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Abstract: In the 21st century, numerous numerical calculation techniques have been discovered and
used in several fields of science and technology. The purpose of this study was to use an artificial
neural network (ANN) to forecast the compressive strength of waste-based concretes. The specimens
studied include different kinds of mineral additions: metakaolin, silica fume, fly ash, limestone filler,
marble waste, recycled aggregates, and ground granulated blast furnace slag. This method is based
on the experimental results available for 1303 different mixtures gathered from 22 bibliographic
sources for the ANN learning process. Based on a multilayer feedforward neural network model,
the data were arranged and prepared to train and test the model. The model consists of 18 inputs
following the type of cement, water content, water to binder ratio, replacement ratio, the quantity
of superplasticizer, etc. The ANN model was built and applied with MATLAB software using the
neural network module. According to the results forecast by the proposed neural network model, the
ANN shows a strong capacity for predicting the compressive strength of concrete and is particularly
precise with satisfactory accuracy (R2 = 0.9888, MAPE = 2.87%).

Keywords: artificial neural network; concrete; mineral additions; prediction; formulation; compres-
sive strength

1. Introduction

According to the World Bank, the amount of global solid waste is currently 2.2 billion
tons per year. This figure is likely to increase due to global demographic and economic
growth. The overconsumption and inefficient use of materials also have a critical impact on
the environment and climate. The annual cement needs in France are 16.9 million tons (in
2020), and in 2020 the need for aggregates was over 400 million tons, 96% of natural origin.
Concrete is an ancient and widely used material because of its mechanical properties,
which have long been appreciated. The Egyptians were already using it around 2600 BC
in the pyramid of Abu Rawash. This material continued to evolve until the invention
of reinforced concrete in 1867 by Joseph Monier (1823–1906). Concrete is a multiphase
material consisting of a granular skeleton and a cementitious matrix. Due to chemical
reactions of hydration followed by hardening, the assembly stiffens. This attributes some
specific physicochemical properties to the material: elastic properties, high compressive
strength, low tensile strength, permeability, etc. These properties are the result of a series of
chemical reactions, triggered as soon as the anhydrous cement and water come into contact.
These reactions thus give rise initially to portlandite (Ca(OH)2), which acts as a trigger for
setting, then to various hydrates (C-S-H, C-A-H, C-A-S-H, etc.) representing the “glue” of
the matrix.

Concrete structures now represent more than 90% of modern structures. Concrete
has thus become the most important building material on the planet, in terms of volume
and turnover. Its success stems from, among other things, its extraordinary versatility and
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availability virtually anywhere on Earth, and its durability. It is at the dawn of the 21st
century that mankind is confronted with an unprecedented paradigm: How to ensure the
sustainability of nature and biodiversity for future generations and at the same time meet
current growing economic needs: energy, materials, and resources of all kinds?

The construction sector is one of the most important in Europe. From an environmental
standpoint, it represents 30% of carbon dioxide emissions (2009). Cement production is
an important source of CO2 (5 to 7% of worldwide emissions). The concrete industry
worldwide consumes annually over 8–12 billion tons of natural aggregates [1]. This is
why the use of binders based on additional byproduct materials, such as metakaolin, fly
ash, sludge ash, blast-furnace slag, or silica fume, is gaining more and more interest and
their efficiency has been proven [2–4]. Because of the environmental issues explained
above and because they are a way to enhance the durability of structures exposed to harsh
environments, their utility is fundamental [2].Several formulations and prediction models
(Feret, Bolomey, Abram, Powers [4–7]) have proposed that the compressive strength Rc of
concrete depends mainly on:

i. The grade of the cement, the age, and the method of curing;
ii. The water to binder ratio, as well as the compactness of the granular skeleton.

Currently, there is a lack of research on comprehensive methods for predicting the
strength of byproduct-based concrete or mortar. Hence, authors usually use correlation or
some empirical or non-adapted formulae.

Recently, numerous studies have forecast the compressive strength of cementitious
materials using extrapolation methods, compressible packing models, regression analy-
sis methods, genetic algorithms, fuzzy logic, and artificial neural networks (ANNs) [8,9].
However, among these approaches, the ANN seems a relevant and efficient method due to
its ability to learn from input and output relationships in complex problems [10]. Moreover,
the ANN is suitable for modeling different properties of concrete, for mapping its mechani-
cal characteristics, including compressive and tensile strength, slump, filling capacity, and
segregation, and for many types of concrete [8–10].

In recent years, several studies have reported that ANNs can be used to solve engi-
neering problems. However, the required data may be complex or insufficient [11] for
estimating the compressive strength of concretes [12,13]. These studies involved issues
related to high performance [1,14–19], self-compacting concrete [20–23], and lightweight
concretes [24–26], sulphate resistance in concrete [27,28], cyclic behavior of concretes [29],
recycled aggregate [1,30,31] and waste material [27,32,33]. Machine learning and AI are
steadily gaining interest and over 10,152 papers were published in 2021 in the material
engineering field alone.

Faridehmihr et al. [34] explored the use of waste materials, including fly ash (FA),
palm oil fly ash (POFA), waste ceramic powder (WCP), and granulated blast-furnace slag
(GBFS) in alkali-activated materials. Properties such as the mechanical resistance can be
properly predicted using an artificial neural network (ANN) combined with a metaheuristic
Krill Herd algorithm (KHA) model. Faridehmihr et al. [34] showed that ANNs are efficient
in investigating the cradle-to-gate life-cycle assessment (LCA) of ternary blended alkali-
activated mortars. Mhaya [35] evaluated the performance of several modified rubberized
concretes by exposing them to aggressive environments. The final mechanical properties
were predicted using an ANN combined with particle swarm optimization (PSO). A
similar work conducted by Golafshani [36] added to an ANN the use of a multi-objective
multi-verse optimizer (MOMVO). Alabduljabbar et al. [37] adopted the same method
as that of Sadowski et al. [38] and used an optimized ANN to estimate the mechanical
properties in a wide experimental study on the sustainability of employing waste sawdust
and supplementary cementitious material (SCM) to make high-performance cement-free
lightweight concretes. Ray et al. [39] monitored the consequences of the incorporation of
fine glass aggregate and condensed milk can fiber (Sn) on the compressive and splitting
tensile strength at three curing ages using an ANN. The results showed very good accuracy.
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It is clear that the prediction of concrete properties can be efficiently performed using
machine learning technology [40,41].

In the early 2000s, several studies [42,43] showed the great potential to optimize
mix proportioning and forecasting of concrete properties. Apostolopoulou et al. [44] in-
vestigated the use of ANNs to simulate the characteristics of lime-based mortars, such
as compressive and flexural strength and consistency. The final results showed that the
developed ANN models fit satisfactorily with the experimental data. Gupta et al. [45]
used an ANN in a recent study since there was no mathematical model for the rapid
prediction of mechanical properties of rubberized concrete. The trained network based on
data compiled from recent research showed results that predicted compressive strength,
modulus of elasticity (static and dynamic), and mass loss. Several other studies on this type
of concrete led to similar conclusions, while others focused on predicting the properties of
recycled aggregate-based concrete [35,46]. The test data are generally sets of compressive
strength, splitting strength, porosity, the permeability coefficient of recycled aggregate, etc.
Based on mean squared error (MSE), root mean square error (RMSE), and coefficient of
regression (r2), the results proved to have a very good fit, as stated by Dantas et al. [47]. It
has been demonstrated that ANNs can predict the compressive and tensile strength of con-
cretes containing construction and agricultural wastes [32,48], blast furnace slag [35], and
alkali-activated mortars [34,37]. Some authors combined an ANN with other techniques,
such as a genetic algorithm (GA) [35], statistics and holistic models [44], the cuckoo search
method [49,50], ANFIS models [24,51], fuzzy logic models [52,53], and the Monte Carlo ap-
proach [54], to optimize the prediction results. Jiang et al. [53] and Farooq et al. [55] studied
the prediction of mechanical properties of self-compacting concretes and high-performance
concretes using an ANN on over 1030 datasets. The excellent findings obtained suggested
that machine learning processes are quite robust and efficient, becoming indispensable for
concrete property prediction. In addition, Asteris et al. [56] developed a methodology that
predicts the effects of seismic loads on masonry structures. The authors were able to take
into account the weakness, damage, fragility, and general properties of structures. Ray
et al. [39], like Sadowski et al. [38], recently showed that ANN techniques are relevant in
predicting properties of waste-based concretes and mineral admixtures such as metakaolin,
silica fume, dust-based, filler-based, glass waste-based quartz mineral, and fibers. Bui
et al. [57] used a whale optimization algorithm (WOA) coupled with a neural network
(NN) with over 400 nodes to simulate the 28-day compressive strength of concrete. The
results showed that the WOA-NN is reliable and has the highest correlation of 0.8976 when
compared to different techniques of modeling. Other recent studies [58,59] conducted on
the prediction of concrete’s compressive strength used several methods (Support Vector
Regression (SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR),
and ANN) for comparative purposes. It was shown that SVR, DTR, and ANN were reliable
methods.

2. Research Significance

More than 10 billion tons of concrete are currently used worldwide, and in the USA,
for example, USD 9.4 billion would be needed to restore the country’s 600,000 bridges.
It is therefore important to emphasize that the emergence of innovative processes and
techniques in the formulation and composition of concretes is very much needed. The use
of supplementary cementitious material may be one of the best solutions for nature and
resource preservation. One of the best-established approaches to reducing the impact of
cement on the environment is the replacement of clinker with other materials. This method
reduces energy consumption and increases production, without any additional industrial
installation [60]. These substitutes are generally reactive byproducts from other industries:
granulated blast furnace slag (GBFS), a byproduct of the iron industry; and fly ash (FA),
generated by electricity production after the burning of coal. Moreover, natural materials
such as calcined clays, pozzolans, and limestone fillers have proved suitable for concrete
use. Several theoretical methods exist to predict concrete strength: those of Feret (1897),
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Abrams (1920), Bolomey (1925) [3,6], etc. Depending on the case, certain preponderant
parameters, such as the water/binder ratio (W/L), the substitution rate (p(%)), and the
maturation time, may influence the final strength of the concrete. However, these existing
formulae are not always adapted to the materials cited above. In this work, ANN modeling
and results in predicting concrete properties were investigated. The aim was to develop
and set up AI-based tools to predict the properties of concretes containing byproducts
reused as supplementary cementitious materials. This research highlights the potential
of using an ANN with satisfactory and reliable results in predicting the characteristics of
environmentally friendly concretes [38,61]. The novelty of this article relies on the scale of
the dataset used and its extensiveness. Contrarily to several studies, this study tested the
concomitant set of multiple supplementary cementitious materials using machine learning.

3. Artificial Neural Networks

Artificial neural networks (ANNs), which are part of the machine learning process,
involve mathematical techniques based on the conception of interconnected layers of
nodes [62]. An artificial neural network (ANN) is an artificial intelligence system that
focuses on the identification and solving of complex issues and phenomena. A parallel
can be drawn with conventional digital computing techniques, yet neural networks have
many additional assets. For instance, they use equivalent processing modes and distributed
information storage, and also have high accuracy. Furthermore, these methods are very
robust when operating following the training process and are flexible to new information
and learning [63]. The ANN system is meant to recreate the biological characteristics of the
nerve cell structure of the brain.

Usually, an ANN is made up of an input layer of neurons, which includes other layers
within it. These neurons predict the process results [10]. The junction of the layers is based
on link weights according to Rafiq et al. [64]. As a definition, it can be said that an ANN is a
computing system composed of multiple simple units and highly interconnected processing
elements. These elements analyze information through the dynamic state response to
external inputs. An ANN is skilled in memorizing the characteristics or features of given
data and can match or make connections from new data to old with different levels of
success [62,65]. The hidden layers (HLs) play the role of connecter or information carrier.
The structure then enables the nets to extract a non-linear correlation from the available
dataset [24].

There are six main parts in an ANN around a considered neuron nj: inputs (pi), bias
(bj), weights (wij), sum function (n)j, activation function (f), and outputs (aj), as displayed in
Figure 1. Inputs can be defined as information considered to be decision variables coming
from neurons or the external environment. Weights are values that convey the effect of
inputs or process elements on each other. Random weight values can be triggered when the
process starts. The sum function is an operation that reflects the whole effect of inputs and
weights by taking into account a bias value on this process element [13,66] (Equation (1)).

(n)j =
i=k

∑
i=1

wijpi + bj (1)

where:
i = [1;k] is the number of the ith input neuron
j = [1;m] is the number of the jth output neuron
k = number of units in the ith input vector.
bj = value of bias (referred to as the activation threshold) associated with jth node.
The activation function or transfer function (usually the log-sigmoid function or the

hyperbolic tangent [24]) is a function that processes the (n)j value and then determines the
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corresponding output value according to the formula in Equation (2) [16,67]. It also repre-
sents a way to simulate a phenomenon’s reaction using input and output parameters [68].

(a)j = f (n)j =
1

1 + e−α(n)j
(2)

where (a)j is the output of the jth neuron and α is a constant used to control the slope of
the semi-linear region [13], and usually α = 1.
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Figure 1. Architecture of artificial node and its interactions in the neural network.

3.1. Neuron Model (Logsig, Tansig, Purelin)

In an ANN, each input is weighted with an appropriate w. The sum of the weighted
inputs and the bias forms the input to the transfer function f (n)j. Multilayer networks often
use the log-sigmoid transfer function logsig(n)j. The function logsig(n)j generates outputs
between 0 and 1 as the neuron’s net input goes from negative to positive infinity. Alternatively,
multilayer networks can use the tan-sigmoid transfer function tansig(n)j or purlin. Logsig(n)j
appears to be more adapted to the current study as it was found to be more accurate for some
predictions [69]. Several algorithms can be implemented in ANN modeling, such as Bayesian
regularization, Scaled Conjugate Gradient, Levenberg–Marquardt, one-step secant, and some
other combination rules [19]. The most popular ANN method is the feedforward multilayer
perceptron (MLP) system. The general scheme of the adopted neural network system is given
in Figure 2. Final weight values come at the end of the training process and their final value
are defined based on how well the model was trained.
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3.2. Training Methods

The neural network models applied in this study were developed using the Neural
Network Toolbox in MATLAB software. The models were generated with 02 hidden layers
and 10 neurons per hidden layer (Table 1). Of the total data, 70% was used for the training
process. In our approach, 15% of the remaining data was used for testing and the other
15% for validation. The training process was operated using the Levenberg–Marquardt
backpropagation algorithm (LMBPA), similar to Abu Yaman et al. [20] and Kumar et al. [70].
The LMBPA was chosen due to its simplicity of use. It was also shown that one of the most
reliable ANN training algorithms is the backpropagation (BP) algorithm, which distributes
the network error to arrive at the best fit or minimum error [71,72] and was, accordingly,
used in this study.

Table 1. General characteristics of the ANN model.

Method Type Regulation
Technique

Learning
Method

Training
Method

Activation
Function Inputs Hidden

Layers (HL)
Neurons
per HL Outputs

Feedforward,
back

propagation
network

Gradient
descent Supervised

Levenberg-
Marquardt

backpropaga-
tion algorithm

(LMBPA)

Log-sigmoid
(logsig) 18 2 10 1

3.3. Feedforward Network

A feedforward neural network was used in this study. This seems to be the most
commonly used ANN architecture type. Feedforward networks have all their neurons
classified into different layers. All neurons in each of the considered previous layers are
connected to the neurons in the next layer. The multilayer architecture considered in this
study, also called a multilayer perception [70], is given in Figure 3. There is no reliable
method for deciding the number of neural units or layers required for a particular problem.
This comes with experience and trials that are necessary to achieve the best network
configuration [9].
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The structure using multiple layers of neurons creates nonlinear relationships between
input and output vectors. The number of layers determines the complexity of the architec-
ture and the forecast precision. When the training process is completed, a positive value of
weight signifies that the corresponding feature is directly related to the output. On the other
hand, a negative weight implies that the corresponding feature is inversely linked to the
output. The more the weight related to a feature, the more the effect of the corresponding
feature on the output.

4. The Learning and Testing Process
4.1. The Backpropagation Algorithm (BPA)

The term ‘backpropagation’ indicates a method in which a correction gradient is
calculated for nonlinear multilayer networks [73]. This step is an essential part of the
network learning process and is performed by the learning algorithm [64]. To assess the
performance of the neural network model, an error measure such as root mean square
error (RMS) can be used [24]. The determination of and reduction in the error value or cost
function can be performed using the so-called generalized delta rule [11]. In fact, the error
(which is the gap between forecast and actual values) is reduced using a backpropagation
algorithm [9]. Then, during the BPA process, the neuron weights are subsequently adjusted
(Figure 4). According to Oztas et al. [18], the BPA is one of the most famous and most widely
used training algorithms [11]. In a multi-layer perceptron (MLP) this method corresponds
to a gradient descent technique that minimizes the error or cost of the process.
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LMBPA was used in this present study, as implemented in MATLAB and its neural
network fitting module. The LMBPA is the fastest backpropagation algorithm for many
engineering problems and is highly recommended as a first-choice supervised algorithm,
according to Sobhani et al. [10]. However, it requires more memory than other algorithms
such as the Momentum, Adagrad, and Rmsprop methods.

A cost function (error function) can be defined to quantify the difference between the
actual value and desired (forecast) outputs (Equation (3)):

J
(
wij
)
=

1
2
∗
(

∑i∑j(aPREDICT − aTARGET)j
2
)

(3)

where:
aPREDICT = a (j, PREDICT) is the forecast value,
aTARGET = a (j, TARGET) is the experimental value.
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Gradient descent is an optimization algorithm that approaches a local minimum of
a function by taking steps proportional to the negative of the gradient of the function at
the current point. The main objective of the algorithm is then to reduce the cost value
and adjust the weight that must be updated very smoothly and slowly by iteration until
convergence.

In the gradient descent technique, the adjusted weight can be expressed as (Equation (4)):

wij[n + 1] = wij [n] + τ ∗ 5J (wij)
5(wij)

[n]

new weight = old weight − derivative Rate ∗ learning rate
(4)

where τ is known as the step-size parameter and affects the rate of convergence of the

algorithm, and
∇J (wij)
∇(wij)

is the derivative rate or gradient of the loss function J (wij).

The learning process consists of changing the weights in order to minimize this J(w) in
a gradient descent technique. The training process is considered as successfully completed
when the iterative process has converged [9].

4.2. Modeling Performance Criteria

The accuracy and error quantification of the proposed system was evaluated using per-
formance parameters. The first parameter is the R2 coefficient (coefficient of determination),
which is the absolute fraction of variance of a variable. It is a measure of the proportion
of the information in the data that is explained by the model [62]. The value of R2 varies
from 0 to 1. The closer R2 is to 1, the closer the forecast value is to the experimental one,
expressed as (Equation (5)):

R2 = 1−
(

∑N
i=1(aPREDICT − aTARGET)

2

∑N
i=1(aPREDICT)

2

)
(5)

The root mean square error (RMSE) is the square root of the mean square error and
indicates the average distance of a data point (targeted) from the expected value (predicted)
provided by the model. The lower the RMSE value, the better the model (Equation (6)):

RMSE =

√(
1
N

)
∗
(

∑N
i=1(aPREDICT − aTARGET)

2
)

(6)

For a better understanding, RMSE can be normalized using the mean of the actual
value. This can facilitate comparisons between datasets or models [20].

MAPE (Equation (7)) is the mean absolute percentage error and is a statistical value of
prediction accuracy. It indicates a better model fit through a percentage value. However,
MAPE places a heavier penalty on negative errors than positive errors due to the division
by the factor aPREDICT.

MAPE =

(
100
N

)
∗
(

∑N
i=1

(
|aPREDICT − aTARGET |

|aPREDICT |

))
(7)

MAE is the mean absolute error formula and is given by Equation (8):

MAE =

(
1
N

)
∗
(

∑N
i=1(|aPREDICT − aTARGET |)

)
(8)

In all the formulae above:

• N is the number of experiments,
• aPREDICT = a (j, PREDICT) is the predicted value for the jth neuron
• aTARGET = a (j, TARGET) is the experimental value for the jth neuron.
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5. Bibliographic Dataset and Data Preparation

The comprehensiveness, structure, and volume of the data used for training are vital
to building an effective network. This is what must lead to better learning, testing, and
validating for the network and accurate prediction of all aspects of the relationship between
inputs and outputs [20].

Experimental datasets from different sources were used. The notation used is given in
Table 2. This is an inhomogeneous collection from the experimental data of some previous
research work. The present database was built from the literature and includes a total of
1303 concrete formulations from 22 different studies. We used a large dataset to minimize
the lack of data that causes informational uncertainty and to minimize model accuracy
problems.

Table 2. Data notation and abbreviations.

C W W/B
Specimen

Compression
Type

S CA SP

Cement Water Water/Binder 1 = cubic
2 = cylindrical Sand Coarse

aggregates Superplasticizer

MK LF SF GGBFS FA MW RA Rc (MPa)

Metakaolin Limestone
filler Silica fume

Ground
granulated blast

furnace slag
Fly ash Marble waste Recycled

aggregates
Compressive

strength

Data were assembled from the bibliography and 18 selected inputs were considered:
the content of water, cement, and fine and coarse aggregate; admixture; age; and wa-
ter/binder ratio; superplasticizer; the slump, etc. One output was considered, which is
compressive strength.

This study takes into account a very wide spectrum of materials and quantities, as
shown in Table 3. In Table 4, we also present an excerpt of concrete mixes from the dataset
used. Part of the extensive list of formulations used for the ANN training - testing is given
in the Supplementary Materials.

Table 3. General characteristics of concrete formulations used in the dataset.

Parameter C E MK LF SF GGBFS FA MW RA W/B Age
(days)

Rc
(MPa)

Minimum
(Kg/m3) 70.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 1.0 1.0

Maximum
(Kg/m3) 833.3 319.0 104.1 317.0 208.3 360.0 544.0 500.0 1772.0 0.72 365.0 123.0
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Table 4. Excerpt of dataset used in AI training and validation processes.

Mix N◦ Author C
(Kg/m3)

W
(Kg/m3) W/B

Specimen
Compression

Type

S
(Kg/m3)

Coarse
Aggregates

(Kg/m3)
SP (%) Slump/

Flow (mm)
MK

(Kg/m3)
LF

(Kg/m3)
SF

(Kg/m3)
GGBFS
(Kg/m3)

FA
(Kg/m3)

MW
(Kg/m3)

RA
(Kg/m3)

Age
(days)

Rc
(MPa)

[74]

1 280.0 202.0 0.72 2 777.0 988.0 0.0 160.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 5.3

2 224.0 185.0 0.66 2 788.0 1003.0 0.2 170.0 0.0 0.0 0.0 0.0 56.0 0.0 0.0 1 5.0

3 168.0 157.0 0.56 2 802.0 1041.0 0.8 180.0 0.0 0.0 0.0 0.0 112.0 0.0 0.0 1 3.9

4 112.0 124.0 0.44 2 801.0 1106.0 1.4 210.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 1 2.6

5 112.0 150.0 0.27 2 418.0 1101.0 0.7 220.0 0.0 0.0 0.0 0.0 448.0 0.0 0.0 1 2.3

6 340.0 203.0 0.60 2 737.0 977.0 0.1 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 7.6

7 272.0 188.0 0.55 2 743.0 985.0 0.2 210.0 0.0 0.0 0.0 0.0 68.0 0.0 0.0 1 7.6

[10]

8 350.0 95.2 0.27 1 575.9 1273.0 0.0 — 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28 61.1

9 350.0 98.5 0.28 1 558.2 1325.4 0.0 — 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28 54.0

10 339.5 97.7 0.28 1 655.3 1273.0 0.0 — 0.0 10.5 0.0 0.0 0.0 0.0 0.0 28 65.7

11 339.5 97.6 0.28 1 535.0 1247.0 0.0 — 0.0 10.5 0.0 0.0 0.0 0.0 0.0 28 62.2

12 336.0 97.6 0.28 1 535.0 1247.0 0.0 — 0.0 14.0 0.0 0.0 0.0 0.0 0.0 28 54.5

13 332.5 97.7 0.28 1 655.3 1273.0 0.0 — 0.0 17.5 0.0 0.0 0.0 0.0 0.0 28 63.1

14 329.0 97.6 0.28 1 535.0 1247.0 0.0 — 0.0 21.0 0.0 0.0 0.0 0.0 0.0 28 52.2

[75]

15 350.2 157.60 0.45 1 810.4 1200.6 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 19.07

16 332.2 157.30 0.45 1 809.2 1198.9 0.6 10.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 1 21.50

17 314.2 157.10 0.45 1 808.0 1197.0 1.2 15.0 34.9 0.0 0.0 0.0 0.0 0.0 0.0 1 22.43

18 296.3 156.90 0.45 1 806.8 1195.3 1.8 25.0 52.3 0.0 0.0 0.0 0.0 0.0 0.0 1 20.23

19 278.5 156.70 0.45 1 805.6 1193.6 2.4 75.0 69.6 0.0 0.0 0.0 0.0 0.0 0.0 1 19.33

20 260.7 156.40 0.45 1 804.5 1191.8 3.0 75.0 86.9 0.0 0.0 0.0 0.0 0.0 0.0 1 15.73

21 243.0 156.20 0.45 1 803.3 1190.0 3.6 90.0 104.1 0.0 0.0 0.0 0.0 0.0 0.0 1 14.53

22 350.2 157.60 0.45 1 810.4 1200.6 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 50.23

23 332.2 157.30 0.45 1 809.2 1198.9 0.6 10.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 7 53.80
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Table 4. Cont.

Mix N◦ Author C
(Kg/m3)

W
(Kg/m3) W/B

Specimen
Compression

Type

S
(Kg/m3)

Coarse
Aggregates

(Kg/m3)
SP (%) Slump/

Flow (mm)
MK

(Kg/m3)
LF

(Kg/m3)
SF

(Kg/m3)
GGBFS
(Kg/m3)

FA
(Kg/m3)

MW
(Kg/m3)

RA
(Kg/m3)

Age
(days)

Rc
(MPa)

[76]

24 300.0 165.0 0.41 1 1095.0 722.0 1.0 30.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 25.8

25 300.0 165.0 0.41 1 1095.0 722.0 2.0 57.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 30.7

26 300.0 165.0 0.41 1 1095.0 722.0 3.0 58.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 22.2

27 300.0 180.0 0.45 1 1071.0 706.0 1.0 43.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 25.8

28 300.0 180.0 0.45 1 1071.0 706.0 2.0 60.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 28.9

29 300.0 189.0 0.47 1 1055.0 696.0 2.0 66.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 27.6

30 300.0 201.0 0.50 1 1039.0 685.0 2.0 68.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 7 26.2

[77]

38 553.5 161.6 0.10 2 734.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1145.9 7 51.6

39 524.5 205.5 0.13 2 695.7 0.0 0.0 55.0 0.0 0.0 0.0 0.0 0.0 0.0 1085.8 7 40.4

40 498.3 245.2 0.16 2 661.0 0.0 0.0 179.0 0.0 0.0 0.0 0.0 0.0 0.0 1031.6 7 28.9

41 474.7 280.9 0.19 2 629.7 0.0 0.0 531.0 0.0 0.0 0.0 0.0 0.0 0.0 982.7 7 24.6

42 553.5 152.0 0.08 2 734.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1351.5 7 62.1

43 524.5 196.4 0.11 2 695.7 0.0 0.0 32.0 0.0 0.0 0.0 0.0 0.0 0.0 1280.6 7 46.4

44 498.3 229.4 0.13 2 661.0 0.0 0.0 180.0 0.0 0.0 0.0 0.0 0.0 0.0 1216.7 7 33.6

45 474.7 272.7 0.17 2 629.7 0.0 0.0 563.0 0.0 0.0 0.0 0.0 0.0 0.0 1159.1 7 27.3
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6. Results and Discussion

The structure of the ANN applied in this study is shown in Figures 5 and 6. The
network consists of 18 inputs, two hidden layers, and one output, and was used for 1310
data values.

The results in Figure 7 show the model performance results measured through error
minimization techniques. During the learning process, the error drops as the network is
continuously trained. The patterns in Figure 7 are respectively training, validation, and
testing relative to model error.

• Pattern 1 (blue, Training) describes the training error obtained from 70% of the samples
and improves the model’s fit by adjusting the network according to its error.

• Pattern 2 (green, Validation) fits the network generalization ability that instructed
the network on when to stop the training process. Pattern 2 represents the ability of
the model to predict new data [32] (predictive performance). The training process is
halted when validation error stops decreasing, which inherently avoids over-fitting.

• Pattern 3 (red, Testing) does not affect training and is an independent measure of
network performance. This error measured on the test data indicates how well the
model is generalized to the data during and after training.
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Figure 7. Model performance plot based on mean squared error (MSE) analysis.

In Figures 7 and 8, the results clearly demonstrate that the gradient begins to stabilize
when the epoch equals 6. The values of the coefficient of determination R2 are 0.9982, 0.9763,
and 0.9566 for training, validation, and testing respectively. The histogram shown in Figure 9
shows that the error value is lowering from training to testing. This corresponds to an
improvement of the model throughout the processing and precision. The high values of R2 in
Figure 10 mean that the model seems to have sufficient accuracy and is also well trained.
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In Figure 10, the network outputs with respect to targets for training, validation, and
test sets are plotted against the target values. For a perfect fit, the data should fall along
a 45◦ line, where the network outputs are equal to the targets. For this problem, the fit is
very good for all datasets, with R2 values of 0.95 or above in each case.
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The performance indicators for compressive strength accuracy are given in Table 5.
The value of RMSE, which is 2.91 MPa, shows that the gap between predicted and experi-
mental values is small. MAPE shows that the predicted compressive strength deviated on
average by 2.87% from the experimental data. This indicates that the differences between
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forecast and actual results were negligible. All these points indicate that the ANN strength
predictive model was able to reproduce the experimental compressive strength results with
high accuracy. These results are comparable to those obtained in similar studies [29,51]. In
the same order, the determination coefficients reached by [39,78] are between 0.9443 and
0.9836.

Table 5. Values of model performance accuracy parameters.

Parameters
Performance Indicators

RMSE (MPa) R2 MSE (MPa) MAE (MPa) MAPE (%)

Values 2.91 0.9888 8.4689 1.7463 2.87

7. Conclusions

This study aimed to use an artificial neural network to predict the compressive strength
of waste-based concretes. The methodology, architecture, and learning methods were
explained, based on feedforward and backpropagation techniques. A bibliographic dataset
compiled from the literature was then used, including a total of 1303 concrete formulations
from 22 different studies. The important conclusions that can be drawn from this work are:

• The ANN model can predict compressive strength with high accuracy by learning the
deep features of the water–cement ratio, the cement and admixture content, the age of
the concrete, etc.

• The results have demonstrated that multilayer feedforward artificial neural networks
are practicable methods to forecast compressive strength in concretes.

• Errors of the model calculated from R2, MSE, MAPE and MAE show small gaps
between experimental and forecast values.

The above results suggest that the use of ANN is suitable for concrete compressive
strength prediction. A coming study that we are undertaking will test the use of Decision
Tree Regression (DTR) in the prediction of concrete properties. This machine learning
method has been stated to be a very efficient approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15207045/s1. The supplementary materials file contains part
of the formulations used in the ANN training are collected from [20,67,79–83].
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