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Abstract: A neural network (NN)-based method is presented in this paper which allows the iden-
tification of parameters for material cards used in Finite Element simulations. Contrary to the
conventionally used computationally intensive material parameter identification (MPI) by numerical
optimization with internal or commercial software, a machine learning (ML)-based method is time
saving when used repeatedly. Within this article, a self-developed ML-based Python framework
is presented, which offers advantages, especially in the development of structural components in
early development phases. In this procedure, different machine learning methods are used and
adapted to the specific MPI problem considered herein. Using the developed NN-based and the
common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material
card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually
generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression
asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken
into account. The focus of this paper is on performing a comparative study of the two different MPI
methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of
the NN-based procedure for the specific usage of both material cards was investigated. The studies
reveal the general applicability for the calibration of a complex material card by the example of the
used MAT_187_SAMP-1.

Keywords: parameter identification; machine learning; hyperparameter optimization; LS-DYNA;
MAT_187_SAMP-1; GISSMO failure model

1. Introduction

In recent years, the application of FE analyses has become an indispensable tool in the
product development process, especially when it comes to the design and dimensioning
of structural components with complex materials such as polymers or fiber-reinforced
plastics [1–3]. Due to the increasing computational capacity and the progress in the software
development of FE programs, the level of detail in calculations has increased in recent years
and the generated data have become more accurate [4]. As a result, increasing efforts are
being made to use this growth in data quantity and quality to apply machine learning (ML)
methods for component development to further reduce computation times and improve
the quality of results [4,5].

Nevertheless, the required computing resources, as well as application-dependent
high computing time and necessary user expertise often represent a barrier to the use of
CAE software in the development process. To perform high-quality FE analyses, material
cards are required for FE solvers which are able to represent the respective material behavior
of the evaluated model with sufficient quality. Currently, state-of-the-art FE solvers use a
large number of various different and mostly phenomenological material models [6–9].

In addition to the selection of an appropriate material card to take into account the
respective material behavior, it is necessary to calibrate the material parameters (MPs) of
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the chosen material card. Since the phenomenological material models only describe the
empirical relationships of the material behavior and thus the MPs do not always have a
direct physical background, it is usually not possible to directly determine them from ex-
perimental material tests. Furthermore, even physical MPs determined from experimental
tests do not usually lead to sufficiently good reproduction quality in the simulation, since
FE model discretization, settings and numerical effects can lead to deviations. In order
to achieve the best possible agreement between simulation and reality, the identification
of the MPs in a calibration process is necessary. The material card calibration process is
usually accomplished either by a trial-and-error approach or by a semi-automatic, iterative
optimization procedure. This requires comprehensive expertise in continuum mechan-
ics, materials science, FE software and numerical optimization [10–12]. Additionally, the
conventional iterative method, in which the optimization is usually performed on a meta-
model, is computationally and time-intensive and hence expensive. In the early stages
of product development, different materials for the design are often compared with each
other and sometimes the material selection is adjusted in the further design process. For
the purpose of design and safety verification using numerical simulations, this requires the
repeated execution of the MPI process. Within the conventional parameter identification
(PI) method, the entire process has to be repeated, even if only minor changes are applied
to the material being calibrated—e.g., by changing the amount of a material additive. This
restricts the possibility of shortening the product development time.

In contrast to this common method, a rather novel method for PI based on machine
learning can alternatively be used in a direct inverse process to determine the MPs that
can best reproduce the experimentally determined material behavior [13–15]. An essential
advantage of this approach comprises the storage of information in the form of the weights
and biases in the neural network structure during the training process, allowing the
reusability of trained NNs to determine MPs for modified materials with similar material
characteristics. Thereby, an efficient MPI for specific material groups as well as for different
process settings and machines is possible. Since the prediction of MPs requires only a
few seconds in contrast to the one-time training process, the development time could
be decreased in this way [15]. Furthermore, no expert knowledge is required for the
actual application of the NN to a specific experimental dataset, potentially enabling the
application of CAE methods for product development to a wider range of users.

Different ML techniques have been presented in the literature [16,17]. In contrast to
other approaches, exemplarily presented in [16], the aim of the present method is not to
completely replace the FE simulations using the ML algorithms and to directly predict
the material response to the external load. In the presented approach, an NN is trained
based on simulation data and a prediction is performed for unknown datasets (usually
experimental test data—in the present case, unknown virtual test data) in order to estimate
MPs for numerical simulations.

In the often used optimization-based MPI procedures, a specific error metric between
the experimental and the numerical dataset is established (e.g., stress–strain curves, eigen-
values or eigenfrequencies). The objective of the MPI process is then to minimize this
error by varying the MPs [18] in an analytical or numerical calculation using various opti-
mization techniques such as gradient-based methods (GBMs) [10,11] or genetic algorithms
(GAs) [19]. However, the resulting accuracy for GBMs is significantly affected by the choice
of the location of the starting points, which are typically not known [12]. For GAs, the large
number of iterations required is often a disadvantage. Finding suitable parameters for
sophisticated material models usually requires many iterations, which increases computa-
tional costs and often leads to receiving exclusively local optima. Additionally, the entire
parameter identification process has to be restarted, if material cards have to be calibrated
for marginally differing materials. For this commonly used MPI procedure, user-friendly
software tools (e.g., LS-OPT, Valimat) or self-created optimization frameworks are usually
applied. A global survey of various methods for PI is given in [20].
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In comparison, Yagawa et al. [21] first described the direct procedure of training
a feedforward artificial neural network (FFANN) using a squared loss function for the
MP prediction of the material model. In this process, the neural network learns the
inverse relationship between the simulation results and the corresponding MPs used.
Because of this reverse relation, it is also called a direct inverse model [22]. Since the
initial MPI of a viscoplastic material model by Yagawa et al., this approach has been
applied to other materials, respectively, material models. Huber and Tsakmakis used this
procedure for MPI for pure kinematic hardening in plasticity laws [23] and plasticity with
nonlinear isotropic and kinematic hardening [24]. Furthermore, Nardin et al. identified
the parameters of a constitutive law for soils by training the ANN with the results from
micro- and macro-mechanical numerical models [25]. Aguir et al. [26] demonstrated the
efficiency of the NN-based method in terms of low computation times by identifying
parameters for the Hill’48 criterion under the associative and non-normality assumption
and Voce law hardening parameters of AISI 304 stainless steel. To additionally examine
the accuracy of the identified MP and their correlation, Unger and Könke [27] used a
Bayesian neural network [28] for the direct inverse MPI. Furthermore, Adeli et al. [29] used
a Bayesian approach to determine the parameters of a viscoplastic damage model. Meißner
et al. [15] showed the applicability of the NN-based method for the prediction of a yield
curve for the simulation of a thermoplastic polymer as well as examined influences on the
prediction accuracy.

In this paper, the NN-based procedure for PI using a self-developed Python frame-
work is presented and different network structures and network settings are compared
regarding the prediction accuracy. Different established ML and PI methods from the
scientific literature are combined in our framework. The method is applied to a virtually
generated base dataset, which is derived from the experimental investigations of an ad-
ditively processed acrylonitrile butadiene styrene (ABS) [15]. For the description of the
material behavior in the FE-software LS-DYNA, the material card MAT_187_SAMP-1 (Semi-
Analytical Model for Polymers) was selected, with which the representation of the highly
complex specific material behavior of thermoplastics is basically possible. The LS-DYNA
card MAT_ADD_DAMAGE_GISSMO was also used for simulation, since additionally to
the material characteristics—elasticity, plasticity, tension–compression asymmetry, variable
transverse contraction and strain rate dependency—the failure should also be taken into
account. For the calibration of the material parameters, different FE models of quasi-static
and dynamic tests were created. The results of the structural simulations of the various
tests provided the input for the FFANN to learn the relationship between the simulation
results and the MPs during the training process. The NNs were built using the Python
libraries Tensorflow and Keras and integrated into the custom framework. After optional
hyperparameter optimization (HPO) with the library Kerastuner, the FFANN was finally
applied to a validation (VAL) dataset as well as to the previously derived virtual base
dataset and thus predicted corresponding MPs for the structural simulation. Using the
predicted MPs, the different tests were simulated again and the results were compared with
the initial simulations. Different settings of the FFANNs were investigated. Furthermore, a
self-programmed custom loss function (CLF) was implemented in the network to increase
the prediction accuracy.

For comparison, different optimization models for the MPI were built with the con-
ventional iterative optimization-based method using the LS-OPT software and applied to
the different datasets. Both PI approaches are explained and compared with each other in
more detail in Section 2. In Section 3, the results of the different runs with varying settings
(different meta-models, optimization algorithms, etc.) are compared with the results of the
NN-based method. Finally, in Section 4, the results are summarized and the applicability
of the NN-based method is evaluated. Furthermore, an outlook on additional research
gaps and improvement capabilities of the introduced method is given.
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2. Materials and Methods

In this section, the applied methods, models and procedures are briefly explained
to improve the understanding of the used material parameter identification methods.
Since the focus of this paper is on the NN-based PI method, it is discussed more precisely.
Furthermore, the data generation process and the structure of the virtual investigations
conducted are explained.

2.1. Artificial Neural Networks

The ANN used in this work is a so-called feed forward artificial neural network.
It is composed of neurons arranged in layers, where the outputs of one layer serve as
inputs for the following layer. The input layer (IL) obtains the information from the
external environment. The hidden layer(s) (HLs) consist of the neurons responsible for the
extraction of patterns related to the process or system to be analyzed. The output layer
(OL) neurons are responsible for generating the final network outputs resulting from the
processing of the previous layer data [30,31].

Hyperparameters (HPs) can be used to adapt or control the behavior of ML algorithms.
These are not adjusted by the learning algorithm itself [32]. These HPs can occasionally
have a significant impact on the predictive accuracy of an ML model [33]. The synaptic
weights as well as the biases comprise the parameters of an FFANN, which have to be
obtained within the training process [17,30,31,34]. However, the choice of ANN architecture
is seldom transferable and significantly depends on the actual use case. Further in-depth
information on the structure and architecture of ANNs can be found in [17,30–32,34].

The application-specific determination of the best interacting HP set is usually a
difficult challenge, since usually, only the general influences on model performance are
known. For overcoming this problem, approaches exist for objectively searching different
values for model HP and selecting a single set, which leads to a model that performs best
on a particular dataset. Those approaches are referred to as HP tuning or HP optimization
and there exist a variety of different applicable libraries (e.g., scikit-learn, Hyperas) with
different algorithms. More detailed information on these approaches can be found in [32].

Different HP search and optimization strategies were investigated and compared in
Meißner et al. [15]—for a use case related to the one presented in this paper. In HPO,
the retrieval of eligible HPs can be expressed as an optimization task. Here, the decision
variables are the HPs and the objective function to be optimized is the validation set error
resulting from training with these parameters. Since both random search and HP optimiza-
tion using the Bayesian optimization algorithm (using Keras Tuner) provided good results in
the study of Meißner et al., these strategies using the library Keras Tuner (V. 1.0.1) [35] were
also used for some investigations within this paper. The Bayesian optimization provides a
method based on the Bayes theorem to guide the search of a global optimization problem
which can be effective and efficient. Thus, a so-called surrogate model is created, which
represents a probabilistic model of the objective function. This in turn is used to calculate a
so-called acquisition function, which can predict how promising an arbitrary point is. The
maximization of this function thus provides new candidates for evaluation on the actual
objective function [36]. For more detailed information on the optimization algorithms, we
refer the reader to [32,35–39]. The HPs for a defined default NN and the investigated HP
search range in this paper are listed in Appendix A, Tables A4 and A5.

In the present case, the goal of the training process is to find a model MINV that
matches the examples at best. The cost function quantifies the error between the pre-
dicted output and the labeled output and presents it in the form of a single real number,
which should be minimized during the training process. Often, the mean square error
(MSE) [32], also used in this paper, is used for this task. The backpropagation algorithm
comprises the minimization of this cost function using the gradient descent (GD) optimiza-
tion for the FFANN. In this process, the synaptic weights and biases are automatically
updated in several iterations, successively decreasing the error generated by the FFANN.
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Some of the various specific GD optimization algorithms were tested within this work
(see Section 2.5.2) [30,31].

During the training of NNs, the problem of overlearning often occurs. However,
there are various methods of counteracting this, with one of them being early stopping.
This method allows to specify an arbitrarily large number of training epochs and stops
training once the model performance stops improving on a hold-out validation dataset.
The investigations of Meißner et al. in the context of the paper [15] have already shown
that this problem exists in the methodology used, which is why early stopping was used
in the presented work on this paper. Nevertheless, preliminary work has also shown that
the increase in error between the experiment (EXP) and final simulation with predicted
parameters is not necessarily linked to an increase in validation error during NN training
(see Section 3). Therefore, a variant of early stopping was chosen in this paper, in which the
training process is stopped as soon as the validation error has not decreased for a defined
number of epochs [30,32].

Another method of preventing overlearning and improving the performance of the
NN for unknown datasets (generalization)—which are not used for training—is dropout.
At each training stage, individual nodes are either dropped out of the net with a probability
of 1− µ or kept with probability µ, so that a reduced network is left. Dropout has the effect
of making the training process noisy and forcing nodes within a layer to probabilistically
take on more or less responsibility for the inputs, which is why this was also used for some
of the network architectures examined in this work [32,40].

2.2. Description of the Material Behavior with LS-DYNA MAT_187_SAMP-1 and GISSMO

The focus of this work is the evaluation and assessment of the NN-based MPI method
described in Section 2.5.2 for subsequent structural simulations. The use of this method
is not limited to any specific FE-solver, material model or material card. However, to
extensively and profoundly compare the NN-based method with the conventional iterative
optimization-based method and thus to reveal problems as well as to show its advantages,
a material with complex characteristics in the form of a thermoplastic polymer was chosen
as an application example based on the work in [15]. The following material characteristics
or effects of this material class were selected to be identified by the two PI methods and
should be considered in the subsequent structure simulation:

• Elasticity;
• Plasticity;
• Tension–compression asymmetry;
• Variable plastic Poisson’s ratio;
• Strain rate dependency;
• Failure.

At this point, it should be mentioned that thermoplastic polymers possess further
characteristic properties, which, however, are not considered in this work and are also often
neglected in a structural simulation at a macroscopic level. In the FE software LS-DYNA,
various material models are implemented in a multitude of material cards, whereby the de-
scription of thermoplastic polymers is basically possible with diverging accuracy with some
of them. Principally MAT_187_SAMP-1 and MAT_187_SAMP_Light are applicable material
cards for the consideration of the various characteristics of thermoplastics in numerical
simulation, with the latter being a simplification of the first variant [6,41,42]. Specifically,
thermoplastic polymers do not possess a constant modulus of elasticity and the different
flow criteria under tension and compression preclude the use of a von Mises-type flow
surface. Furthermore, the strain hardening of thermoplastics is anisotropic and plastic de-
formation does not occur at constant volume. This lack of plastic incompressibility requires
a flow rule that allows permanent volumetric deformation. To account for these various
characteristics, it requires a complex material model, which is why MAT_187_SAMP-1
was used in this work. However, it should be mentioned that MAT_187_SAMP-1 can
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describe other characteristics as well, whereas only the ones considered for this work will
be presented in more detail in the following [6,42].

In MAT_187_SAMP-1, it is possible to directly import experimental data in the form
of a defined curve or a table into the material card. However, these provided data do
not usually lead to the desired agreement between experimental and simulative results,
which is why optimization or a trial-and-error process is usually necessary. In these cases,
it is therefore required to reproduce the input curve by the value pairs of a mathematical
formulation from the literature or by a spline. The MPs are then the parameters of these
mathematical formulations. In contrast to conventional material parameters, such as
Young’s modulus (emod) and bulk modulus (bulk), these are only indirectly included in the
material card.

Three different yield curve formulations are obtainable with
MAT_187_SAMP-1, which are defined depending on the input provided for the mate-
rial card. The von Mises yield surface formulation is achieved by only utilizing tension
test data as input in MAT_187_SAMP-1. The implementation of only either compression
and tension test data or shear and tension test data results in the Drucker–Prager yield
surface definition. Whereas the provision tension, compression, and shear test data to
MAT_187_SAMP-1 generates the yield surface definition of MAT_187_SAMP-1 known as
the SAMP-1 yield surface. In the following, some theoretical formulations are presented,
on which the material model is based. Please refer to [6,42] for complete explanations.

The SAMP-1 yield surface can be expressed by the following formula:

f = σ2
vm − A0 − A1p − A2p2 ≤ 0, (1)

with σvm being the von Mises stress which can be formulated as follows:

σvm =

√
3
2
[(σxx + p)2 + (σyy + p)2 + (σzz + p)2 + 2σ2

xy + 2σ2
yz + 2σ2

xz], (2)

and p being the first stress invariant which can be expressed as

p = −
σzz + σyy + σzz

3
. (3)

The unknown constants of A0, A1, and A2 can be calculated through using tension,
compression, and shear test data as functions of the test results:

A0 = 3σ2
s , (4)

A1 = 9σ2
s

(
σc − σt

σcσt

)
, (5)

A2 = 9
(

σcσt − 3σ2
s

σcσt

)
. (6)

Since the results of the two different shear tests performed were not used as input for
the material card, but only as a target curve during calibration, only tensile and compression
test data were provided to generate the yield surface, and thus a linear yield surface was
generated. Hence, the Drucker–Prager yield surface was used and the remaining curve
was calculated internally from the two available curves:

σs =
2σcσt√

3(σt + σc)
. (7)

Furthermore, MAT_187_SAMP-1 provides the capability to define two different flow
rules, named associated and non-associated, depending on the definition of the plastic
Poisson’s ratio (PPR) used. If the constant PPR is used in the material card, the yield rule
is considered as associated yield. Otherwise, if the change of the PPR is defined with the
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plastic strain, the non-associated yield rule is generated, which is used in the simulations.
This is the case in the present work since the plastic Poisson’s ratio changing under loading
should be considered in the simulation. The expression of the yield rule can be given
as follows:

g =
√

q2 + αp2, (8)

where α is the angle between the hydrostatic axis and plastic potential and thus a function
of plastic strain. α can be specified by the following expression:

α =
9
2
·

1− 2νp

1 + νp
. (9)

If curves from dynamic tests are available, then the load curve defining the yield
stress in uniaxial tension is replaced by a table definition. This table then contains multiple
load curves corresponding to different values of the plastic strain rate. Additionally, in
MAT_187_SAMP-1, the rate effect in compression and shear are assumed to be similar to
the rate effect under tensile load [6].

Although MAT_187_SAMP-1 has an integrated failure model, the stand-alone failure
model Generalized Incremental Stress-State Dependent Damage Model (GISSMO) is very flexible
and widely applied in combination with many different material cards; hence, this has
been used to consider failure within this work. Using GISSMO, damage prediction can be
represented by taking into account material instability as well as localization and failure.
The failure model formulation of GISSMO allows an incremental description of damage
accumulation, including softening and failure. It offers the advantage of defining an
arbitrary triaxiality-dependent failure strain. The damage accumulation is based on an
incremental formulation, which consists of [42–46]:

Ḋ =
n
ε f

D(1− 1
n ) ε̇p, (10)

with D being the current value of damage, ε̇p the plastic strain rate, n the damage exponent
and ε f the equivalent plastic strain at failure (EPSF). The onset of necking is considered by
the forming intensity parameter F (instability measure):

Ḟ =
n

εcrit(η)
F(1− 1

n ) ε̇p, (11)

where the critical strain curve, εcrit(η), is also a function of the triaxiality (TRI) and is
intended to act as a trigger for coupling damage and stress under proportional loading.
Hence, this curve can be interpreted as an instability criterion, i.e., from this point on,
material degradation becomes critical and the material point experiences an accelerated,
localized strain behavior up to fracture. The main difference between functions D and F, is
the type of limiting strain, which depends on the triaxiality forms used, ε f or εcrit(η). The
damage in this formulation is coupled to the stress tensor, using the concept of effective
stress of Lemaitre [47,48], when the instability is reached F = 1:

σe f f = σ

(
1−

(
D− Dcrit
1− Dcrit

)m)
. (12)

where Dcrit is used as an indicator for reaching the onset of necking. The exponent m is
called the fading exponent, which is used for the regularization of fracture strain and the
energy consumed during post-instability deformation. Further detailed information on
GISSMO is provided in [42–46].

Figures 1 and 2 show the MAT_187_SAMP-1 and MAT_ADD_DAMAGE_GISSMO
material cards used in this work, with the corresponding input parameters and input
curves highlighted. The complete material parameter setup (start values, minimum and
maximum values, target values, etc.) are provided in Section 2.4, Table 1.
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Figure 1. Exemplary illustration of the material card MAT_187_SAMP-1 used in this work.

Figure 2. Exemplary illustration of the material card MAT_ADD_DAMAGE_GISSMO used in
this work.

The Young’s modulus emod and the bulk modulus bulk are variables in the present
study which are to be identified by the two MPI methods. In contrast, the shear modulus
gmod, the density ro and the elastic Poisson ratio nue are assumed to be constant for all
investigated datasets, as can be seen in Section 2.3. The constant value 27 in the last column
of the material card MAT_187_SAMP-1 (Figure 1) allows the output of the equivalent
plastic strain (EPS) on the history variable 27, which is not provided by default.

As mentioned before, in MAT_187_SAMP-1, it is possible to import curves for the
definition of material characteristics. To achieve the best possible match between simulation
and reality by an optimization process or by an NN-based prediction, it is necessary to
parameterize these curves by analytical functions or by splines. Thus, the MPs are the
parameters of the analytical curve. In the present case, lcid-t represents the yield curve
(more precisely, the strain rate-dependent yield curves at different strain rates, presented
in a table). In order to reproduce the significant softening of the thermoplastic polymer
while keeping the number of MPs small (without considering damage), the approach of
Meißner et al. with a combination of second-degree polynomial and root function [15] was
used in this work:

σ = a · ε2
pl + b · εpl + c + d · εpl , (13)

with the material parameters a, b, c, d and the plastic strain εpl . This formulation is similarly
used for the description of plasticity under compressive loading (lcid-c). To take into
account the tension–compression asymmetry, this results in four MPs for the description of
plasticity under tensile load and four MPs for the description under compressive load.

The curve lcid-p describes the PPR as a function of plastic strain in uniaxial tension and
uniaxial compression, where the plastic strain on the abscissa is negative for compression
and positive for tension. This curve is usually determined from Digital Image Correlation
(DIC) measurements during experimental tests [49]. The typical behavior of unreinforced
thermoplastic polymers [50] is described in this paper with the formula:

νp = νp,plat − (νp,plat − νp,press) · e
min

(
−5·εpl
εp,plat

;0
)

, (14)

where νp is the plastic Poisson’s ratio. The model is used to describe an exponential decay
from the pressure side to a plateau on the tension side, where νp,plat is the PPR value of the
tension side, εp,plat defines the value where 99% of the difference between compression
and tension is subtracted and νp,press is the constant PPR of the compression side.

To take strain rate dependency into account in MAT_187_SAMP-1, instead of a single
yield curve lcid-t, a table with multiple yield curves at different strain rates must be



Materials 2022, 15, 643 9 of 36

provided [42], as can be seen in Figure A2 in Appendix A. In this work, the Cowper–
Symonds analytical approach [51] was used to scale the quasi-static yield curve:

σ = σ0(ε)

[
1 +

(
ε̇

C

) 1
P
]

. (15)

This has to be included in the expression of the yield curve (Equation (13)), resulting
in the equation:

σ =
(

a · ε2
pl + b · εpl + c + d · εpl

)[
1 +

(
ε̇

C

) 1
P
]

, (16)

where ε̇ is the strain rate resulting from the experimental test and the two additional
material parameters C and P, which have to be estimated in the PI process.

The failure is implemented using the curve lcsdg in MAT_ADD_DAMAGE_GISSMO,
where the curve defines EPSF vs. TRI [42]. The (stress) triaxiality is defined as the ratio of
hydrostatic stress σm divided by von Mises equivalent stress σeq (Equation (18)), which is
equal to the ratio of negative hydrostatic pressure (Equation (3)) divided by the von Mises
equivalent stress [43,52,53]:

η =
σm

σeq
= − p

σeq
, (17)

with:
σeq =

√
σ2

x + σ2
y + σ2

z − σxσy − σyσz − σzσx + 3(τ2
xy + τ2

yz + τ2
zx). (18)

The triaxiality is a scalar quantity, which allows an exact characterization of the
element stress state in the case of the plane stress state. Different loading conditions lead to
different stress triaxialities (see Figure 3b).

In this paper, the curve lcsdg is defined by a discontinuous linear function consisting of
six straight lines (see Figure 3a), which is derived from the failure behavior of unreinforced
thermoplastics known from the literature [54]. The exemplary LS-DYNA input curve is
shown in Figure A3, Appendix A, where it is defined by seven points at different triaxialities
in the range of −0.333–0.7. Here, four values for the equivalent plastic strain at failure
((r)epsf_0 to (r)epsf_3) were defined, which in this work represent the four MPs for the
description of the failure. However, the definition of this curve is flexible and could also be
done by a different or also finer resolution of the points of the curve. A continuous function
could also be advantageous. The EPS was chosen as the driving quantity for the failure
(dtyp = 1.6). During the simulation of the test, once an element reaches an EPS greater than
or equal to the threshold defined by the curve lcsdg, failure occurs and simultaneously the
element is deleted.

In order to calibrate the points on the ESRP vs. TRI curve of the failure model
sufficiently for the real application under complex loading conditions, different tests for the
determination of varying sections are necessary. However, these do not always provide the
same point on the curve, since the triaxiality changes during the test due to the different
stress components. Depending on the material properties and corresponding deformation,
they may also fail under a different triaxiality. In Figure 3a, the tests used in this work
(see Section 2.3) are assigned to the respective segment to be calibrated.

Furthermore, there are additional input options for MAT_187_SAMP-1 and
MAT_ADD_DAMAGE_GISSMO, which can be used to implement and consider more
complex properties. However, these are not considered here and therefore we refer to [42]
for further information.

The imported analytical curves, calculated with the target parameters of the virtual ex-
perimental dataset (see Section 2.4), for the MAT_187_SAMP-1 and
MAT_ADD_DAMAGE_GISSMO material cards are shown in Figure 4. The material pa-
rameters to be identified, the respective material card input curves (MCIC) and parameter
ranges can be found in Table 1 above.
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2.3. Finite Element Models

As explained in Section 2.2, the calibration of an extensive material card such as
MAT_187_SAMP-1 (and MAT_ADD_DAMAGE_GISSMO) requires different experiments.
In this work, the investigations are performed using virtual test data resulting from FE
simulations. The FFANN is also trained using virtually generated data, which has a
significant advantage over other methods based on experimental data concerning the
necessary exp. tests. Hence, the creation of the FE models used is briefly discussed below.

In the course of calibration with the two MPI methods used in this work, a total of
ten different FE models were created: a quasi-static tensile test, four strain rate-dependent
tensile tests (velocities 1–4), a compression test, a three-point bending test, a punch test,
and two different shear tests (see Figure 5).

For all models, the discretization with the shell formulation ELFORM 16—fully in-
tegrated shell element—and five integration points were chosen. The relatively coarse
discretization of the tensile test model results from the requirement to drastically reduce
the simulation time of the strain rate dependent tensile tests, which exhibit very high
computation times at low loading rates. In order to reduce the computation time of the
explicit simulation, mass-scaling was applied for all models using the parameter DT2MS.
In addition, time-scaling was used, which can be applied to the reduction in simulation
times. However, since this cannot be employed for strain rate-dependent tests, only the
four dynamic tensile tests tension V1–V4 were calculated with the strain rate-dependent
material card MAT_187_SAMP-1. Thus, the strain rate-dependent behavior of the virtual
material used is exclusively reflected in the simulation results of these four dynamic tests
and time scaling could thus be used for all other tests. The respective values for time and
mass scaling were determined for each test in a preliminary study. The criteria chosen for
the selection of the respective values were the ratio of kinetic to internal energy and the ratio
of maximum force from unscaled to scaled model. These should be below 1% to be able to
exclude a significant influence of the scaling factors. The strain rate-dependent tensile test
velocities V1–V4 are: 0.0166 mm·s−1, 0.1666 mm·s−1, 16.666 mm·s−1 and 1666.6 mm·s−1.
With the specimen geometry, the resulting strain rates are: 1× 10−4 s−1, 1× 10−3 s−1,
1× 10−1 s−1 and 1× 101 s−1.
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X Y
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Figure 5. Created FE-models for the PI methods used.

For the application of the load, a velocity-controlled load curve *DEFINE_CURVE_
SMOOTH was used for all tests in order to reduce influences such as vibrations caused by
abrupt load application. For additionally required objects, such as supports in the bending
test, the material card *MAT_RIGID was used. For all models, the force and displacement
were evaluated over the history of the tests (see Figure 5). Additionally, for the compression
and punch test, the equivalent plastic strain and plastic Poisson’s ratio were evaluated using
History Variables 2 and 27, respectively, always at the same integration point of the identical
element. This results in a total of twelve simulation output curves (SOCs), which are shown
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in Appendix A, Figure A1, as an example for the virtually generated experimental dataset.
In the NN-based method, the ordinate values of these curves represent the input of the
NN (see Section 2.5.2). In addition to the variable MP, which should be determined by
the applied approach, the following MPs were used: shear-modulus gmod = 2127.3 MPa;
elastic Poisson’s ratio nue = 0.035; density ro = 1.04 cm3/g; equivalent plastic strain at
failure ep f ail = 1× 105 (default value for latest possible failure).

2.4. Material Parameter Setup and Configuration of the Virtual Investigations

As mentioned previously, the necessary data for training the FFANN in the NN-based
MPI method are generated by numerical simulations. Nevertheless, the final target is to
predict the MPs for an experimental dataset in order to subsequently perform structural
simulations. Within this work, a virtual experimental dataset was generated from numer-
ical simulations for the validation of the two investigated MPI methods. The material
properties of the virtual material were adapted to the data described in Meißner et al. [15],
which was based on the additively processed thermoplastic ABS. Using the MPs de-
fined in Table 1 and the analytical formulas presented in Section 2.2, the corresponding
MCIC (see Figure 4) were calculated, producing the corresponding MAT_187_SAMP-1
and MAT_ADD_DAMAGE_GISSMO material cards. These material cards were then im-
ported into the FE models presented in Section 2.3 and the corresponding (true) SOCs were
evaluated. Figure A1 in Appendix A shows the twelve SOCs of the virtual experimental
dataset and in Figure A6, the noise-affected SOCs of training dataset two are presented
(see Supplementary Materials for range plots of all datasets).

Table 1. Material parameters of the virtual experimental dataset and the corresponding MP ranges
for the applied MPI methods. Additionally, the starting values for the optimization-based MPI
method and the corresponding material card input curve names are listed.

MP Name MPexp MPMin MPMax MPStart MCIC

emod
(MPa) 2127.3 2000.0 2300.0 2100.0 -

bulk (MPa) 2250.0 2100.0 2400.0 2200.0 -
at (-) 43,416.1 40,000.0 46,000.0 44,000.0 lcid-t; lcid-t1-lcid-t4
bt (-) −3934.39 −4100.00 −3700.00 −4000.00 lcid-t; lcid-t1-lcid-t4
ct (-) 9.702 8.000 10.500 9.000 lcid-t; lcid-t1-lcid-t4
dt (-) 551.24 540.00 562.00 550.00 lcid-t; lcid-t1-lcid-t4
ac (-) 51,000.0 47,000.0 52,000.0 50,000.0 lcid-c
bc (-) −3900.00 −4100.00 −3800.00 −4000.00 lcid-c
cc (-) 12.500 9.500 13.000 11.500 lcid-c
dc (-) 550.00 540.00 560.00 555.00 lcid-c

νp,plat (-) 0.2265 0.1900 0.2900 0.2500 lcid-p
νp,press (-) 0.5000 0.4000 0.5000 0.4500 lcid-p
εp,plat (-) 0.1232 0.1000 0.1500 0.1300 lcid-p

C ( 1
s ) 27,572.1 15,000.0 50,000.0 30,000.0 lcid-t1-lcid-t4

P (-) 3.7482 2.7000 4.2000 3.2000 lcid-t1-lcid-t4
epsf0 (-) 0.3000 0.2500 0.4500 0.3500 lcsdg
epsf1 (-) 0.0500 0.0400 0.0550 0.0450 lcsdg
epsf2 (-) 0.0400 0.0340 0.0460 0.0350 lcsdg
epsf3 (-) 0.2400 0.2100 0.2800 0.2200 lcsdg

The two MPI methods are subsequently used for searching the MPs to obtain the min-
imum error between the true SOC and the SOC calculated from the optimized/predicted
MP. This error is evaluated with both methods using the dynamic time warping distance
(see Section 2.5.1), whereby in general, other distance measures would also be possible.
In the iterative optimization-based method, the MPs are changed in order to directly
minimize this error. In contrast, the NN-based method is applied to minimize the error
of the true/predicted MPs or the material card input curves (see Figure 4) during NN
training (see Section 2.5.2). For both MPI methods, an MP range has to be defined in which
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the search is performed. To ensure comparability, the same MP range was used for both
MPI methods (see Table 1). This range was also used for the generation of the training
and validation datasets of the NN-based method. For example, the noise-affected SOCs
of training dataset two are shown in Appendix A, Figure A6. The design of the studies
conducted using the two MPI methods is explained in Sections 2.5.1 and 2.5.2, respectively.

2.5. Material Parameter Identification Process

Using a PI procedure, the required material parameters for the material models are
obtained, resulting in calibrated material cards that are subsequently used to perform
structural simulations. The aim of model calibration is to obtain an unknown parameter,
knowing the experimentally measured response of a system to the applied loads. Nev-
ertheless, this presupposes the material model employed to be fundamentally suitable
for representing the material response with appropriate accuracy due to its mathematical
expression. Combined with the FE model, which must be capable of correctly representing
the EXP, the efficient and reliable PI method is crucial for structural modeling and safety
evaluation. Two main methods exist to solve this identification problem. The most widely
used PI approach commonly involves an error minimization approach in which the distance
between the parameterized model predictions and the EXP test results is minimized [20].
Unfortunately, this error minimization technique often results in challenging optimization
tasks that are heavily nonlinear and multimodal. In contrast, in the second direct inverse
NN-based method, the presence of an inverse relationship between the output and input is
assumed. The final determination of the required inputs takes only a few seconds and can
be easily repeated once such a relationship is established. Both approaches are described
more detailed as follows.

2.5.1. Iterative Optimization-Based Procedure Using LS-OPT

For PI, an iterative optimization procedure is described as the minimization of an
error function F(x) stated as the difference between the model outputs yM and the output
of the experiment yE (measurements in form of stress–strain curves, etc.), meaning that:

minF(x) = min||yE −M(x)||; (19)

yM = M(xM), (20)

where M represents the material model with its constitutive relations which characterizes
the stress–strain relations and x the unknown MP for the material model. A solution xM

results from the minimum of this function and if F(xM) > 0, the residual error is caused by
the inaccuracy of a model or by some noise in the measured data [18].

As mentioned above, Equation (19) is commonly solved by gradient-based optimiza-
tion methods or genetic algorithms, although some drawbacks arise in the context of this
method. As already presented in Meißner et al. [15], these disadvantages include:

• The results of the optimization process are highly dependent on the choice of starting
point, while the ideal location is unknown;

• Finding suitable parameters for sophisticated material models requires many itera-
tions, which lead to high computational costs;

• Even with minor modifications in the experimental setup or in the investigated
material, the computationally and time-consuming process has to be restarted [12,18].

Different solutions exist to apply the iterative optimization-based method, which
includes commercial software as well as often used in-house developed software. As
mentioned before, the commercial software LS-OPT (Version 6.0) [55] was used in this work,
which is commonly applied for PI tasks [56,57] but can also be used in other fields such as
structural design [58]. A brief overview of the used optimization-based methodology is
shown in Figure 6a. For a more detailed description of this inverse PI, we refer to [59–61].

For the so-called distance measurement of experimental and simulated curves, differ-
ent algorithms exist [62] depending on the application. In the field of MPI, mean squared
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error, partial curve mapping [63], discrete Frechét distance [64] and dynamic time warping
(DTW) [65,66] should especially be mentioned.
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Figure 6. Metamodel-based iterative optimization methodology for PI identification (a) and curve
distance measurement algorithm dynamic time warping (b).

Especially steep noisy curves with different lengths complicate the determination of a
reasonable distance measure as well as a suitable objective function for optimization. As
failure was included as a material characteristic in the present work, steep curves with dif-
ferent lengths had to be handled. Therefore, MSE could not be used as in Meißner et al. [15].
Instead, the dynamic time warping algorithm was used in this work for both the iterative
optimization-based method and the final comparison with the NN-based method (see
Figure 6b. To calculate the DTW distance, a matrix is set up in which the distances of each
point of a curve to the points of another curve are listed. From this matrix, a corresponding
warping path W = (w1, . . . , wl) can be determined that maps the curves to each other.
Mathematically, the measurement procedure can be expressed as follows:

DTW(P, Q) =
1
l

min
w

{
l

∑
i=1

δ(wi)

}
, (21)

with δ(wi) = d(ph, qk), if wi = (h, k), h ∈ 1, . . . , n and k ∈ 1, . . . , m [55]. With this
method, the Euclidean distance between all points is determined and combined in a matrix.
The combinations with minimum Euclidean distance are then selected from this matrix.
For the calculation of the DTW distance with the NN-based method, the Python library
similaritymeasures V 0.4.4 was used. In addition to the FE models, self-programmed Python
scripts had to be integrated into the optimization process to automatically generate the
corresponding input curves/tables (e.g., yield curve) from the MPs using the formulas
from Section 2.2. The final target value of the optimization to be minimized results from
the sum of the normalized distances of the respective curves. In the present case, the target
value F to be minimized results from the sum of the normalized error of the respective FDC
of the ten simulated tests and the normalized error of the plastic Poisson’s ratio-equivalent
plastic strain-curves (PEC) of the compression and the punch test:

F =
1
12

(DTWFDCt + DTWFDCt1 + DTWFDCt2 + DTWFDCt3 + DTWFDCt4

+ DTWFDCc + MSEPECc + DTWFDCb + DTWFDCp + DTWPECp

+ DTWFDCs1 + DTWFDCs2)

(22)

In this case, the DTW distance was always used to calculate the error, except when
calculating the error of the PEC of the compression test. Since the evaluation of the PEC
under compression load (see Figure 4b) results in a horizontal straight line and in the DTW
algorithm, one curve is normalized to the other, which resulted in NAN values. Therefore,
the MSE was used for this specific case. To prevent oscillations and related optimization
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problems, the curves calculated by the simulations were truncated after failure at a force of
∼0 using a lookup function integrated into LS-OPT.

In the present work, the sequential strategy with domain reduction was used to apply
automated metamodel-based optimization. Similarly to the sequential strategy, sampling
is done sequentially, whereas for each iteration, a small number of points is chosen and
multiple iterations are requested. In contrast, in each iteration, the domain reduction
strategy is used to reduce the size of the subregion. During a particular iteration, the
subregion is used to fix the positions of the new points [55].

In this work, two basic strategies were implemented using this method to calibrate
the MPs for the virtual experimental dataset (see Figure 7). The sum of the number of
simulations per iteration was oriented to the dataset size of the training set used for the
NN, in order to improve the comparability of the two methods.

1 Step Strategy 3 Step Strategy
Elasticity, Plasticity, Tension-Compression-
Asymmetry, Variable Plastic Poissonʹs Ratio

Strain Rate Dependency

Failure

Calibrated Material Card(s)Calibrated Material Card(s)

Elasticity, Plasticity, Tension-Compression-
Asymmetry, Variable Plastic Poissonʹs
Ratio, Strain Rate Dependency, Failure E, B, at, bt, ct, dt, ac, bc, cc, dc, νp,plat, νp,press, εplat 

C, P

εF0, εF1, εF2, εF3 

E, B

at, bt, ct, dt

ac, bc, cc, dc 

νp,plat, νp,press, εplat 

C, P
εF0, εF1, εF2, εF3 

Figure 7. Used 1 Step Strategy and 3 Step Strategy for iterative optimization-based calibration.

In a “1 Step Strategy”, all parameters were determined in a single optimization run (see
Figure 8). In contrast, in a 3 Step Strategy, the parameters for elasticity, plasticity, tension–
compression asymmetry and variable PPR were initially determined in a first optimization
run. In this step, no strain rate dependency was integrated, and thus, the FE models of the
tension tests V1–V4 were not imported into the optimization process. Furthermore, failure
was not considered in this step and therefore the MAT_ADD_DAMAGE_GISSMO card was
not used. Subsequently to the second step, the parameters for the strain rate dependency
were exclusively calibrated in an optimization with the four strain rate-dependent tension
tests. The previously calibrated parameters were assumed to be constant. In the final
step, only the four MPs for failure were estimated and all other MPs were kept constant.
Therefore, each FE model was used in this step, except for the compression model, since no
failure occurs for this test. For each of the two strategies, different runs were performed
with varying optimization algorithms and metamodel settings for the same dataset, in
order to make a valid comparison to the NN-based method. The settings of the respective
runs are provided in Tables A1 and A2, Appendix A.

Figure 8. LS-OPT flowchart of material card calibration for the virtual experiment dataset
(1 Step Strategy).
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2.5.2. Direct Neural Network-Based Procedure Using Self-Implemented Framework

The direct inverse neural network-based procedure assumes there exists an inverse
model MINV related to model M, which fulfills the following equation:

x = MINV(y) (23)

for all possible y [18]. Aside from the large amount of data required, one of the disad-
vantages of this method is the time-consuming retrieval for the inverse relationship. In
contrast, the major benefit lies in the storage of the generated knowledge and the associ-
ated possibility to retrieve the desired input within seconds. During the training process,
all previously generated information (input–output relationship) is fed into the ANN.
Unlike iterative optimization approaches with gradients or genetic algorithms, choices
are consistently made based on actual designs. The core of this direct inverse method is
to train an ANN to directly predict the MPs for a given input (e.g., force–displacement
curves). In the context of the work in Meißner et al. [15], a corresponding method was
established and further developed in the work for this paper. Figure 9 displays the work-
flow of this method, applied to the present dataset for the identification of the defined
MPs (see Section 2.4, as can be seen in Table 1) of the material cards MAT_187_SAMP-1
and MAT_ADD_DAMAGE_GISSMO. The workflow illustrated was implemented in a
self-developed Python (V.3.7) environment. The libraries Tensorflow (V.2.1.0) and Keras
(V.2.3.1) were used to create the NNs and implemented into the workflow. A GPU was
used to execute the NN-based calculations.

In this method, the NN learns the relationship between simulation output curves
(input: FDC or PEC) and the corresponding material parameters (output). After training
the NN, the goal is to import unseen experimental data into the NN and then predict
corresponding MPs for the subsequent structural simulation. In the work for this paper, a
virtual experimental dataset was generated instead (see Section 2.4), which was used for
performance evaluation and comparison with the iterative optimization-based method.

Similarly to the iterative optimization-based method, an MP range has to be defined
initially, which ensures the sufficient coverage of the resulting material characteristics
depending on the application scenario. However, with the NN-based method, this range
solely needs to be defined by the creator of the NN and the actual end-user does not need
to have this expert knowledge. In the following step, representative MP combinations are
generated using sampling methods, which should cover the input space as sufficiently
as possible. In Meißner et al. [15], the influence of some DOE methods on a dataset for
the MPI of the parameters of a yield curve was investigated. The LH sampling revealed
good results and was therefore also used for the investigations within this thesis using the
library PyDOE (V.0.3.8).

Since most of the used MPs are only indirectly included in the material cards
MAT_187_SAMP-1 and MAT_ADD_DAMAGE_GISSMO, in our case, the automated calcu-
lation of the input curves/tables for the sampled MP sets using the formulas presented
in Section 2.2 was required. The automatically evaluated simulation results (FDC with
self-created code and PEC using the library lsreader V.0.1.37 from ls-prepost) with the
corresponding MPs comprised the database for the training of the FFANN. The identical
abscissa values (displacements or EPS) were analyzed for all the datasets of the respective
SOC to ensure the comparability of the data. To ensure a sufficient database for the NN,
200 equidistantly distributed abscissa positions were defined for each SOC. With a total of
twelve SOCs, this results in 2400 input values for the NN. The input layer of the NN thus
always contains 2400 neurons. Each input dataset contains the corresponding 19 material
parameters (Section 2.2, Table 1), which represent the output of the NN. Consequently, the
output layer of the NN always possesses 19 neurons.
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Figure 9. Workflow of the used direct NN-based parameter identification procedure applied
to the problem of identifying the defined material parameters for MAT_187_SAMP-1 and
MAT_ADD_DAMAGE_GISSMO.

As the outcome of the FE simulations has no random errors, the resulting data (FDC
and PEC) are clean and noise-free. For the robustness of the NN to measurement errors that
always occur in physical experiments, and thus to increase its generalizability, Gaussian
noise with zero mean and standard deviation σ is applied to the resulting normalized
ordinate values (see Figure A6, Appendix A):

Ynoise = Y(1 + N(µ = 0, σ = 0.001)) for force, (24)

and:

Ynoise = Y(1 + N(µ = 0, σ = 0.0005)) for plastic poission’s ratio. (25)

The standard deviation here represents an HP, which also influences the prediction
accuracy. This value should be adjusted to the variation of experimental data or even
be optimized.

During the simulation, oscillations often occur after the abrupt failure of the test
specimens, which are reflected in heavy oscillations of the evaluated force–displacement
curves (FDCs). The unsteady occurrence of these oscillations would significantly complicate
the training process of the NN and decrease the prediction accuracy. Therefore, the force
values of the FDCs are truncated after failure, using a specially created failure-cut-function
and all subsequent force values are set to F = 0. Additionally, filters for smoothing such
as a moving-average filter are applied if necessary. For subsequent prediction based on
unknown experimental data, the same modification must be applied to the input curves to
ensure proper prediction quality.

Afterwards, the datasets are normalized to values between 0 and 1 (using scikit-learn
V.0.22.1), since the algorithms employed for training the NN achieved improved results
within this range. The following data types were normalized separately from each other:

• Material parameter (NN output);
• Ordinate values of material card input curves;
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• Ordinate values of simulation output curves (NN input).

Since both the MPs and the different input and output curves have different ranges,
these were also normalized separately from each other. To prevent the contamination of
the validation dataset with actually unknown information, the normalization was always
performed on the range of the training dataset. Additionally, the FDC or PEC can also lie
outside the range used for training.

In preliminary studies for the work on this paper, different network architectures
for the prediction of MPs of a tension yield curve and a compression yield curve with
the formulation (Equation (13)) for LS-DYNA MAT_024 were carried out. Simulations of
a tension and a compression test were performed and NNs were trained identically to
the present procedure with the resulting simulation results. Thereby, two independent
NNs were trained in a multi-NN structure, each allowing the prediction of the four MPs of
the yield curve of the specific load case. In addition, a large single-NN was trained, with
combined input from the simulation results of the tensile and compression tests, which was
able to predict all eight MPs. Afterwards, the resulting MSE of the two architectures was
compared, which was obtained after back-simulation with the predicted parameters and
in comparison with the original simulation curves. The evaluation of the results showed
an equal or even better prediction quality for the single-network. For this reason, this
network architecture was also used for the work in this paper. In addition, the single-
network architecture offers the advantage of enabling the NN to learn MPs from different
trials, which may allow for the future prediction of MPs when the dataset is incomplete.
Nevertheless, the multi or even mixed network structures should also be investigated in
the future for the current data. In the present case of the single-network architecture, the
200 ordinate values of each simulation result were concatenated and provided to the NN
in this form.

To improve the assessment of the NN’s performance and to identify potential overfit-
ting, a training/validation data separation is applied and additionally a cross-validation is
performed. Afterwards, an FFANN is created and trained with the generated data by re-
versing the role of the inputs and outputs. During training, the outcome of the loss function
is minimized in a usually gradient descent optimization. In the paper by Meißner et al. [15],
the MSE resulting from true and predicted MPs was minimized. However, this is only
appropriate to a limited extent, since, for instance, different MPs can lead to very similar or
even the same analytical input curves of the material cards (e.g., yield curve). In addition,
different yield curves can lead to very similar or even the same results of the FE simulation
(e.g., FDCs). Unfortunately, the actual optimization objective, i.e., the error between the
EXP and output of the simulation cannot be used here, since the results of the simulation
with the predicted MPs are not available at the time of the GD optimization. However,
preliminary experiments based on the dataset of Meißner et al. have shown that there is
a higher correlation between the error of the simulation output curves and the error of
the analytic input curves between the error of the SOC and the error of the MP. Therefore,
in addition to the conventional loss function of the MSE of the parameters, a custom loss
function was developed in this work and implemented in the NN. Using this, a summed
normalized MSE of the analytical input curves of the NN is calculated for each MP dataset.
The calculation process of the CLF is shown in Figure 10. The analytical input curves
are calculated from the respective true and predicted MPs using tensor operations (see
Figure 11).
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Figure 10. Process of the custom loss function calculation.
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In the first step, the respective MPs were transformed back to the original sizes by
inverse normalization. Consequently, the analytical MCIC can be calculated using the
formulas presented in Section 2.2. The ordinate values of these analytical curves are then
normalized and the MSE between the respective true and predicted curves are calculated.
In the present case, this was done for all input parameters, except for the two modules
emod and bulk. For these two parameters, only the MSE of the normalized parameters were
calculated. The MCIC lcid-p for consideration of the variable PPR was separated at EPS = 0,
since the negative strain range is calibrated from the compression test and the positive
range is determined from the punch test. Thus, two curves are included in the calculation
of the total loss. A similar procedure was used for the EPSF vs. TRI curve (see Figure 11),
with the curve being divided into six individual segments which were included in the
calculation of the final loss. Afterwards, the errors were summed up, whereby optionally a
weighting of the respective segments can be made by adding constant factors. The final loss
value for each input batch was obtained by dividing by the number of calculated MSE of
the input curves (or parameters). In the present case, the final custom loss (CL) is given by

CL =
1

16
(MSEEMod + MSEBMod + MSElcid−t + MSElcid−t1 + MSElcid−t2

+ MSElcid−t3 + MSElcid−t4 + MSElcid−c + MSElcid−pc + MSElcid−pt

+ MSElcsdg1 + MSElcsdg2 + . . . + MSElcsdg6).

(26)
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Preliminary tests revealed an increase in the error of the SOC while the error of the
MPs or of the CL remained constant, which indicates the overlearning of the NN that is
difficult to detect. Hence, early stopping was implemented into the method, stopping the
training of the NN at a defined number of trained epochs without any improvement in the
validation loss.

Since the performance of the NN regarding the prediction accuracy significantly
depends upon the selected HPs (e.g., kernel initializer and activation function), an opti-
mization of these can be carried out in the following. Since the final aim is to achieve the
highest possible agreement between the simulation and the real material behavior, the
corresponding SOC of the validation set are then obtained by back simulation with the
predefined and predicted MPs, and their error is compared using, e.g., DTW (as can be seen
in Section 2.5.1). After training, the NN can finally be used to predict MPs for experimental
input curves. Here, the virtually generated experimental dataset was used for validation
and compared with the results of the iterative optimization-based method.

Similarly to the procedure of the iterative optimization-based method, different runs
with varying settings of the NNs or the boundary conditions (dataset size) were performed
(see Appendix A, Table A3). Three datasets of different sizes (see Table 2) were used for the
training and evaluation of the NN_Runs. One dataset consists of the ten FE simulations of
the tests and the respective twelve evaluated SOCs as well as the corresponding MPs of
the material card(s).

Table 2. Datasets for the training and validation of the investigations using the NN-based method.

Dataset Sampling Training Set Size Validation Set Size Complete Set Size

1 LHS 450 300 750
2 LHS 900 600 1500
3 LHS 1800 1200 3000

In addition to the investigations with a predefined default NN (see Appendix A,
Table A4), different HPOs (see Appendix A, Table A6) were conducted and investigations re-
garding the prediction accuracy were carried out using the resulting NNs
(see Appendix A, Table A6). The corresponding HP search range is presented in
Appendix A, Table A5. Some HP combinations in connection with the used CLF re-
sulted in unstable behavior during the training. These were: the activation functions
Linear (not in OL), Selu, Elu, Tanh, Exponential as well as the kernel initializer Zero and the
GD optimizer Adadelta. Often, these HPs led to abrupt increases in the loss value during
training, which became so large that they caused the training process to stop due to NAN
values. Therefore, these HPs were excluded from HP optimization, resulting in a stable
training process without any problems.

3. Results and Discussion

For both MPI methods used, a systematic experimental scheme was created with
varying settings. The experimental design of the optimization-based method including the
results is shown for the 1 Step Strategy in Appendix A, Table A1 and for the 3 Step Strategy
in Table A2. As already mentioned in Sections 2.5.1 and 2.5.2, the dimensionless dynamic
time warping distance was used as evaluation criteria in addition to the qualitative SOC
curve shapes. This distance was calculated for the virtual experimental and the validation
dataset between true and predicted curves. The mean value was calculated for each of
the twelve SOC. Nevertheless, the DTW distance is rather to be taken as a qualitative
dimensionless comparative metric. A doubling of the DTW does not necessarily result
in twice as bad reproduction quality compared to the reference curve. The SOCs for the
optimization-based method are shown in Figure A4, Appendix A.

Generally, the runs of the 1 Step Strategy achieved better results than the runs of the
3 Step Strategy. The maximum number of specified iterations of the 1 Step Strategy was fully
exploited, whereas with the 3 Step Strategy, the optimization was partially prematurely
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terminated. The best results were achieved by Run_2 with an elliptic metamodel order
and the optimization algorithm ASA/LFOP. The best results with the 3 Step Strategy were
obtained with a linear metamodel order and the GA/LFOP optimization algorithm. The
worst results using the optimization-based MPI method were achieved with the 3 Step
Strategy and the MSE chosen as the Distance Measure in the first two optimization steps.
The results indicate an advantage for the optimization algorithm to have information
about the full MP range within each iteration, as in the 1 Step Strategy. Furthermore, in a
multiple steps strategy, error-prone calibrated MPs from previously passed steps cannot be
recalibrated, which leads to error propagation. However, the advantages of this strategy can
be a reduction in computation time as well as a reduction in the tendency to determine local
optima. Nevertheless, with all runs, MPs could be calibrated, allowing the reproduction of
the nonlinear material behavior of the thermoplastic polymer investigated. In Figure 12b,
the results of the optimization-based method are compared with the NN-based method for
the virtual experimental dataset (in all bar charts, a 95% confidence interval is shown).
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Figure 12. Comparison of the distance measures of (a) the NN-based method for the validation
dataset and (b) the optimization-based and the NN-based method for the virtual experimental dataset.

In Figure 12a, the MSE of the MPs and the DTW distance of the SOCs of the NN_Runs
for the validation dataset are compared. As expected, the NN_Runs executed with HPO
(NN_Run_8–NN_Run_10) achieved the best results (lowest validation error DTW). The
best results were obtained with NN_Run_8, for which the medium-sized dataset (2) and
the HPO with the Bayesian optimizer were used. Contrary to expectations, using the larger
datasets and the CLF (NN_Run_3 and NN_Run_9) resulted in a comparatively high or
constant error. Only when using the standard MSE of the MPs as a loss function, a larger
dataset resulted in a slight decrease in the mean DTW distance of the VAL set. However,
with the increasing dataset size, both loss types used (MSE and CL, see Table A3) and the
standard deviation of the error values decreased (Figure 12a).

Using the default MSE, even lower mean DTW distances of the VAL set were obtained
compared to using the CLF with a default NN. Thereby, a significant reduction in the MSE
of the MPs using the MSE as loss function can be seen. As already described in [15], in the
present investigations, a reduction in the MSE of the MPs also does not necessarily lead to
a reduction in the actual optimization objective (mean DTW SOC VAL set). Contrary to the
preliminary investigations based on the MPs for tensile and compressive plasticity, this also
applies to the CLF, which can be identified in the example of NN_Run_8 and NN_Run_9
(see Table A3) by the reduction in the CL value with a simultaneous increase in the DTW
SOC. A reason for this is assumed to be the varying sensitivity of the MP. The normalized
MPs feed into the material card depending on the frequency of occurrence in the MCIC.
For example, the MPs and/or the MCIC describing the variable PPR have less influence on
the mean DTW SOC than the MPs of the tension plasticity. Finally, the normalized total
loss is minimized during optimization. However, some MPs may have a stronger influence
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on the actual optimization objective (mean DTW SOC) than others. Since during training
this information is not available due to the missing results from the back simulation, it
cannot be considered in the GD optimization. Thus, a separate prediction of the MPs
of the different material characteristics using an appropriate multi-network architecture
would be worth investigating in the future. Although this is not possible without further
consideration, since MPs of different material characteristics are included in the same
MCIC (e.g., strain rate-dependent lcid-t). However, the significantly lower DTW distances
of SOCs could be obtained when using the CLF and the HPO. This indicates the high
influence of the network parameters on prediction accuracy. Therefore, the advantage of
the CLF is assumed to only come into effect in combination with appropriate network
settings (HP). Furthermore, the introduction of scaling factors in the NN_Run_7 did not
reduce the mean DTW SOC of the VAL set.

In Appendix A, Figure A5, the learning curves of the NN_Runs are shown. Again, an
increasing dataset size shows a decrease in the fluctuation of the respective loss value. Fur-
thermore, with increasing dataset size, the lowest validation error tends to be reached later.
This also applies to the validation error plateau, from which the error is only marginally
reduced. Presumably, this is due to the ability of the NN to learn the relationship between
input and output more precisely with a larger amount of data. This is also evident in the
ratio of training loss to validation loss, with a smaller gap between the two curves for larger
datasets. With smaller datasets, the training loss is usually further minimized, whereas
the validation loss remains constant or even increases again. This again emphasizes the
necessity of early stopping to reduce the overlearning tendency. Furthermore, a significantly
earlier achievement of a low loss value can be observed when using the HP optimized
FFANNs. However, for these networks, the overlearning risk increases, which can be seen
in the further decreasing training loss at constant validation loss. Notably, in preliminary
studies, NNs with up to 500,000 neurons were trained, which had a rather negative effect
on the prediction accuracy. Thereby, the fluctuation of the loss value also increased and
the validation optimum was reached at earlier epochs. However, the strong fluctuation
and larger validation loss with a high number of neurons could be counteracted with an
increasing dropout rate.

In Figure 12b, the DTW distances of the NN_Runs for the virtual experimental
dataset are shown and compared with the results of the optimization-based method. In
Figure 13, the results of selected LS-OPT_Runs and NN_Runs for the SOCs of the different
tests are compared and in Appendix A, Figure A7, the corresponding SOCs are shown
(see Supplementary Materials for plots of all NN_Runs).

The best NN_Runs results for the virtual experimental dataset were obtained from
NN_Run_8, followed by NN_Run_1. This matches only partially the expectations because,
in contrast to NN_Run_8, NN_Run_1 exhibits a rather high validation error. However,
only one experimental dataset was investigated here. Hence, in future studies, verifications
should be performed using larger experimental datasets. In contrast, the NN_Run_2
exhibited the highest DTW distance for the EXP set. As for the validation dataset, the
NN_Runs with MSE as the loss value resulted in a lower DTW distance in contrast to
runs with CL without HPO. Accordingly, the best results were obtained using CLF with
hyperparameter optimization.
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Figure 13. Bar plot comparison of the results of selected LS-OPT_Runs and NN_Runs for the
SOCs of the different tests for the EXP dataset. The best and worst LS-Opt_Run were compared with
(a) NN_Run_1 (second best NN_Run); (b) NN_Run_2 (worst NN_Run); (c) NN_Run_4 (best NN_Run
with MSE Loss); and (d) NN_Run_8 (best NN_Run).

The tendency of the VAL DTW distance to be larger than the EXP set is noticeable. One
reason for this could be the tendency of the DTW distance to be higher in the peripheral
areas of the MP ranges, which increases the VAL DTW on average. In contrast, the EXP set
is more centrally located in the MP range. Furthermore, in the NN-based method model,
errors are learned from the FFANN. For instance, in the training dataset, not all oscillations
or deflections after failure could always be filtered out in the shear test two (Figure A6j),
causing them to be learned as well. In the prediction, the NN consequently has problems
matching these MPs for these curves, which results in relatively high DTW values. These
then lead to an increased VAL DTW distance. In future studies, the processing of the
labeled data should therefore be further improved to enable the NN to better learn the
input–output relationship and make the loss more representative.

The failure points of the tensile tests and the punch test exhibit an especially increased
dispersion. The SOCs of the training data range of the tensile tests (see Appendix A,
Figure A6a,d–g), show the failure of only a subset of the simulations performed within the
maximum displacement. This reduction in information density regarding failure could lead
to reduced prediction accuracy. Similarly, for MPI using LS-OPT, the sufficient calibration
of the failure point proved to be difficult, with partially no failure calibrated for tensile test
V4. On the other hand, the SOCs of the punch test training data range (see Appendix A,
Figure A6k) show a very wide range of properties for the specified MP range. Hence, the
reason for the difficulty in calibrating the punch test failure could be due to the relatively
underrepresented information density of the failure time points. Once again, these insights
highlight the importance of the appropriate choice of MP ranges. A key for better prediction
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accuracies in the future could be a sensitivity-based sampling, whereby a higher number of
test points is placed in the MP range, which has a higher influence on the simulation results.

The comparison of the two MPI methods (Figure 12) reveals that the optimization-
based method for the virtual experimental dataset still achieves better results than the
NN-based method. However, with an appropriate choice of hyperparameters and network
structure, the NN-based method also achieves very good results. For the investigated
dataset, some NNs could achieve better results than some optimization-based runs. Of
course, this depends on the choice of settings and the precision could surely be improved
with the conventional method using LS-OPT. However, the results of the two methods
are at a comparable level of precision, with the NN-based method having the distinct
advantage of reusability. Nevertheless, future improvements could further increase the
prediction accuracy of the NN-based method, which could help to apply the method in
daily engineering work.

4. Conclusions and Outlook

In this paper, a NN-based method was presented to identify the material parameters
of the MAT_187_SAMP-1 and MAT_ADD_DAMAGE_GISSMO material cards in LS-DYNA
for numerical simulation. The required labeled data were generated by a large number of
numerical simulations and the FFANN was trained using these data. The feedforward arti-
ficial neural network was trained to learn the input–output relationship between test curves
(e.g., FDCs) and the corresponding MPs for the numerical simulation. For verification
purposes, an experimental dataset was virtually generated, which was based on an addi-
tively processed thermoplastic polymer (ABS) and exhibits pronounced nonlinearities. The
FFANN was thus designed to predict a total of 19 MPs to account for elasticity, plasticity,
tension–compression asymmetry, variable plastic Poisson’s ratio, strain rate dependency
and failure. Various influential parameters, such as the choice of HPs, which influence the
prediction accuracy of the FFANN, were investigated in studies. For comparison purposes,
the conventional iterative optimization-based method was applied to the same dataset
using the commercial software LS-OPT in different variants.

The results proved the general applicability of the presented NN-based method for the
identification of MPs for highly complex material cards. Although better results could be
obtained with certain variants of the conventional optimization-based method, good results
could also be achieved with some NN variants. However, with the presented NN-based
MPI method, material cards can be calibrated in a few seconds. This represents a significant
time advantage compared to the conventional optimization-based method. Depending
on the available hardware and software resources, a few seconds for the prediction of the
material card stood in contrast to several days for the optimization-based calibration. The
investigations showed the importance of the appropriate choice of the MP ranges as well
as the network settings. Furthermore, an alternative custom loss function was presented,
which has to be minimized during the NN training using gradient descent optimization.
Within this function, the true and predicted MPs were used to compute the analytical
functions that represent the input of the material cards. In connection with an HPO, the
custom loss function showed promising results.

In order to further increase the prediction accuracy of the NN-based method and thus
enable its application in everyday engineering work, further efforts and investigations
have to be conducted. In addition to additional runs with varying optimizers and settings
for evaluation, further network architectures and types should be reviewed and compared.
Convolutional NN, as well as Bayesian NN, could be suitable options to further increase
the prediction accuracy and counteract the network’s tendency to overlearn. In the present
work, the application of Gaussian noise to the training data was already used to increase
the generalization capability of the NN. In the future, different noise levels could also be
applied, which would increase the number of training data without additional simulations.
Furthermore, a continued investigation should be conducted regarding the optimization
goal when training the NN in terms of the custom loss function. This could be a key
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factor to compensate for the advantage of the conventional MPI method consisting in the
optimization on the final MPI objective. In contrast to minimizing the error between the
output of the simulation and the experiment, only the error of the input of the material card
between the true and predicted can be minimized with the NN-based method. Moreover,
the applicability of the method to predict MPs for highly complex material cards should
be verified using real experimental datasets. Since the NN also learns the boundary
conditions and other settings of the FE model, the matching of the simulation model to the
experimental test must be ensured in order to maintain prediction accuracy.

From the author’s point of view, the presented NN-based method has a high potential
for the simulation-based product development process and is not limited to specific materi-
als. Using a trained NN, MPs for the subsequent numerical simulation can be predicted in
a few seconds and thus designs and materials can be compared as soon as the early concept
phases. Often, this is not possible due to time-consuming and cost-intensive calculation ef-
forts for each material. Another advantage results from the non-required expert knowledge
regarding continuum mechanics, numerical optimization and the materials science of the
actual users of the method, which include development and design engineers. Thus, the
method represents an enabler to further incorporate structural simulations into the product
development process. Moreover, the NN-based method can be used to determine suitable
starting parameters for the conventional optimization-based method within a minimal
amount of time. Thus, conventional development processes could also be accelerated and
possibly lead to more accurate results.
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Appendix A

0 1 2 3 4 5

Displacement (mm)

0

200

400

600

800

1000

1200

1400

F
o

rc
e 

(N
)

FDC Te nsion Te st

0.0 0.1 0.2 0.3 0.4 0.5

Displacement (mm)

0

200

400

600

800

1000

1200

1400

F
o

rc
e 

(N
)

FDC Compre ssion Te st

0 1 2 3 4 5

Displacement (mm)

0

200

400

600

800

1000

1200

1400

F
o

rc
e 

(N
)

FDC Te nsion Te st V1

FDC Te nsion Te st V2

FDC Te nsion Te st V3

FDC Te nsion Te st V4

0 1 2 3 4 5 6

Displacement (mm)

0

20

40

60

80

100

120

F
o

rc
e 

(N
)

FDC Be nding Te st

(a) (b)

(c) (d)

Figure A1. Cont.



Materials 2022, 15, 643 27 of 36

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Displacement (mm)

0

500

1000

1500

2000

2500

F
o

rc
e 

(N
)

FDC She ar1  Te st

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Displacement (mm)

0

50

100

150

200

250

F
o

rc
e

 (
N

)

FDC She ar2  Te st

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Displacement (mm)

0

1000

2000

3000

4000

5000

F
o

rc
e 

(N
)

FDC Punch Te st

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Equivalent Plastic Strain (-)

0.0

0.1

0.2

0.3

0.4

0.5

P
la

st
ic

 P
o

is
so

n
ʹs

 R
at

io
 (

-)

PEC Compre ssion Te st

PEC Punch Te st

(e) (f)

(g) (h)

Figure A1. Simulation output curves of the virtual experimental test dataset: (a) FDC tension test;
(b) FDC compression test; (c) FDC tension tests V1–V4; (d) FDC bending test; (e) FDC shear1 test;
(f) FDC shear2 test; (g) FDC punch test; and (h) PEC compression and punch test.

Figure A2. Table definition of strain rate-dependent yield curves (yield curve at specific strain rate)
used for MAT_187_SAMP-1.

Figure A3. Equivalent plastic strain at failure vs. triaxiality curve for MAT_ADD_DAMAGE_GISSMO,
with (r)epsf_0 to (r)epsf_3 (equivalent plastic strain at failure) being parameters which need to
be calibrated.
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Table A1. LS-OPT settings of 1 Step Strategy for iterative optimization-based calibration and results
(*—except for PEC Compression Test; **—when the global optimum is found, switch to LFOP to find
best local optimum; ***—default).

Setting Run_1 Run_2 Run_3

Sampling Point Selection D-Optimal D-Optimal D-Optimal
Simulations per Iteration 40 100 40
Metamodel Polynomial Polynomial Polynomial
Metamodel Order Linear Elliptic Linear
Distance Measure DTW * DTW * DTW *
Optimization Algorithm ASA/LFOP ** ASA/LFOP ** GA/LFOP **
Maximum Iterations 23 9 23
Design Change Tolerance 0.01 *** 0.01 *** 0.01 ***
Objective Function Tolerance 0.01 *** 0.01 *** 0.01 ***
Required Iterations 23 9 23
Mean DTW SOC Exp. Set (-) 1.4526 1.1849 1.4301

Table A2. LS-OPT settings of 3 Step Strategy for iterative optimization-based calibration and results
(*—except for PEC Compression Test; **—when global optimum is found, switch to LFOP to find
best local optimum; ***—default).

Setting Run_4 Run_5 Run_6 Run_7

Sampling Point Selection D-Optimal D-Optimal D-Optimal D-Optimal
Simulations per Iteration 40; 10; 20 45; 10; 20 40; 10; 20 40; 10; 20
Metamodel Polynomial Polynomial Polynomial Polynomial
Metamodel-Order Linear Elliptic Linear Linear

Distance Measure
DTW *;
DTW *;
DTW *

DTW *;
DTW *;
DTW *

DTW *;
DTW *;
DTW *

MSE;
MSE;

DTW *
Optimization Algorithm ASA/LFOP ** ASA/LFOP ** GA/LFOP ** ASA/LFOP **
Maximum Iterations 20; 10; 15 18; 10; 15 20; 10; 15 20; 10; 15
Design Change Tolerance 0.01 *** 0.01 *** 0.01 *** 0.01 ***
Objective Function Tolerance 0.01 *** 0.01 *** 0.01 *** 0.01 ***
Required Iterations 18; 10; 14 15; 8; 13 20; 10; 15 20; 2; 15
Mean DTW SOC Exp. Set (-) 2.1246 1.9493 1.6545 2.8808

Table A3. Settings and results of the NN-based MPI runs (*—single segments of the custom loss
function were scaled with a factor: emodMSE × 1.5, bulkMSE × 1.5, lcid− tMSE × 2, lcid− cMSE × 6,
lcid− p(c)MSE × 2, lcid− p(t)MSE × 2, lcsdg(3)MSE × 2, lcsdg(4)MSE × 4, lcsdg(5)MSE × 4).

Run Dataset NN Loss
Early

Stopped
Epoch

Loss
Val.

Set (-)

Mean
DTW SOC
Val. Set (-)

Mean
DTW SOC
Exp. Set (-)

NN_Run_1 1 Default CL 157 0.0200 4.0773 1.8521
NN_Run_2 2 Default CL 212 0.0189 4.4550 4.7747
NN_Run_3 3 Default CL 270 0.0177 4.2278 3.3339
NN_Run_4 1 Default MSE 242 0.0541 3.4139 2.7574
NN_Run_5 2 Default MSE 255 0.0488 3.5369 4.2746
NN_Run_6 3 Default MSE 260 0.0451 3.3119 2.9638

NN_Run_7 2 Default
CL

(scaled *) 274 0.0269 4.3733 2.6311

NN_Run_8 2 HPO1 CL 363 0.0170 2.2341 1.7116
NN_Run_9 3 HPO2 CL 168 0.0161 2.5824 2.1712
NN_Run_10 2 HPO3 CL 179 0.0170 3.0430 2.0807
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Table A4. Default Neural Net settings.

(Hyper-)Parameter Setting

Batch Size 25
Maximum Epochs 400
Early Stopping Patience 40
Neurons (IL) 2400
Hidden Layers 1
Neurons (HL) 100
Kernel Initializer (HL) He Uniform
Activation (HL) Hard Sigmoid
Dropout (HL) 0.10
Neurons (Output Layer) 19
Kernel Initializer (OL) He Uniform
Activation (OL) Linear
Gradient Descent Optimizer Adam

Table A5. Hyperparameter optimization search range (* = default parameter).

(Hyper-)Parameter Search Range

Batch Size 20; 25 *; 30; . . .; 150
Number HL 1 *; 2; 3
Neurons (HL1) 30; 40; 50 *; . . .; 500
Kernel
Initializer (HL)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL1) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL1) 0.000; 0.025; 0.050 *; . . .; 0.250
Neurons (HL2) 30; 40; 50 *; . . .; 500
Kernel
Initializer (HL2)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL2) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL2) 0.000; 0.025; 0.050 *; . . .; 0.250
Neurons (HL3) 30; 40; 50 *; . . .; 500
Kernel
Initializer (HL3)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL3) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL3) 0.000; 0.025; 0.050 *; . . .; 0.250
Kernel
Initializer (OL)

Normal *; Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

GD Optimizer Adam *; Adagrad; Adamax; Nadam

Table A6. Neural Net settings from hyperparameter optimization (* = default settings).

(Hyper-)Parameter HPO1 HPO2 HPO3

Batch Size 85 25 50
Maximum Epochs * 400 400 400
Early Stopping Patience * 40 40 40
Neurons (IL) * 2400 2400 2400
Number HL 1 2 2
Neurons (HL1) 460 470 450
Kernel Initializer (HL1) He Uniform He Uniform He Normal
Activation (HL1) Hard Sigmoid Relu Softplus
Dropout (HL1) 0.000 0.000 0.000
Neurons (HL2) - 470 310
Kernel Initializer (HL2) - Uniform Normal
Activation (HL2) - Softplus Relu
Dropout (HL2) - 0.025 0.150
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Table A6. Cont.

(Hyper-)Parameter HPO1 HPO2 HPO3

Neurons (OL) * 19 19 19
Kernel Initializer (OL) Lecun Uniform He Uniform Uniform
Activation (OL) * Linear Linear Linear
Loss Function * Custom Loss Custom Loss Custom Loss
GD Optimizer Adamax Adamax Adamax
HP Optimizer Bayesian Bayesian Random Search
Max Trials * 500 500 500
Executions per Trial * 2 2 2
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Figure A4. Simulation output curves of the LS-OPT runs with the virtual experimental test dataset:
(a) FDC tension test; (b) FDC compression test; (c) PEC compression test; (d) FDC tension tests V1;
(e) FDC tension tests V2; (f) FDC tension tests V3; (g) FDC tension tests V4; (h) FDC bending test;
(i) FDC shear1 test; (j) FDC shear2 test; (k) FDC punch test; and (l) PEC punch test.
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Figure A5. Cont.
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Figure A5. NN_Run learning curves for the training and validation dataset: (a) NN_Run_1; (b)
NN_Run_2; (c) NN_Run_3; (d) NN_Run_4; (e) NN_Run_5; (f) NN_Run_6; (g) NN_Run_7; (h) FDC
NN_Run_8; (i) FDC NN_Run_9; and (j) NN_Run_10.
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Figure A6. Simulated output curves of the tests for training data of dataset 2: (a) FDC tension test;
(b) FDC compression test; (c) PEC compression test; (d) FDC tension tests V1; (e) FDC tension tests
V2; (f) FDC tension tests V3; (g) FDC tension tests V4; (h) FDC bending test; (i) FDC shear1 test;
(j) FDC shear2 test; (k) FDC punch test; and (l) PEC punch test.
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Figure A7. Comparison of the simulation output curves of selected LS-OPT and NN runs with the
virtual experimental test dataset: (a) FDC tension test; (b) FDC compression test; (c) PEC compression
test; (d) FDC tension tests V1; (e) FDC tension tests V2; (f) FDC tension tests V3; (g) FDC tension tests
V4; (h) FDC bending test (i) FDC shear1 test; (j) FDC shear2 test; (k) FDC punch test; and (l) PEC
punch test.
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