sensitive
to the mole fraction of acrylic acid residues in the chain (Figure 2).
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Figure 2. Intensity diameter distributions of particles formed as a result of self-assembly of the chains
of amphiphilic copolymers of N-vinyl-2-pyrrolidone and acrylic acid with a mole fraction of acrylic
acid residues as follows: 1—3.9 mol%; 2—5.6 mol%; 3—9.8 mol%; 4—15.8 mol%.

The intensity-average particle diameter tends to decrease with the increase in the
mole fraction of acrylic acid residues in the polymer chain (Figures 2 and 3A), which is a
consequence of a natural decrease in the electrokinetic potential (Figure 3B). An increase in
the contribution of the electrostatic stabilization of aggregates caused the appearance of a
separate fraction of particles ranging from 12 nm to 40 nm in diameter for the N-vinyl-2-
pyrrolidone copolymer containing 15.8 mol% acrylic acid residues (Figure 2, curve 4). The
PDI was 0.176, 0.281, 0.215 and 0.359 for nanoparticles formed by chains of amphiphilic
copolymers of N-vinyl-2-pyrrolidone containing 3.9, 5.6, 9.8 and 15.8 mol% acrylic acid
residues, respectively.

The electrostatic stabilization effect of the nanoparticles with an increase in the mole
fraction of acrylic acid residues in the chain of the amphiphilic copolymer was consistent
with the curves of the numerical distribution of particle diameters (Figure 4A). As can
be seen, the number average particle diameter was much more sensitive to changes in
the share of carboxyl groups in the chain (Figure 4B) than the intensity-average diameter
(Figure 3A). In addition, for the copolymer containing 15.8 mol% of acrylic acid residues
there was no pronounced peak above 40 nm on the curves of the numerical distribution of
particle diameters. Thus, the system contains a significant number of nanoparticles under
40 nm in diameter along with large aggregates, the number of which is small, while the
amphiphilic copolymer mass contained therein is significant. On the contrary, for particles
containing 3.9 mol% acrylic acid residues, the diameter distribution had a pronounced
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bimodal character, which is associated with insufficient electrostatic stabilization of the
nanoparticles (Figure 4A).
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Figure 4. (A) Numerical diameter distributions of particles formed as a result of self-assembly
of chains of the amphiphilic copolymers of N-vinyl-2-pyrrolidone and acrylic acid with a mole
fraction of acrylic acid residues as follows: 1—3.9 mol%; 2—5.6 mol%; 3—9.8 mol%; 4—15.8 mol%;
(B) Numerical -average diameter dN as a function of the mole fraction of acrylic acid residues in
the chain.

The nanoparticles were imaged using AFM and TEM (Figure 5A,B, correspondingly).
The round-shaped particles could be seen clearly, although some aggregates were also visi-
ble. Figure 5C summarizes the information on the individual diameters. The data obtained
with AFM and TEM were in reasonable agreement, and the mean values (167 ± 26 nm and
145 ± 24 nm, respectively, mean ± CI) were close to the position of the first peak of the
number distribution obtained using DLS (Figure 5A). In the AFM images, the height of the
particles was in the range from 2.5 to 8 nm, far smaller than the mean diameter (167 nm).
The mismatch between the height and the lateral size indicates flattening or spreading of
the copolymer over the substrate. Due to its small amount, the ionic immobilization of
doxorubicin did not significantly affect the particle diameter, as noted earlier [50]. As can
be seen, the dynamic laser light scattering method showed the existence of a fraction of
particles with a larger diameter than what follows from the results of AFM and TEM. The
latter indicates the existence of a dense hydration shell associated with the hydrophilic
corona of nanoparticles.
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The obtained amphiphilic copolymers exhibited surface activity. For example, a
copolymer containing 3.9 mol% acrylic acid lowered the surface tension at the water/air
interface down to 64 mJ.m−2 already at 5 mol.m−3 (Figure 6).
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Figure 6. The surface tension isotherm of the amphiphilic copolymer of N-vinyl-2-pyrrolidone and
acrylic acid (x(c) = 3.9 mol%).

3.2. Theoretical Consideration of the Release Kinetics of Doxorubicin Immobilized by an
Amphiphilic Copolymer of N-vinyl-2-pyrrolidone and Acrylic Acid

Apparently, the immobilization of doxorubicin is associated with electrostatic interi-
onic interactions involving the carboxy group of acrylic acid residues, since the amphiphilic
N-vinyl-2-pyrrolidone homopolymer only slightly slowed down the release of doxorubicin
(Figure 7A). Thus, one may assume that an equilibrium is established as shown in Scheme 2.

The kinetics of the equilibration presented in Scheme 2 can be described by Equa-
tion (1).

dCDOX
dt

= k1CIDOX − k′−1CCOOHCDOX = k1CIDOX − k−1CDOX (1)

where: CIDOX—concentration of doxorubicin immobilized through electrostatic interac-
tions; CCOOH—concentration of acrylic acid residues in the system; CDOX = Cmax

DOX −
CIDOX—concentration of free doxorubicin; Cmax

DOX—the maximum concentration of dox-
orubicin that would have been achieved upon its complete release; k1, k−1 = k′−1CCOOH—
doxorubicin release and binding rate constants; k′−1—doxorubicin binding rate constant
normalized to the concentration of carboxyl groups; t—time (see Supplementary Informa-
tion).
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Figure 7. (A) Kinetic curves of doxorubicin release and (B) their linear anamorphoses in the
“ln(ξ∞ − ξ) vs. t” coordinates in the presence of N-vinyl-2-pyrrolidone copolymers containing
various mole fractions of acrylic acid residues: 1—in the absence of copolymer additives; 2—0%
(N-vinyl-2-pyrrolidone homopolymer); 3—3.9 mol%; 4—5.6 mol%; 5—9.8 mol%; 6—15.8 mol% (ξ
and ξ∞ are the conversion and equilibrium conversion of doxorubicin release; t —time).

Materials 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

O

NH3
+ OH

CH3

O

OH

OH

O

O
CH3

OH OH

O O

N
CH

CH2

O

CH2
CH

HSn-C18H37

O–O
n

O

NH2 OH

CH3

O

OH

OH

O

O
CH3

OH OH

O O

N
CH

CH2

O

CH2
CH

HSn-C18H37

OHO
n

+
k1

k-1

 
Scheme 2. Release mechanism of immobilized doxorubicin. 

 
Figure 7. (A) Kinetic curves of doxorubicin release and (B) their linear anamorphoses in the 
“ln(𝜉 − 𝜉) vs. t” coordinates in the presence of N-vinyl-2-pyrrolidone copolymers containing var-
ious mole fractions of acrylic acid residues: 1—in the absence of copolymer additives; 2—0% (N-
vinyl-2-pyrrolidone homopolymer); 3—3.9 mol%; 4—5.6 mol%; 5—9.8 mol%; 6—15.8 mol% (𝜉 and 𝜉  are the conversion and equilibrium conversion of doxorubicin release; 𝑡—time). 

The kinetics of the equilibration presented in Scheme 2 can be described by Equation 
(1). 𝑑𝐶𝑑𝑡 =  𝑘 𝐶 − 𝑘 𝐶 𝐶 =  𝑘 𝐶 − 𝑘 𝐶  (1)

where: 𝐶 —concentration of doxorubicin immobilized through electrostatic interac-
tions; 𝐶 —concentration of acrylic acid residues in the system; 𝐶 =  𝐶 − 𝐶 —concentration of free doxorubicin; 𝐶 —the maximum concentration of doxo-
rubicin that would have been achieved upon its complete release; 𝑘 , 𝑘 =  𝑘 𝐶 —
doxorubicin release and binding rate constants; 𝑘 —doxorubicin binding rate constant 
normalized to the concentration of carboxyl groups; 𝑡—time (see Supplementary Infor-
mation). 

After separating the variables and integrating the left- and right-hand sides of the 
differential equation from 0 to 𝐶  and from 0 to t, respectively, Equation (2) can be 
derived. ln 1 − 𝐶𝐶 =  −(𝑘 + 𝑘 )𝑡 (2)

where: 𝐶  is the equilibrium concentration of free doxorubicin. Assuming that the con-
version and the equilibrium release conversion of doxorubicin can be represented by 

Scheme 2. Release mechanism of immobilized doxorubicin.

After separating the variables and integrating the left- and right-hand sides of the dif-
ferential equation from 0 to CDOX and from 0 to t, respectively, Equation (2) can be derived.

ln
(

1− CDOX

CDOX

)
= −(k1 + k−1)t (2)

where: CDOX is the equilibrium concentration of free doxorubicin. Assuming that the
conversion and the equilibrium release conversion of doxorubicin can be represented by
Equations (3) and (4), respectively, after substitution into Equation (2), Equation (5) can
be obtained.

ξ =
CDOX
Cmax

DOX
(3)

ξ∞ =
CDOX
Cmax

DOX
(4)

ln(ξ∞ − ξ) = ln ξ∞ − (k1 + k−1)t (5)

where: ξ and ξ∞ are the conversion and equilibrium conversion of doxorubicin release.
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When equilibrium is reached, the concentration of free doxorubicin remains constant
over time; therefore, the differential Equation (1) can be transformed into the algebraic
Equation (6):

K =
k1

k−1
=

CDOX

CIDOX
=

CDOX

Cmax
DOX − CDOX

=
ξ∞

1− ξ∞
(6)

Equation (6) allows calculation of the doxorubicin release equilibrium constant as a
result of the experimental determination of ξ∞. On the other hand, linear dependencies
in the coordinates “ln(ξ∞ − ξ) vs. t” allow determination of the sum of the rate constants
k = k1 + k−1 in accordance with Equation (5). Thus, the rate constants k1 and k−1 can be
found separately according to the Equations (7) and (8).

k1 =
kK

1 + K
(7)

k−1 =
k

1 + K
(8)

The binding rate constant of doxorubicin taken relative to the concentration of carboxy
groups (k′−1) can be calculated in accordance with Equation (9):

k′−1=
k−1

CCOOH
=

K
(1 + K)CCOOH

(9)

The resulting ratios (1), (2), and (5) are similar to the kinetic equations describing
first-order reversible chemical reactions [56].

3.3. Kinetics of the Release of Doxorubicin Corona-Bound on the Nanoparticles Formed by Chains
of Amphiphilic Copolymer of N-vinyl-2-pyrrolidone and Acrylic Acid

The rate and the equilibrium conversion of doxorubicin release decreased with the
increase in the molar fraction of acrylic acid residues in the amphiphilic copolymer chain
(Figure 7A). The resulting kinetic curves were linear in the “ln(ξ∞ − ξ) vs. t” coordinates
(Figure 7B), which indicates the relevance of Equations (5) and (6) to the experimental
data. Doxorubicin release rate constants (k1) were 1.65 × 10−2 h−1, 1.03 × 10−2 h−1,
7.58 × 10−3 h−1 and 2.80 × 10−3 h−1 in the presence of the amphiphilic copolymers of N-
vinyl-2-pyrrolidone (10−2 g.mL−1) containing 3.9 mol%, 5.6 mol%, 9.8 mol% and 15.8 mol%
of acrylic acid residues in the chain. The doxorubicin binding rate constants (k−1) were
0.153 h−1, 0.118 h−1, 0.101 h−1 and 0.053 h−1 in the presence of the amphiphilic copolymers
of N-vinyl-2-pyrrolidone (10−2 g.mL−1) containing 3.9 mol%, 5.6 mol%, 9.8 mol% and
15.8 mol% of acrylic acid residues in the chain, respectively.

An increase in the concentration of the amphiphilic N-vinyl-2-pyrrolidone copoly-
mer containing 3.9 mol% of acrylic acid also slowed the release of doxorubicin and re-
duced the equilibrium conversion of this process (Figure 8A). The experimental kinetic
curves also remain linear in the “ln(ξ∞ − ξ) vs. t” coordinates (Figure 8B), which makes
it possible to calculate all kinetic parameters in accordance with the Equations (5)–(8).
Doxorubicin release rate constants (k1) were 2.56 × 10−2 h−1, 2.16 × 10−2 h−1, 1.65 ×
10−2 h−1 and 8.77 × 10−3 h−1 in the presence of amphiphilic N-vinyl-2-pyrrolidone and
acrylic acid copolymers (x(c) = 3.9 mol%) of various concentrations: 2.5 × 10−3 g.mL−1;
5.0 × 10−3 g.mL−1; 10−2 g.mL−1; 1.5 × 10−2 g.mL−1. Doxorubicin binding rate constants
(k−1) were 0.113 h−1, 0.133 h−1, 0.153 h−1 and 0.186 h−1 in the presence of N-vinyl-2-
pyrrolidone and acrylic acid copolymers (x(c) = 3.9 mol%) of various concentrations: 2.5 ×
10−3 g.mL−1; 5.0 × 10−3 g.mL−1; 10−2 g.mL−1; 1.5 × 10−2 g.mL−1.
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Thus, with an increase in the concentration of carboxy groups in the system both due
to an increase in the mole fraction of acrylic acid residues in the chain of the amphiphilic
copolymer and as a result of an increase in the copolymer concentration a decrease in the
rate constant of doxorubicin release (k1) was observed. In both cases, the decrease in k1 with
an increase in the concentration of acrylic acid residues is apparently associated with an
increase in the density of the negative charge of nanoparticles and an increase in electrostatic
interaction with doxorubicin cations, at which k1 decreased faster due to the growth of
the carboxy groups concentration along with the copolymer concentration increase than
upon varying its composition (Figure 9A). The latter effect is apparently associated with
the electrostatic repulsion of doxorubicin cations when negatively charged carboxy groups
(immobilization centers) are located within the same chain. The doxorubicin binding rate
constant taken relative to the concentration of carboxy groups (k′−1) also decreased with an
increase in the concentration of acrylic acid residues, which can be explained by a decrease
in the degree of dissociation of carboxy groups due to association of ions (Figure 9B).
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Figure 9. The rate constants of doxorubicin (A) release (k1) and (B) binding (k′−1 = k−1
CCOOH

) as a
function of the concentration of acrylic acid residues in the system (triangles—change in CCOOH due
to an increase in the concentration of the N-vinyl-2-pyrrolidone amphiphilic copolymer containing
3.9 mol% acrylic acid residues; circles—change in CCOOH due to an increase in the mole fraction of
acrylic acid residues in the amphiphilic copolymer at 10−2 g.mL−1).

The rate and the equilibrium conversion of doxorubicin release increased with the
temperature increase (Figure 10A) and the kinetic data were linear in the “ln(ξ∞ − ξ)
vs. t” coordinates (Figure 10B). The k1 values were 2.80 × 10−3 h−1; 1.27 × 10−2 h−1;
1.65 × 10−2 h−1; 3.52 × 10−2 h−1 at 278 K, 298 K, 310 K and 323 K, respectively. The k−1
were 0.119 h−1; 0.137 h−1; 0.153 h−1; 0.166 h−1 at 278 K, 298 K, 310 K and 323 K, respectively.
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Therefore, the activation energy of the doxorubicin release process was 40.7 kJ.mol−1, while
the activation energy of doxorubicin binding was 5.6 kJ.mol−1 (Figure 10C). Thus, the dox-
orubicin release rate increased rapidly with rising temperature and the reaction responsible
for the release of doxorubicin proceeds in the kinetic region. On the contrary, the binding
rate of doxorubicin is almost independent of temperature and occurs in the diffusion region.
Since k1 increased faster than k−1 with temperature growth, the equilibrium constant for
the doxorubicin release (K) increased with growing temperature (Figure 10D).
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Figure 10. (A) Kinetic curves for doxorubicin release and (B) their linear anamorphoses in the
“ln(ξ∞ − ξ) vs. t” coordinates in the presence of a copolymer of N-vinyl-2-pyrrolidone and acrylic
acid (x(c) = 3.9 mol%; copolymer concentration 10−2 g.mL−1) at the following temperatures: 1—278 K,
2—298 K, 3—310 K and 4—323 K. The temperature dependences of (C) the rate constants k1 (triangles)
and k−1 (circles) and (D) the equilibrium constants (K) (ξ and ξ∞ are the conversion and equilibrium
conversion of doxorubicin release; t —time).

The standard enthalpy of doxorubicin release determined from the slope of the straight
line in Figure 10D was practically independent of temperature in the temperature range
of 278 K–323 K and was about 35 kJ.mol−1. The changes in the standard Gibbs energy
and standard entropy for the doxorubicin release process at 298 K were 5.9 kJ.mol−1 and
98 J.mol−1.K−1, respectively, and were calculated using Equations (10) and (11).

∆G0
T = −RTlnK (10)

∆S0
T =

∆H0
T − ∆G0

T
T

(11)

Although the changes in the standard enthalpy and standard entropy during the
release of doxorubicin are almost independent of temperature in the range of 278 K–323 K,
the change in the standard Gibbs energy of doxorubicin release decreased linearly with the
growth of temperature (Figure 11).
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A positive change in the standard entropy during the release of doxorubicin indicates
the formation of a neutral uncharged carboxy group and the main form of doxorubicin
(Scheme 2), since the formation of ions would lead to structuring of water molecules and
would be accompanied by only a small increase in entropy or even the decrease thereof. The
reasons for the positive change in the standard entropy upon the release of doxorubicin are
an increase in the number of particles in the solution, as well as the presumed disappearance
of the particle charge (Scheme 2), which has an ordering effect on the surrounding water
molecules. The positive value of the standard enthalpy change for the doxorubicin release
process is a consequence of the endothermic dissociation of the protonated forms of primary
amines [57].

Thus, the electrostatic immobilization of doxorubicin is an equilibrium immobilization.
Therefore, the proportion of doxorubicin immobilized in equilibrium with free doxoru-
bicin is determined by the specific release conditions. The share of free doxorubicin can
be defined as the asymptote towards which the release kinetic curves tend shown in
Figures 7A, 8A, 10A and 12A. The experimentally determined doxorubicin binding effi-
ciency is about 92% under conditions close to physiological (310 K, pH = 7, Figure 10A).
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Figure 12. (A) Kinetic curves of doxorubicin release and (B) their linear anamorphoses in the
“ln(ξ∞ − ξ) vs. t” coordinates in the presence of a copolymer of N-vinyl-2-pyrrolidone and acrylic
acid (x(c) = 3.9 mol%; copolymer concentration 10−2 g.mL−1) in buffer solutions: 1—pH = 7; 2—pH
= 9; 3—pH = 4. Temperature = 310 K (ξ and ξ∞ are the conversion and equilibrium conversion of
doxorubicin release; t —time).

The transition from a neutral medium to either alkaline or acidic led to an increase
in the doxorubicin release rate (Figure 12). Thus, in a buffer with pH = 9 the rate con-
stants were k1 = 0.0282 h−1 and k−1 = 0.185 h−1, while at pH = 7 these rate constants
were k1 = 0.0165 h−1 and k−1 = 0.153 h−1 at 310 K. At pH = 4 the rate constants were
k1 = 0.123 h−1 and k−1 = 0.093 h−1 at 310 K.

The increase in the drug release rate in an acidic or alkaline medium is a consequence
of the electrostatic mechanism of acid-base doxorubicin immobilization. Apparently, in an
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acidic medium doxorubicin is released in the salt form due to its displacement by protons,
and in the basic form in an alkaline medium due to deprotonation of the doxorubicin
cation. In close-to-neutral media the drug release occurs due to proton transfer from the
doxorubicin cation to the carboxylate anions of acrylic acid residues, as was established
above (Scheme 3).
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Thus, the pH effect on the drug release rate is associated with an increase in the
proportion of non-immobilized doxorubicin in the salt (in an acidic medium) or basic
form (in an alkaline medium). On the other hand, it is known that cancer cells are often
characterized by a lower pH value compared to normal cells [58,59]. However, the main
difference between cancer cells and normal cells is the high intensity of metabolic processes
and an increased rate of endocytosis, which is realized through specific mechanisms such as
macro-pinocytosis [60]. Since in endosomes the medium pH is 4–5 [61], it can be expected
that an increased rate of doxorubicin release in acidic media (Figure 12, curve 3) combined
with an increased intensity of endocytosis in cancer cells can serve as a targeting factor. In
general, high pH sensitivity is characteristic of the release rate of doxorubicin bound to
the carrier through electrostatic interactions [62,63]. The time it takes to reach equilibrium
release of electrostatically immobilized doxorubicin by an amphiphilic copolymer of N-
vinyl-2-pyrrolidone and acrylic acid is close to that determined in works [21,22,63] when
gold nanoparticles stabilized with pectin (galacturonic acid) [63] or microemulsions were
used as carriers [21,22]. The application of a pegylated copolymer of lactic and glycolic
acids described in [37] makes it possible to increase the time to reach the equilibrium
release of doxorubicin, but it is complicated by a pulsed release of about 20% of the drug
at the initial time. As can be seen (Figures 7A, 8A, 10A and 12A), the use of electrostatic
immobilization of doxorubicin with aggregates of the amphiphilic copolymer of N-vinyl-2-
pyrrolidone and acrylic acid makes it possible to prevent the pulsed release of the drug.
Although electrostatic interactions are a basis for the immobilization of doxorubicin by
many various carriers [40–50], to the best of the authors’ knowledge a detailed quantitative
analysis of the kinetic patterns of drug release in similar systems, is considered herein for
the first time.

It is known that the cytotoxicity of copolymers of N-vinyl-2-pyrrolidone and ethy-
lene oxide increases with an increase in the molar fraction of acrylic acid residues in the
chain [64,65]. The survival rate of HepG2 cells in the presence of nanoparticles formed by
chains of the amphiphilic N-vinyl-2-pyrrolidone copolymer containing 3.9 mol% acrylic
acid residues at a concentration of 1 mg.mL−1 in water according to the MTT test was
more than 95%. Thus, the obtained results indicate a low cytotoxicity of the amphiphilic
copolymer of N-vinyl-2-pyrrolidone and acrylic acid, which is consistent with the literature
data [53,66–68]. On the other hand, both the aqueous solution of doxorubicin hydrochloride
with a concentration of 0.1 mg.mL−1 and the same concentration of doxorubicin electro-
statically immobilized on amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic
acid with a concentration of 1 mg.mL−1 showed the survival rate of HepG2 cells less than
20%. This result is consistent with the sensitivity of HepG2 cells to doxorubicin [69,70].
Therefore, the electrostatic binding of doxorubicin does not reduce the effectiveness of its
antitumor effect. At the same time, the noted effect of an increase in the release rate of
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doxorubicin with a decrease in the pH of the medium can contribute to the accumulation
of the antitumor drug in cancer cells.

Nanoparticles formed by an amphiphilic copolymer of N-vinyl-2-pyrrolidone con-
taining 3.9 mol% acrylic acid at a carrier concentration of 10−2 g.mL−1 and 1 mg.mL−1

doxorubicin retain colloidal stability in aqueous media for 72 h and probably for much
longer. At the same time, the recommended form of drug storage is a solid dispersion of
doxorubicin and carrier copolymer, which redisperses in water to form stable nanoparticles.
Thus, the dosage form can be prepared immediately before administration to the body,
which also allows varying the therapeutic dose of doxorubicin.

4. Conclusions

It is shown that amphiphilic copolymers of N-vinyl-2-pyrrolidone and acrylic acid
are capable of reversible immobilization of protonated doxorubicin. The immobilization
efficacy is proportional to the molar fraction of acrylic acid residues in the system. The
decrease in the doxorubicin release rate constant is found to be more affected by the increase
in the concentration of carboxyl groups of acrylic acid residues with an increase in the
copolymer concentration as compared to the composition change. We attribute this to
electrostatic repulsion of doxorubicin cations when the immobilization centers are located
in the same chain. The kinetics of doxorubicin release in all the cases studied obeys the
equation for reversible first-order reactions. The standard enthalpy and standard entropy of
the doxorubicin release process are +35 kJ·mol−1 and +98 J·mol−1·K−1, respectively. Thus,
binding of the protonated form of doxorubicin is of an electrostatic nature, and the release of
doxorubicin is associated with deprotonating and the formation of uncharged carboxyl and
amino groups (pH close to neutral). The release rate of doxorubicin significantly increases
with a decrease in the pH of the medium, which can serve as the most important factor in
targeted delivery of doxorubicin, and as a result lead to the reduction of its the side effect, in
particular cardiotoxicity. The results of the present study may be of interest for quantitative
modeling of the release kinetics of electrostatically immobilized doxorubicin from other
nanoparticles, as well as for the creation of new nanosized doxorubicin carriers that are
promising for the treatment of patients capable of producing PEG-directed immunoglob-
ulins. However, further in vivo studies are needed to determine the cardiac toxicity and
targeting potential of application of amphiphilic copolymers of N-vinyl-2-pyrrolidone and
acrylic acid as doxorubicin carriers. In addition, acrylic acid residues can be used as a site
for vectorization of the doxorubicin carrier by click chemistry methods.
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