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Abstract: In this paper, a mathematical model for the rolling motion of ships in random beam seas
has been investigated. The ships’ steady-state rolling motion with a nonlinear restoring moment
and damping effect is modeled by the nonlinear second-order differential equation. Furthermore,
an artificial neural network (NN)-based, backpropagated Levenberg-Marquardt (LM) algorithm is
utilized to interpret a numerical solution for the roll angle (x(t)), velocity (x'(t)), and acceleration
(x”(t)) of the ship in random beam seas. A reference data set based on numerical examples of the
mathematical model for a rolling ship for the LM-NN algorithm is generated by the numerical solver
Runge-Kutta method of order 4 (RK-4). The LM-NN algorithm further uses the created data set for
the validation, testing, and training of approximate solutions. The outcomes of the design paradigm
are compared with those of the homotopy perturbation method (HPM), optimal homotopy analysis
method (OHAM), and RK-4. Statistical analyses of the mean square error (MSE), regression, error
histograms, proportional performance, and computational complexity further validate the worth of
the LM-NN algorithm.

Keywords: steady-state roll motion; nonlinear damping; random beam seas; artificial neural net-
works; Levenberg-Marquardt algorithm; soft computing

1. Introduction

In general, ships experience different motions, including angular and displacement
motions, categorized as yaw, pitch, roll, heave, drift, and surge. Figure 1 represents the
schematic directions of all six motions. The stabilization of a ship depends on two methods,
namely roll reduction and the modeling or evaluation method of roll performance. In
the later part of the mid-18th century, Froude studied a ship’s rolling motion for the first
time. Later on, Norio Tanaka [1] introduced the empirical and semi-empirical roll damping
coefficient for dynamic equations. A simple method was proposed by Himeno [2] for the
prediction of the roll damping of ships at forwarding speed. In 2004, Ikeda [3] presented
the modified model of roll damping with a steady drift motion.

In sea studies, roll damping is one of the important topics of discussion for most
researchers. However, the complexity of problems and the potential flaws in traditional
techniques make the solving of roll motion problems difficult. Scientists have adopted
various strategies, including empirical formulas, advanced experimental processes, compu-
tational fluid dynamics (CDF), an analysis method for roll dumping, a finite differential
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model, and a higher polynomial roll dumping model. Yeung [4] implemented a method
based on CDF that had been used for local phenomena of vortex shedding around bilge
keels. An experimental analysis on the local flow visualization of roll damping are given
in [5-7].

Figure 1. Schematic diagram of ship showing six directions of motion.

Researchers have recently focused on studying the mathematical modeling of the roll
damping of ships. It has been noticed that external forces significantly affect ship stability,
which causes complexity in mathematical models. The strong nonlinear terms arising
in the mathematical model make it possible to study the behavior of forecasting stabil-
ity changes in operations [8]. Oliveira and Fernandes [9] used the hyperbola or bilinear
fitting method, and Agarwal [10], in 2015, used a fractional differential equation model
to investigate the roll damping phenomena of ships. The ship’s rolling motion in terms
of a second-order nonlinear differential equation is of great significance to the research
community. Finding a closed-form solution (exact solution) to such a model is difficult.
Various numerical and perturbation techniques have been implemented to find the approx-
imate solutions. Some well-established techniques for obtaining analytical expressions for
roll angle, velocity, and acceleration are the finite element method (FEM) [11] ,differential
transformation method (DTM) [12], homotopy analysis method (HAM) [13-15], variational
iteration method (VIM) [16,17], homotopy perturbation method (HPM) [18], modified
homotopy perturbation method [19], Green function-based method (GFM) [20], series
method (SM) [21], and the ultraspherical wavelets-based method (UWM) [19]. Although
these methods have advantages, especially over non-typical appendages in size and shape
and newer hull designs, most of the methods are gradient-based techniques and depend
on traditional deterministic approaches that have not been validated.

In recent times, stochastic optimization techniques based on artificial neural networks
have been adopted to find numerical solutions to various complex and stiff problems.
Recently, such soft computing techniques have been applied to study the wire coating
phenomena [22], diabetic retinopathy classification using fundus images [23], imbibi-
tion phenomena [24], heat transfer in porous fins [25-27], wire coating dynamics [22],
beam-column designs by varying axial load [28], absorption of carbon dioxide (CO,)
into solutions of phenyl glycidyl ether [29], mathematical models of CBSC over wireless
channels [30], Michaelis—Menten kinetics in a micro-disk biosensor [31], a mathemati-
cal model for eye surgery [32], and electrohydrodynamic flow in a circular cylindrical
conduit [33]. The techniques mentioned above have motivated the authors of this study to
numerically solve the mathematical model of the ship’s rolling motion by using a stochastic
Levenberg-Marquardt (LM) algorithm based on neural networks that have never been
applied to such a model. The potential outcomes of the presented work are summarized as
follows:

*  The formulation of a mathematical model for the rolling motion of ships in random
beam seas will have been investigated;
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¢ Thenovel, integrated design of a computing paradigm based on the two-layer struc-
ture of the Levenberg-Marquardt (LM) algorithm and neural networks (LM-NNs) is
presented to examine the rolling motions;

e  The model is briefly analyzed by considering certain examples depending on varia-
tions in angular frequency (w3), damping coefficient (), frequency (w), amplitude
(€), and strength of nonlinearity coefficient («);

* A merit function based on the mean square error is effectively developed for the
computational analysis of LM-NNs by taking reference solutions of different examples
generated by the RK-4 method;

*  The training, testing, and validation process of LM-NNs are utilized to study the
performance of approximate solutions by graphically illustrating regressions, absolute
errors, and error histograms. The results of LM-NNs are compared with those of the
HPM and RK-4 methods, which shows the dominance of the technique;

*  Anadvantage of the proposed design is that it does not require any initial parameter
settings. Its implementation is simple and smooth, with exhaustive applicability
and stability.

2. Problem Formulation

In 1981, Cardo [34] formulated the mathematical equation for the rolling motion of a
ship without any influence from oscillation, which is given as follows:

IE + M, (©,t) + D(®,0) = Ey cos Ot, (1)

Equation (1) represents the general equation of the roll motion of ships in the absolute
heeling angle, where ¢, ¢, and C denote the roll angle, velocity, and acceleration, respectively.
The moment of inertia is denoted by I, D denotes the moment of forces, E;, is amplitude,
M, is the righting moment, and w is the angular frequency. Here, the nonlinear damping
term is taken into consideration as the angular dependence of the linear term, which is
given by the following equation:

D(¢,¢) = <D01 + D2152)5+ Do3g’, )
its normalized form of the righting moment can be expressed as:
M;(8) = whi + asé’, 3)

establishing dimensionless parameters by introducing the time T, and angle &, scales as
follows:

f ¢ 2 Alerzz D03(P%

= — = — = QT 7 = _, 5 — ,
T T, X & w we o Wh . > I
i~ Dy T2 Doi T, E., T2

& = AkiT;%éﬁz L 0= #, H= Tln’ €= I“;)n”/

using the above parameters and rearranging the term gives the nonlinear equation of the
cubic damping moment [34]:

X+ (2;4 + (51x2> %+ 8x% + whx + azx® = ecos(wt). 4)

where &, 1, ¢, and w denote the strength of nonlinearity, damping coefficient, amplitude,
and angular frequency, respectively. J; and J, are viscous damping coefficients.

3. Proposed Methodology and Performance Indices
3.1. Structure of Artificial Neural Networks

Artificial neural networks (ANNSs) are intelligent computational systems that mimic
the biological nervous system. ANNs have been successfully applied by a number of
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researchers to study the complex problems such as pattern identification, recognition,
classification [35], electrical energy consumption forecasting [36], and induction motor
drive in pumping [37].

The fundamental structure of ANNs comprises of interconnected neurons and nodes
that receives the input, combines them in a specific way, and performs some nonlinear
operation to generate the output. Figure 2 depicts the architecture of ANNSs that consists
of input, weight, threshold, summing junction, and output. For the basic model of ANNSs,
the input ¢y is multiplied by the connection weights, and the bias or threshold is further
applied to convert the inputs into the desired results. The net input is calculated as follows:

N
ue =Y wity — by )
k=1

In order to generate the output x(t), an activation function such as Log-Sigmoid is used,
which is given as:

N
xk—f< wktk_Bk>/ (6)
pa

where N is the number of inputs.

Threshold
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)

Figure 2. Basic structure of a simple artificial neuron.
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\

3.2. Learning Procedure

In this section, the learning procedure of the designed weights in the ANN structure
is discussed. The implementation of the novel design of the Levenberg-Marquardt neural
network approach is based on two steps. In the first step, a mathematical model for
the rolling motion of the ship is evaluated by the Runge-Kutta method of order 4 using
“NDSolve”, the built in function of Mathematica to generate the reference solution of 301
data points, with a 0.1 step size from 0 to 30. In the second step, the Levenberg-Marquardt
technique, which is an efficient technique in the field of soft computing, is implemented
using the “nftool” routine on MATLAB for the proper training, validation, and testing of
the problem. The work flow and parameter settings in terms of training, validation, and
testing for the LM-NN algorithm is shown in Figure 3. The computational model with a
double neural network for the design scheme has been plotted through Figure 4.
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Figure 3. Architecture of the proposed methodology of the mathematical model for the rolling motion
of ships in random beam seas.
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Figure 4. Structure of the supervised neural network [38].

The performance of the designed scheme is measured through the performance indica-
tors in terms of the mean square error (MSE) of the fitness function of the model, regression
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R?, error histograms, and absolute errors (AE). The mathematical formulation of the MSE,
R2, and AE are given as follows:

k
MSE = % Y (xi(1) — %;(1)?, @)

®)

and
AE = }x](t) — f](t)

, J=L2. .k )

where Xj, Xj, and 55]‘ denote the reference, approximate, and mean of the solution at the
jth input, and k is the number of mesh points. The desired value for the MSE and AE for
perfect fitting is equal to zero, while the value of R? is one.

4. Numerical Experimentation

In this section, we considered certain examples of the rolling motion of ships in random
beam seas by varying certain parameters. Figure 5 shows the flow chart of the problems
discussed in this paper.

| Rolling Motion of Ships in Random Beam Seas |

| Mathematical Model |-| X+ (2 + 81x)x + 8,x° + whx + azx® = gcos (wt),
| Parameters
I
Angular frequency Strength of nonli ity Dampi Viscous damping .
coefficient coefficient coefficients Amplitude
| Examples |
Example 1 I I Example 2
|
-

w=10.00508; =0.1,w3=1.0,

— —= 2
# = 0.005,8; = 0:1,wp = 1.0, = =1.75,= 0.2, = 1/3
ay =175 N

1£=0.02,8;=0.1,03=1.0,

Caselll
a3 =-1.75=0.2,w=1/3

Case Il 1£=10.02,8; =0.1,w5=1.0,

a3 =4,0,£=0.2,0=-1/3

\.
Example 3 |—>| Caselll |

[ N=0.1b=0.51=02 ] [ 4=1.0,b=1.0,1= 10, ]

Figure 5. An overview of different examples and cases studied in this paper.

Example 1. In this example, a nonlinear differential equation for the rolling motion of ships is
considered [19,34]:

i+ (2y+61x2)x+ng+a3x3 —0, (10)

subjected to
x(0)=a and x(0)=0. (11)
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Experimental values of the parameters involved in Equation (10) are J; = 0.1, 4 = 0.005,
a3 = —1.75,a=02,and w3 = 1.

Example 2. In this example, a nonlinear IVP of the cubic damping moment of the rolling motion is
considered [34], which is given as follows:

i+ <2y + 51x2) % + wix + azx® = ecos(wt), (12)

with the initial conditions
x(0) =02 and x(0)=0. (13)

Furthermore, to briefly study the model, the following three cases are considered, de-
pending on variations in the dimensionless damping coefficient and the strength of the
nonlinearity coefficient. CaseI:d; = 0.1, y = 0.005, a3 = —1.75, w% =1, =02, and
w =0.333333. CaseIl: 6; = 0.1, p = 0.02, a3 = —1.75, w3 = 1,& = 0.2, and w = 0.333333.
Caselll: 61 = 0.1, y = 0.02, a3 = 4.0, w% =1, =0.2, and w = 0.333333.

Example 3. In this example, we considered the cubic damping moment of the nonlinear roll
motion [14,39], which is given by the following equation:

56(1 +4b2x2> +x +4b%x%x =0, 5 >0, (14)

with
x(0) =1 and x(0)=0. (15)

Two cases of Equation (14) are considered. CaseI: b = 0.5, # = 0.1, and | = 0.2. Case
I:»=1.0,7=1.0,and ! = 1.0.

Chaos Phenomena of Ship Nonlinear Rolling Motion

When a ship is sailing, the motion of the ship is extremely complex. However, the large
restoring and nonlinear torques cannot be ignored. AH Nayfeh [40], in 1990, took nonlinear
damping and restoring torques into consideration and investigated the complexity and
stability of the dynamics in the rolling motion of ships under the influence of different
slopes and wave surfaces. The mathematical model for the nonlinear motion of ships
subjected to the regular waves can be written as follows [41,42]:

(I41")&+ D(&) + M(§) = By — M(&, it), (16)

where M(&, it) represents the wave disturbance torque, and a denotes the slope or gradient
of the wave surfaces and is defined as:

o = ay cos(wt), (17)

here, a;, is the maximum slope. The chaotic phenomena are extremely sensitive, particulary
to the external disturbances, therefore the M(&, &) can be given as follows:

M(&, &) = — fra,w sin wt —fzocmwz cos wt, (18)

where fia,w sin wt and fra,w? cos wt are the restoring and damping disturbance torques.
Equation (17) is reduced to the following equation:

(I+I*)¢+ D(&) + M(¢) = By + fikmw sinwt + fotyw? cos wt, (19)
D(&) and M(¢) can be given as:

D() = 2mé + usl?, (20)
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M(E) = Wi + a3@ + a5 + ..., (21)

here, 2y1 and p3 are linear and cubic damping coefficients of torque. Moreover, a3, a5 are
constants and w} is the linear restoring coefficient of torque. By is constant, and its value
can be calculated as follows:

By = wols + a3ls + asCs, (22)

where ¢ represents the heeling angle. Using Equations (20)—(22) in Equation (19) will result
in the following:

(14 I*)E + 211 & + uzd® + wgé + a3& 4 a5& = fiagwsinwt + frapw?® coswt.  (23)

The mathematical model is simplified by introducing dimensionless parameters such as:

21 ¥ i a3 as Jj! f
= , = , = , = P = = ; d A == . 24
EE T e N S N R N A N A D N E e N € @)
Equation (23) can be given as follows:
E+ mé + mp® + & 4+ nol + n3& = Ajapw sin wt + Aprauw? cos wt. (25)
Values of the parameters involved in Equation (25) are given in Table 1. One of the
primary characteristics of a chaotic system is that there is great sensitivity to the initial
values. The traces formed by the small difference between the two initial values will
disperse in the usual way as time goes on [43]. Equation (25) is similar to duffing equations,
which are strongly nonlinear and are commonly used for detecting the weak signals in the
chaotic systems. Furthermore, to study the chaos phenomena in ships, Equation (25) is
reduced to the system of differential equations by letting x = &,y = ¢, and z = wt:
x—y=0,
y = —3.240x + 4.5250x> — 0.8780x> — 0.3500y — 0.0222y> + 0.50400,,co 5in z — 4.66560,,0? COs Z, (26)
z—w =0,

with the initial conditions

x(0) =y(0) =0, and z(0) = 1. (27)

Table 1. Values of parameters involved in the mathematical model for the rolling of ships given in
Equation (25).

Parameters ni ny n3 mq my Aq Ay

Values 3.24 —4.525 0.878 0.35 0.0222 0.504 —4.6656

5. Results and Discussion

In this section, the implementation of the proposed LM-NN algorithm to solve the
mathematical model for the rolling motion of ships in random beam seas is discussed.
Numerical and graphical results are illustrated for all three mathematical examples with
different cases. An approximate solution for each example obtained by the LM-NNs is
compared with those of the homotopy perturbation method (HPM) [19], the Runge-Kutta
method (RK-4), and the optimal homotopy analysis method (OHAM) [39], as shown in
Figure 6. Tables 2 and 3 represent the statistics of the obtained values for the rolling angle,
velocity, and acceleration. The behaviour of variations in different parameters on x(¢) and
¥(t) are shown in Figure 7. Figure 8 illustrates rolling decay curves that show the impact
of time on the rolling angle. Furthermore, to study the chaotic behaviour of the rolling
motion of ships, Equation (26) is solved by the LM-NNs to study the influence of variation
on maximum slope «,,. Figure 9a shows the frequency spectrum diagram of the motion. It
can be observed that increasing the value of «;, causes an increase in the rolling angle of
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——HPM O RK-4——LM-NN'| 025

the ship. The system’s dispersion phenomena become obvious, and the rolling angle of the
ship’s motion increases correspondingly. Figure 9a analyzes the chaotic behaviour of the
rolling motion of ships.

The design scheme is exploited to determine the fitting of approximate solutions, with
the reference date set generated from the numerical solver using the RK-4 method. Curve
fitting of the obtained solutions by LM-NNs for each example, with reference data of 301
points from 0 to 30, is shown in Figure 10. The performance of the objective function in
terms of MSE to obtain best fitting is depicted in Figure 11. The best validated performance
of MSE for different examples are 1.6631 x 1078,4.4759 x 1072,2.9493 x 1077, 1.0449 x 10~?,
5.7951 x 10719, and 1.1029 x 1078, respectively. Figure 12 represents the absolute errors
between the reference solution and the approximated solution by the LM-NN algorithm.
It can be seen that the AE for different examples lies at around 10~ to 107¢, 107> to
107%,10 4 t0107%,10°t0 107%, 10 ° t0 10 7%, and 10~ to 10, respectively. These plots
show the convergence, precision, and accuracy of LM-NNs for obtaining solutions to the
mathematical model for the cubic damping of the rolling motion of ships.

Regression values for each example are illustrated in Figures 13 and 14. The correla-
tion investigation was applied to study the regression analysis. The figures and Table 4
demonstrate that the value of “R” lies close to one, which reflects the perfect modeling of
the solutions by the LM-NN algorithm. Figure 15 shows that values of the gradient and
step size of mu for each example lies at around 9.9599 x 108, 9.5875 x108, 9.9596 x 1078,
9.9867 x 107%,9.1618 x 108, and 6.3457 x 10~7, with 10~1%,10-1, 107,107 1,102, and
10—, respectively. Finally, all calculations and evaluations for this research were performed
on an HP laptop EliteBook 840 G2 with intel(R) Core (TM) i5-5300 CPU @ 2.30 GHz, 8.00 GB
RAM, 64 bit operating in Microsoft Windows 10 Education edition, running an R2018a
version of MATLAB. The time taken by the CPU to solve such complex problems by the
LM-NN algorithm are shown in Table 4.

——HPM —5—RK-4 ——LM-NN's 025
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Figure 6. Comparison of approximate solutions with the numerical solver (RK-4), HPM, and OHAM
for different examples of the rolling motion of ships.
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Figure 9. (a) Demonstrates the influence of variations in a, on the rolling motion of ships.
(b) Phase-space diagram of y(t) against x(t) for different values of the maximum slope.
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Figure 10. Analysis of the fitness plot by the LM-NN algorithm for different examples.



Materials 2022, 15, 674

13 of 21

Best Validation Performanceis 1.6631x10-8 at epoch 103

10°
Train
Validation
Test
=102 Best
¢ 10
E
5
0 104 F
B
[}
g
§ 106k
=
108 —O
. . . . . . . . . .
0 10 20 30 40 50 60 70 80 9 100
103 Epochs
(a) Example 1
10 Best Validation Performanceis 4.4759x10 at epoch 102
Train
Validation
—Test
=102 Best
() 10
E
5
0 104 F
B
8
g
§ 106 kF
=
108 ¢
0 10 20 30 40 50 60 70 80 90 100
102 Epochs
(b) Example 2, Case I
10 Best Validation Performance is 2.9493x10 at epoch 142
Train
= Validation
—Test
= 1072 Best
() 10
£
5
1 10 |
B
]
g
5 10°F
=
10'8 L
. . . . . | n
0 20 40 60 80 100 120 140
142 Epochs
(c) Example 2, Case II
® Best Validation Performanceis 1.0449x10- at epoch 66
1
Train
Validation
Test
® 102 Best
£
5
I
B
8
3
g
=

1010
0

66 Epochs

(d) Example 2, Case III

Figure 11. Cont.



Materials 2022, 15, 674

14 of 21

Best Validation Performanceis 5.7951x10-1? at epoch 70

100 .
Train
= \/alidation
> —Test
_ 10 Best
[
E
5 10%F
]
B
5 10°F
=}
2
§ 00
S
10710 L
0 10 20 30 40 50 60 70
70 Epochs
(e) Example 3, Case I
Best Validation Performanceis 1.1029x10-8 at epoch 1000
5 Train
100 ———Validation
—Test
g Best
E 2
5
]
B 10
8
3
2
§ 10»6 L
=
108 =)

0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs
(f) Example 3, Case I

Figure 11. Studies based on the performance of MSE by the design scheme, for multiple examples.

Table 2. Approximate solutions obtained by the LM-NN algorithm for different examples of the

rolling motion of ships in random beam seas.

Example 1 Example 2 Example 3
Casel Case II Case III Casel Case II

t MHPM Anaytical LM-NN’s OHAM LM-NN's
0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 1
3 —0.166120 —0.191740 —0.191730  0.176480 0.176568 0.109021 0.118817 —0.338480  —0.334040
6 0.184868 0.174917 0.174914 —0.142790  —0.136060  —0.075050  —0.061160  —0.941280  —0.945690
9 —0.144550  —0.150800 —0.150820 —0.205370  —0.209320 —0.196250 —0.189810  0.775350 0.737937
12 0.157559 0.120891 0.120810 —0.191980  —0.190840 —0.137690  —0.163790  0.798647 0.767593
15 —0.112290 —0.086840 —0.086850  0.097787 0.091824 0.050338 —0.003150  —0.931210  —0.932550
18  0.121196 0.050406 0.050406 0.210881 0.210487 0.188166 0.160140 —0.398350  —0.395290
21  —-0.072730 —0.013330 —0.013320  0.202523 0.207454 0.160958 0.191669 0.999319 0.999335
24 0.079358 —0.022720  —0.022720  —0.050090  —0.050840  —0.027350  0.067115 —0.27570 —0.267520
27  —0.029550  0.056298 0.056296 —0.210560  —0.203030  —0.179030 —0.113730  —0.950850  —0.957320
30 0.035768 —0.086160 —0.086160 —0.211550  —0.221450 —0.175970  —0.199900 0.749124 0.705858




15 of 21

Error Histogram with 20 Bins

9950000
STS000°0
¥97¥000°0

ZeroError
ZeroError
ZeroError
ZeroError

€17000°0

[ v alidation
[ Test

[=2
£ 2 2

= c
g g s
‘ = =

T9€000°0
TE000'0

=K
c

=
=

6520000 ¢
802000°0
LST000°0
9070000

, Case |
Case II

5-0Lxv'S
9-0LXL'E
s0bxLY-

Errors = Targets - Output;
(a) Example 1

5-01x6'6-

Error Histogram with 20 Bins
Error Histogram with 20 Bins
Error Histogram with 20 Bins

(b) Example 2
(c) Example 2,

ST000°0~
2000°0-
§2000°0~
€000°0-
G€000°0

T¥000°0-

Materials 2022, 15, 674

100 -
80

3 < & e
saoueIsU |

(d) Example 2, Case III

Figure 12. Cont.



16 of 21

Error Histogram with 20 Bins

Materials 2022, 15, 674

£
=g
T o
o »n
]
¢ E
S o
=
= QO
=g
o B ~
? 3 S
v g
2 <
S -
] =]
g8 o
< 0 I o T
Y o, o o @
= 5 = s = o
= S = 3
[ < o
h n ~—
el -
g 2 <
v g
W )
o=
- o~ n —t e} o [rs) — n
T 9 s g ° g S % 5
o) g 9-0Ixt°€ + BBe LT =~ IndInO
p :
o
£ 2
wn.. —
]
v 2 o
.w .Mn..» e il °
1l 1l
€10000 - 1850000 =% ox 3 14
5 5 c % i 5 7 °
g8 = 6110000 22 : 26v000°0 @ O ki [ ) g
z 4 £ > Q o = - L
505 80T000'0 S50 5 920000 < Q
[= N = N i d
0196 9£000°0 nhv“o o <
- S0LxP'8 - 620000 .m m N
s0LxE'L " 6220000 % mw S m b3 m ° m 3 m S m 2 m ° m 3 m
. 2 ) ? ? 7 i
mSXNom — & Esooom = m ..m 9-01xZ'T + BB IR 14T =~ IndInO 9-0IxE'S + PB1e | ,T =~ INdIno
0x0s S D < 5-0Lx86 2 9]
sl & £ wees & 83 3 *% 3
g-0Lx6'E - @] M ¢-0bxC - ] r/ MH ®
S0 .y o
SONLTE 5 E souee s md . 9 . .
0xoT 2 O i 0Lx6'6- 2 — Il 9 S ~ S
T8 A B s 2 8 8 9 &
20Lx6 ) £ % 910000~ |, m; wﬁo = = 9 o3 = ®
= 5 S
soro-2 G T £20000- 5 g o m e @ o8 . & °
S X 5 s g £ 9 £ 0 F 3 = %
coixg' T FH = €0000- [ 4 - = 3 o, = =
. —~ w | —~ < .m. > n@ m& -
-01x62- o 90000 & - O % 2 &, |3
- 0LXT b~ £/000°0- m ..M % ' 0&
0Lx2°G- -
i 670000 M2 S 938°83 3 g°8g 31
-0xE'9- 950000+ s 8 ° ° ¢ v 9 o e 9
o = ¢-01x.'T + Bbse 4T =~ ndino G-01x.'T + BB IR L,T == Indin0
-01xS'L 29000°0- = .=
. § v X g 8
o 690000 = m
o o Wb Q,
o Oy - b}
= o s b °
x x
~ o 5
2 = c
£ o8 £ o
= e o= X
B < T
s N
= =
=
= E

N g o 8 © 8 o 9
] )
© s ° 5 s ° 5

o]

$01x88 + BBIe1,T =~ Indin

0 n
S o =
<

-0IXE'Z + BBIe LT = IndIno

Target

(h)

Target

(8)

Target

®
Figure 13. Cont.

Target

(e)



Materials 2022, 15, 674

17 of 21

Training: R=1

Validation: R=1

E ?2 02 O Data u'é 02 O Data E
% & o01s Fit & o015 Fit &
v N~ Y=T & inl Y=T ind
% + 01 & + 01 +
;’ % 0.05 @O B o0s g
3 o g o 5
- ‘E—oos (9@ 005 e
{
:g_ - ‘g‘- -0.1 @ é -0.1 ‘g- -
S 5015 =015 5-
o o S =1
f 01 o o1 02 © 01 [) 01 02 ©
Target Target Target
@) 0 (k)
- Training: R=1 - Validation: R=1 - Test: R=1 All: R=1
.'E ,'E 0.2 IE 02 “é 02
& & osp | 2o & ot | 2_a" % o) |02
il o Y=T (¢] oo Y=T = v=T
+ T 6& Lo T oo
% ’S‘% 0.05 P g’ 0.05 g 0.05
P g o & g o B oo
S S.005 # S.005 S.005
' ! 01 OQ ! 01 ! 01
%. E--o.ls y;o E——OJS §—0,15
O -0 8 -0. 8 0.2 S -0.2
-0.2 -0.1 0 01 0.2 -0.2 -0.1 0 01 0.2 -0.2 0.1 0 0.1 02 -0.2 -0.1 0 0.1 02
Target Target Target Target
(m) (m) (0) P)
Training: R=1 - Validation: R=1 ~
g 02 2 02 b 2
% r,é osf |_©_ P ey 3 &
D = i oN
;.j ! Y=T / é;o Z B
o B 005 g ol
F o 4 :
I Sl005 4 i' - 5
5 - Lop A L !
‘{:‘? - E»ms % g_
S 3. o 3
02 01 0 01 02
Target Target Target
(@) (@ ®
Figure 13. Regression analysis of Examples 1 and 2.
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Figure 14. Regression analysis of Example 3.
Table 3. Results of velocity %(t) and acceleration ¥(t) for different examples of the rolling motion of
ships.
Example 1 Example 2 Example 3
Case I Case II Case 111 Case I Case I1
toox(t) £(t) (1) (1) (1) (t) (t) (1) (t) (1) (t) (1)
3  —0.04120 0.17996 —0.05802 —0.05804 —0.05705 —0.05641 —0.04287 —0.00438 —0.05052 —0.01202 —0.78374 0.79843
9 —0.11206 0.14617 0.00643 —0.00788 0.00253 —0.00484 0.02417 0.02742 —0.01958 0.01839 0.37855 —0.36528
18 0.17082 —0.05193 —0.00528 —0.00236 0.00324 —0.00228 —0.03384 —0.02131 0.03741 —0.01583 0.72057 0.74845
27 —0.16067 —0.05433 —0.00085 0.01201 —0.00809 0.00652 0.02764 0.01857 —0.05169 0.01152 0.13380 0.80846




Materials 2022, 15, 674 18 of 21

Table 4. Statistical analysis of the performance measures, including MSE, Gradient, mu, number of
iterations, and time taken by the system to calculate the results.

Mean Square Error

Example Case Hidden Neurons Training Testing Validation  Gradient Mu Epochs Regression Time (s)
1 30 398 %1072 166x107% 422x10° 9.96x10"% 1.00x 10710 103 1 <ls

2 I 30 149 x107° 448 x107° 4.07x107° 959x10°% 1.00x10"1 102 1 <ls

2 I 30 156 x 1072 295x 1072 354x107? 9.69x10°% 1.00x 10711 142 1 <ls

2 I 30 9.15x 10710 1.04x107% 242x107° 9.99x10°% 1.00x 10" 66 1 <ls

3 I 30 1.02x10710 580 x 10710 657 x10"1 9.16x10°% 1.00x10"12 70 1 <ls

3 II 30 908 %1072 110x107% 142x108 635x1077 1.00x10~° 1000 1 1s

1 Gradient = 9.9599x10°8, at epoch 103

B
K
5
Mu = 1x10-10, at epoch 103
10°
>
E
1010
1 . Validation Checks =0, at epoch 103
B s
S o
g
1
103 Epochs
(a) Example 1
o Gradient = 9.5875x10°8 at epoch 102

10720

val fail

102 Epochs

(b) Example 2, Case I

0 Gradient = 9.9596x10-8, at epoch 142

Mu =1x10"11, at epoch 142

1010

val fail

E I
[ 20 40 60 80 100 120 140
142 Epochs

(c) Example 2, Case II

Figure 15. Cont.
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3 Gradient = 9.9867x10-8, at epoch 66

gradient

Mu=1x10"11, at epoch 66

;/

1010

- . Validation Checks= 0, at epoch 66

val fail

) ) ) 0 4 Caaaand

66 Epochs

(d) Example 2, Case III
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Figure 15. Training state of the design scheme for all examples of the rolling motion.

6. Conclusions

This paper analyzes a mathematical model of the rolling motion of ships with nonlin-
ear damping in random beam seas. To study the roll motion of ships under the effect of
various forces and parameters, including angular frequency, strength of the nonlinearity
coefficient, damping coefficient, viscous damping coefficients, and amplitude, we devel-
oped an intelligent soft computing technique based on artificial neural networks. A novel
computing paradigm with a two-layer structure, the Levenberg-Marquardt (LM) algorithm
and neural networks were utilized to calculate the approximate solution to the mathemat-
ical model by using a data set generated by numerical solvers such as the Runge-Kutta
method or Adam’s method. Reference solutions of 70%, 15%, and 15% were utilized by the
LM-NN:s for the training, validation, and testing of the numerical examples. The results
obtained by the proposed LM-NN algorithm were compared with those of the homotopy
perturbation method (HPM), the Runge-Kutta method (RK-4), and the optimal homotopy
analysis method (OHAM). Furthermore, to study the chaotic behavior of the rolling motion
of ships, the mathematical model was solved by the LM-NNs to study the influence of
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variation on maximum slope a;;,. The results demonstrate that increasing the value of a;;,
causes an increase in the rolling angle of the ship. The system’s dispersion phenomena
become apparent, and the rolling angle of the ship’s motion increases correspondingly. The
technique’s performance is disclosed in terms of mean square error (MSE), regression R?,
error histograms, and performance evaluation. Extensive graphical and statistical results
show the technique’s accuracy, precision, and robustness.

In the future, the designed scheme can be used to implement the solving of partial
and fractional differential equations representing real-world problems.
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