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Abstract: Effects of different rare earth elements on the degradation and mechanical properties
of the ECAP (equal channel angular pressing) extruded Mg alloys were investigated in this work.
Microstructural characterization, thermodynamic calculation, a tensile test, an electrochemical test,
an immersion test, a hydrogen evolution test and a cytotoxicity test were carried out. The results
showed that yttrium addition was beneficial to the improvement of the alloy’s strength, and the
ultimate tensile strength (UTS) and yield strength (YS) values of the ECAPed Mg-2Zn-0.5Y-0.5Zr
alloy reached 315 MPa and 295 MPa, respectively. In addition, Nd was beneficial to the corrosion
resistance, for which, the corrosion rate of the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy was observed
to be 0.42 ± 0.04 mm/year in Hank’s solution after 14 days of immersion. Gd was moderate in
improving both the corrosion resistance and mechanical properties. Moreover, after co-culturing
with murine calvarial preosteoblasts (MC3T3-E1) cells, the ECAPed Mg-2Zn-0.5RE (Nd, Gd, Y)-0.5Zr
alloys exhibited good cytocompatibility with a grade 1 cytotoxicity. Consequently, the ECAPed
Mg-2Zn-0.5Nd-0.5Zr alloy showed the best application prospect in the field of orthopedics.

Keywords: ECAP; rare earth elements; Mg alloy; corrosion resistance; mechanical properties

1. Introduction

Magnesium (Mg) and its alloys as biodegradable implants continue to gain prominence
in the clinics because they have shown a promising application prospect in the biomedical
field. However, the fast degradation rate and relatively low mechanical properties still limit
their wide applications. Alloying and plastic deformation are two kinds of useful methods
to improve both the mechanical and degradation properties of Mg alloys.

Plastic deformation enhances the degradation resistance by changing the distribution
and morphologies of the second phases. After plastic deformation, and especially severe
plastic deformation, the large and bulk second phases will be broken into small particles
and distributed uniformly. Thus, the degradation resistance is enhanced. Lotfpour et al. [1]
found that the corrosion rate of the Mg-2Zn-0.3Cu alloy decreased from approximately
9.0 mm/year (as-cast) to 7.0 mm/year after hot extrusion due to the redistribution of the
intermetallics. Li et al. [2] studied the corrosion resistance of pure Mg, Mg-1Ca and Mg-2Sr
alloys processed by ECAP. Compared to the as-cast counterparts, they found that the
corrosion rate of pure Mg increased, whereas that of Mg-1Ca and Mg-2Sr alloys decreased.
Further study showed that ECAP could decrease the corrosion rate of high-alloying Mg

Materials 2022, 15, 627. https://doi.org/10.3390/ma15020627 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15020627
https://doi.org/10.3390/ma15020627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2193-2515
https://orcid.org/0000-0002-4054-8535
https://doi.org/10.3390/ma15020627
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15020627?type=check_update&version=2


Materials 2022, 15, 627 2 of 19

alloys and increase that of the relatively low-alloying Mg alloys [3]. Besides, the mechanical
properties of the Mg alloys were also improved due to the grain refinement strengthening
and second phase strengthening [4].

Rare earth (RE) elements, such as Gd, Nd and Y, are widely added into Mg alloys
to enhance their inherent properties [5]. They exhibit excellent strengthening effects and
degradation resistance. Gd, for instance, could stabilize the corrosion layer of Mg alloys.
Moreover, Deepsaark et al. [6] found that an addition of 2 wt.% Gd could improve the
elongation of the Mg-2Sr alloy by approximately twice as much. Nd, on the other hand,
has good precipitation strengthening and solution strengthening properties. The strength
of Mg-Nd-Zn-Zr alloys was increased to the range of 320–380MPa. Moreover, Nd has the
ability to weaken the microgalvanic effect between the second phases and the matrix [7].
Likewise, Y could improve the degradation resistance by the formation of Y2O3 in the
degradation layer of Mg alloys [8]. The respective solubilities of the Nd, Y and Gd in Mg
alloys are 3.6 wt.%, 12.4 wt.% and 23.49 wt.% [9]. They represent the different kinds of
RE-containing Mg alloys with different solubilities. These three different elements were
thus chosen in this study. In addition, these three elements contained in alloys have been
studied, such as the WE43 alloy, Mg-Nd-Zn-Zr alloy and Mg-Gd-Zn-Zr alloy [10]. Until
now, few studies that detail the different roles of the three elements in the degradation
and mechanical properties of the wrought Mg alloys are available. Therefore, the effects of
the three rare earth elements on the degradation and mechanical properties of the ECAP
extruded Mg alloys were studied in this work.

2. Experimental Details
2.1. Materials Fabrication

The composition of the three as-cast alloys is illustrated in Table 1. The bars with size
of 10 × 10 × 100 mm were cut from the as-cast ingots, and were put into the extrusion
mold (Figure 1a). The mold and the bars were heated at 380 ◦C for 1.5 h. Then, the bars
were extruded four times. After each extrusion, the mold was open immediately and the
bars were rotated 90◦ at the same direction.

Table 1. Actual composition of the three alloys.

Alloys
Composition (wt.%)

Zn Gd Nd Y Zr Mg

Mg-2Zn-0.5Gd-0.5Zr 2.00 0.53 - - 0.48 Bal.
Mg-2Zn-0.5Nd-0.5Zr 2.23 - 0.51 - 0.49 Bal.

Mg-2Z-0.5Y-0.5Zr 2.07 - - 0.51 0.38 Bal.

2.2. Microstructural Characterization

After a four-pass extrusion, the samples microstructures were observed by using
optical microscope (OM, Japan, OLYMPUSGX71) and scanning electron microscope (SEM,
America, Inspect F50). The texture of the extruded samples was analyzed with the aid
of XRD. The second phases composition and the distribution were analyzed by using a
transmission electron microscope (TEM, America, Tecnai G20).

2.3. Thermodynamic Calculation

In order to evaluate the chemical activity of the three rare earth elements, the ther-
modynamic calculation was carried out by using Factsage 8.0 software. Gibbs free energy
(∆G) of the reaction between the three elements and oxygen at 298.15 K and 1273.15 K
was calculated.
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Figure 1. Schematic illustration of the extrusion mold and the tensile samples: (a) extrusion mold;
(b) tensile sample.

2.4. Mechanical Test

The tensile samples were fabricated according to Figure 1b. The test was performed
at room temperature with an Instron-5569 universal testing machine (1.0 mm/min tensile
rate). The tensile force and displacement curves were obtained. Three tests were carried out
for each sample. After tensile test, the fracture morphologies were observed by using SEM.

2.5. Electrochemical Test

The samples (10 × 10 × 5 mm) were coated with epoxy resin, where one side of the
sample was connected with copper wire, and the other side was exposed. The exposed
side (10 × 10 mm) was polished with 2000-grit SiC sandpaper. After polishing, they were
rinsed using anhydrous ethanol and then dried. The electrochemical experiment was
carried out by using the electrochemical workstation (Reference 600) produced by Gamry
Company. The typical three-electrode system was adopted for the test. The sample was
the working electrode, the calomel electrode (SCE) was the reference electrode and the
platinum plate electrode was the counter electrode. The electrochemical experiment was
carried out in Hank’s solution at 37 ◦C. The composition of Hank’s solution is shown
in Table 2. First, 1800s open circuit potential (OCP) test was carried out to ensure that
the whole measurement system was in a stable state. Then electrochemical impedance
spectroscopy (EIS) test was carried out, and the frequency range was set to 105–0.01 Hz
under OCP. Finally, the polarization curves were tested. With the open circuit potential
as the reference, the initial potential of the polarization curve was −0.25 V, the terminal
potential was 0.35 V and the scanning rate was 0.5 mV/s. In order to ensure the accuracy
of the experimental results, each group of samples was repeated three times.

Table 2. Chemical composition of Hank’s solution (g/L).

Composition NaCl KCl KH2PO4 MgSO4 NaHCO3 CaCl2 Na2HPO4 Glucose

Content (g/L) 8.00 0.40 0.06 0.20 0.35 0.14 0.12 1.00

2.6. Immersion Test

The samples with size of 10 × 10 × 3 mm were cut using a line cutting machine. They
were then polished with 2000-grit SiC sandpaper and subsequently immersed in Hank’s
solution according to the immersion ratio of 1.25 cm2/mL. The pH value of the solution was
adjusted to 7.40 before immersion. The solution was changed every day in order to keep it
fresh, and the pH value was recorded every day. After 7 days and 14 days of immersion, the
samples were taken out. The degradation rate (P) was calculated according to Equation (1)
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after the degradation products were cleaned by using chromic acid. The micro and macro
structures of the samples were then observed.

P = (K× ∆m)/(A× T × D) (mm/yr) (1)

where K is a constant with value of 8.76 × 104, ∆m is the sample weight loss (g), A is the
sample surface area (cm2), T is the sample immersion time (h) and D is the sample density.

2.7. Hydrogen Evolution Test

The hydrogen evolution installation is presented in Figure 2. The samples with size of
10 × 10 × 3 mm were placed in beakers containing Hank’s solution. In the experimental
set-up, the funnel was placed over the samples to collect hydrogen from the sample surface.
The burette was then installed over the funnel and Hank’s solution subsequently injected.
With this method, the volume of the escaping hydrogen was measured. The corrosion rate
(CRHE) was then calculated according to Equation (2) [11] after 14 days of immersion.

CRHE =
24.31× ∆VH2 × 365× 24× 10−2

22.4× A× T × ρ
= 95

∆VH2

A× T × ρ
(mm/yr) (2)

where ∆VH2 is the hydrogen evolution volume during the 14 days of immersion (mL), A is
the sample surface area (cm2), T is the hydrogen evolution time (h) and ρ is the density of
the magnesium alloys (g/cm3).
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2.8. Cytotoxicity

Murine calvarial preosteoblasts (MC3T3-E1) cells were used to investigate the cyto-
compatibility of the ECAPed samples. The cells were cultured in the Dulbecco’s modified
Eagle’s medium (DMEM) with 1% streptomycin/penicillin and 10% (v/v) fetal bovine
serum (FBS) in 5% CO2 humidified atmosphere (37 ◦C). First, the samples were immersed
in a serum-free medium for 24 h at 37 ◦C according to the immersion ratio of 1.25 cm2/mL.
Subsequently, a 0.22 µm filter was used to filter the collected supernatant. Cells with density
of 1 × 104 cells/mL were incubated in the 96-well plates overnight. Then, the medium
was replaced with 100 µL of various extracts, respectively. The group with only DMEM
medium was the negative control, whereas 10% DMSO was the positive control. After
culturing for different times (1, 3, 5 days), 10 µL MTT was added into each plate well. They
were then co-cultured at 37 ◦C for 4 h, and then 150 µL dimethylsulfoxide (DMSO) was
added to each well. After mixing, 100 µL supernatant of each well was moved into a new
96-well plate and the optical density (OD) values were measured by using a nanodrop
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spectrophotometer (Eppendorf, German) at 490 nm with a reference wavelength of 570 nm.
The cell relative growth rate (RGR) was obtained according to Equation (3) [12]

RGR = ODtest/ODnegative × 100% (3)

3. Results
3.1. Microstructural Analysis

Figure 3 shows the optical microstructures of the extruded samples. For the as-cast
Mg-2Zn-0.5Zr alloy, there were almost no second phases observed in the grain boundaries.
For the as-cast Mg-2Zn-xRE-0.5Zr alloys, there were some second phases distributed
along the grain boundaries, especially in the Mg-2Zn-0.5Y-0.5Zr alloys. After the four-
pass extrusion, bimodal grain structures were obviously observed. The grain sizes of
the alloys are presented in Table 3. For the as-cast alloys, both Nd and Gd exhibited a
good grain refinement; however, the Y element did not. After the four-pass extrusion,
all of the alloy grain sizes decreased significantly. The grain sizes of the Mg-2Zn-0.5Zr
alloy, Mg-2Zn-0.5Gd-0.5Zr alloy, Mg-2Zn–0.5Nd-0.5Zr and Mg-2Zn–0.5Y-0.5Zr alloy were
4.99 ± 2.20 µm, 4.40 ± 0.86 µm, 3.95 ± 0.26 µm and 2.84 ± 0.32 µm, respectively. Moreover,
the extruded Mg-2Zn-0.5Y-0.5Zr alloy showed the most uniform and smallest grain size.
Figure 4 shows the SEM images of the as-cast and extruded alloys. For the Mg-2Zn-0.5Zr
alloy, there were only some small particles observed in the as-cast. After the four-pass
extrusion, some Zr-rich second phases were observed. For the Mg-2Zn-0.5Gd-0.5Zr alloy,
the second phases were mainly distributed along the grain boundaries with the formation
of a network structure. After the four-pass extrusion, the network structure was broken
and some second phase enrichment areas were observed. For the Mg-2Zn-0.5Nd-0.5Zr
alloy, there were some dendritic second phases observed along the grain boundaries. After
the four-pass extrusion, the dendritic second phases were broken and the second phases
changed to a columnar structure. For the Mg-2Zn-0.5Y-0.5Zr alloy, the second phases were
mainly rodlike and dendritic. After the four-pass extrusion, the second phases changed into
small particles. Moreover, the small second phases were still distributed along the grain
boundaries. Figure 5 presents the TEM images of the samples after the four-pass extrusion.
Figure 5a,b show the microstructure of the Mg-2Zn-0.5Gd-0.5Zr alloy. According to the
diffraction spots and after calculating the crystal plane space, it was inferred that the second
phases were mainly the W phase (Mg3Gd2Zn3 phase) (Figure 5a). Besides the large second
phases, some small second phases were also observed. According to a previous report, the
small second phases were mainly Mg-Zn phases. Figure 5c,d show the microstructures
of the Mg-2Zn-0.5Nd-0.5Zr alloy. According to the EDS analysis, the atomic ratio of Mg,
Zn and Nd is 77:14:9, which is close to (MgZn)92.1RE7.9, namely, the T phase. Therefore,
it can be inferred that the second phases were the T phase. Compared with the Mg-2Zn-
0.5Gd-0.5Zr alloy, the amount of small second phases increased obviously. Moreover, the
dispersive second phases were much smaller. Figure 5e,f shows the microstructures of the
Mg-2Zn-0.5Y-0.5Zr alloy. According to the diffraction spots and after calculating the crystal
plane space, it was inferred that the second phases were mainly the W phase (Mg3Y2Zn3
phase). The small second phases were more uniformly distributed in the alloy. According to
the dispersion strengthening theory, it was inferred that the Mg-2Zn-0.5Y-0.5Zr alloy should
have the highest strength. Figure 6 presents the textures in the four-pass extruded alloys.
For the Mg-2Zn-0.5Zr alloy, the main texture was {2110} and {1010}. After the addition of
Gd, Nd and Y, the main texture was {1010}, whereas the {2110} texture disappeared. The
RE elements therefore changed the texture of the alloys.
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and the four-pass extruded Mg-2Zn-0.5Nd-0.5Zr alloy; (g,h) the as-cast and the four-pass extruded
Mg-2Zn-0.5Y-0.5Zr alloy.

Table 3. Grain size of the alloys before and after extrusion.

Alloys
Grain Size (µm)

As-Cast After Four-Pass Extrusion
Mg-2Zn-0.5Zr 52.06 ± 7.62 4.99 ± 2.20

Mg-2Zn-0.5Gd-0.5Zr 47.48 ± 11.50 4.40 ± 0.86
Mg-2Zn-0.5Nd-0.5Zr 38.84 ± 5.44 3.95 ± 0.26
Mg-2Zn-0.5Y-0.5Zr 63.93 ± 5.22 2.84 ± 0.32
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as-cast and the four-pass extruded Mg-2Zn-0.5Nd-0.5Zr alloy; (g,h) the as-cast and the four-pass
extruded Mg-2Zn-0.5Y-0.5Zr alloy.
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3.2. Thermodynamic Calculation

Table 4 shows the Gibbs free energy (∆G) of the reaction between the rare earth
elements and oxygen at 298.15 K and 1273.15 K, respectively. Generally speaking, the lower



Materials 2022, 15, 627 9 of 19

the ∆G, the easier the reaction that occurred, and the element therefore has more chemical
activity. It can be found that the ∆G was ranked as ∆GY < ∆GGd < ∆GNd, irrespective
of the low temperature (298.15 K) or high temperature (1273.15 K). Therefore, it can be
concluded that Y was more likely to be oxidized and Nd was not easily oxidized.

Table 4. The Gibbs free energy calculated by Factsage software.

Reaction Gibbs Free Energy
∆G(J)/298.15 K

Gibbs Free Energy
∆G(J)/1273.15 K

2Y + 3
2 O2 → Y2O3 −3,639,103.7 −3,075,633.2

2Gd + 3
2 O2 → Gd2O3 −3,468,204.2 −2,924,028.9

2Nd + 3
2 O2 → Nd2O3 −3,437,913.5 −2,900,746.2

3.3. Mechanical Properties

Figure 7 presents the stress–strain curves of the alloys after the four-pass extrusion.
Table 5 illustrates the mechanical properties of the alloys after the four-pass extrusion.
For the Mg-2Zn-0.5Zr alloy, no obvious yield platform and work-hardening process were
observed. The ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) were
the lowest. The addition of the rare earth elements obviously improved the mechanical
properties. The Mg-2Zn-0.5Nd-0.5Zr alloy showed the best plasticity, with an elongation
of approximately 22%. The Mg-2Zn-0.5Y-0.5Zr alloy showed the highest strength, with
UTS and YS values of 315 MPa and 295 MPa, respectively. Figure 8 presents the fracture
morphologies of the alloys after the four-pass extrusion. For the Mg-2Zn-0.5Zr alloy,
there were many cleavage steps observed and the numbers of dimples were relatively
small, indicating that it was mainly a brittle fracture. For the other alloys, the number
of dimples increased obviously, especially in the Mg-2Zn-0.5Nd-0.5Zr alloy, exhibiting a
typical ductile fracture.
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Figure 7. Stress-strain curves of the alloys after the four-pass extrusion.

Table 5. Mechanical properties of the alloys after the four-pass extrusion.

Alloys UTS (MPa) YS (MPa) EL(%)

Mg-2Zn-0.5Zr 194 ± 2 104 ± 3 10 ± 1
Mg-2Zn-0.5Gd-0.5Zr 280 ± 3 250 ± 2 19 ± 1
Mg-2Zn-0.5Nd-0.5Zr 300 ± 4 270 ± 3 22 ± 2
Mg-2Zn-0.5Y-0.5Zr 315 ± 3 295 ± 2 17 ± 1
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Figure 8. Fracture morphologies of the four-pass extrusion alloys: (a) Mg-2Zn-0.5Zr alloy; (b) Mg-
2Zn-0.5Gd-0.5Zr alloy; (c) Mg-2Zn-0.5Nd-0.5Zr alloy; and (d) Mg-2Zn-0.5Y-0.5Zr alloy.

3.4. Electrochemical Tests

Figure 9 presents the potentiodynamic polarization curves of the four-pass extruded
alloys. For potentiodynamic polarization curves, the more to the left means the slower
corrosion rate. The Mg-2Zn-0.5Nd-0.5Zr alloy was the leftmost, indicating that it should
have the best corrosion resistance. Table 6 shows the Tafel fitting results of the potentio-
dynamic polarization curves of the alloys. There are two important parameters that are
closely related to the corrosion resistance, namely, the corrosion potential (E) and corrosion
current density (icorr). Although the corrosion potential (E) is not closely related to the
corrosion resistance, it still reflects the corrosion tendency. Therefore, it can be observed
that the Mg-2Zn-0.5Nd-0.5Zr alloy had the least tendency to be corroded, with the smallest
value of −1.47 ± 0.01 V. The corrosion current density (icorr) is a parameter that reflects the
corrosion resistance directly. The higher the value of icorr, the faster the corrosion rate (CR).
The CR was calculated by using Equation (4).

CR = 22.85icorr (4)

Table 6. Tafel fitting results of the potentiodynamic polarization curves of the alloys.

Samples E (V. vs. SCE) icorr (µA/cm2) CR (mm/year)

Mg-2Zn-0.5Zr −1.50 ± 0.01 30.46 ± 2.50 0.70 ± 0.06
Mg-2Zn-0.5Gd-0.5Zr −1.49 ± 0.02 12.02 ± 1.05 0.27 ± 0.02
Mg-2Zn-0.5Nd-0.5Zr −1.47 ± 0.01 10.38 ± 0.85 0.24 ± 0.02
Mg-2Zn-0.5Y-0.5Zr −1.52 ± 0.01 15.10 ± 2.00 0.35 ± 0.05
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The corrosion rate was ranked as follows: Mg-2Zn-0.5Zr alloy > Mg-2Zn-0.5Y-0.5Zr
alloy > Mg-2Zn-0.5Gd-0.5Zr alloy > Mg-2Zn-0.5Nd-0.5Zr alloy. The corrosion resistance
was improved by at least two times after the addition of the rare earth elements.

Figure 10 shows the EIS curves of the alloys after the four-pass extrusion operation.
From the Nyquist curves observation, all the curves mainly contain two arcs, namely,
the capacitance loop at a high frequency and inductance loop at a low frequency. The
diameter of the capacitance loop reflects the corrosion resistance directly. The larger the
diameter of the capacitance loop, the better its corrosion resistance. It can be seen that the
Mg-2Zn-0.5Nd-0.5Zr alloy has the largest diameter, indicating the best corrosion resistance.
In contrast, the Mg-2Zn-0.5Zr alloy has the smallest diameter, meaning the lowest corrosion
resistance. Moreover, the inductance loop was closely related to the hydrogen evolution;
that is, the larger the diameter of the inductance loop, the greater its hydrogen evolution
ability. It can be seen that the Mg-2Zn-0.5Nd-0.5Zr alloy has only a small inductance loop,
meaning that there was only a small amount of hydrogen evolved from the alloy surface.
Figure 10b shows the relationship between the frequency and impedance modulus. The
impedance modulus at a low frequency also reflects the alloy’s corrosion resistance. The
larger the value of the impedance modulus, the better the corrosion resistance. It can be
seen that the Mg-2Zn-0.5Nd-0.5Zr alloy has the maximum impedance modulus at a low
frequency (0.01Hz); therefore, from the Bode curves analysis, it can also be concluded that
the alloy has the best corrosion resistance. Figure 10c shows the relationship between the
Bode phase angle and the frequency. There are mainly two wave crests. The wave crest at
low and high frequencies represent the inductance loop and capacitance loop. Figure 10d
shows the equivalent circuit of the EIS curves, where Rs is the solution resistance. The
constant phase element CPE1 in parallel with the film resistance R1 was used to describe
the capacitance loop at a high frequency. In addition, the constant phase element CPE2 in
parallel with the charge transfer resistance R2 represents the capacitance loop at a medium
frequency. An inductance L and R3 represent the inductance loop at a low frequency. The
CPE is a constant phase element that can replace an ideal capacitor to compensate for the
non-homogeneity in the system. Table 7 shows the fitting results of the EIS curves based
on the equivalent circuit. It can be found that the Mg-2Zn-0.5Nd-0.5Zr alloy has a much
larger resistance R (R1 + R2 + R3) value and lower CPE (CPE1 + CPE2) value. According to
previous reports [14], the larger R value means a lower dissolution rate of the sample, and
the lower CPE value signifies a compact surface. Therefore, it can also be concluded that
the Mg-2Zn-0.5Nd-0.5Zr alloy has the best corrosion resistance.
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Table 7. Fitting results of the EIS curves based on the equivalent circuit.

Samples Rs
(Ω cm2)

CPE1
R1

(Ω cm2)

CPE2
R2

(Ω cm2)
R3

(Ω cm2)
L

(H cm−2)Y01
(S·secˆn/cm2) n1

Y02
(S·secˆn/cm2) n2

Mg-2Zn-0.5Zr 19.8 9.2 × 10−5 0.6 34.7 2.8 × 10−5 0.8 1.5 × 103 1.4 × 103 8.1 × 103

Mg-2Zn-0.5Gd-0.5Zr 14.2 5.1 × 10−5 0.6 105.6 1.4 × 10−5 0.9 2.2 × 103 110.8 2.3 × 103

Mg-2Zn-0.5Nd-0.5Zr 13.8 2.2 × 10−5 0.7 25.7 3.1 × 10−5 0.7 2.8 × 105 4.5 × 103 57.64
Mg-2Zn-0.5Y-0.5Zr 16.6 1.0 × 10−4 0.6 93.42 1.0 × 10−5 0.9 2.0 × 103 1.7 × 103 6.6 × 103

3.5. Immersion Tests

Figure 11a presents the hydrogen evolution properties of the samples in Hank’s solution.
It can be found that the total amount of hydrogen evolved from the Mg-2Zn-0.5Zr, Mg-
2Zn-0.5Y-0.5Zr, Mg-2Zn-0.5Gd-0.5Zr and Mg-2Zn-0.5Nd-0.5Zr alloys was approximately
15.0 mL, 12.0 mL, 9.0 mL and 6.5 mL, respectively. The more the hydrogen evolved from the
samples, the faster the corrosion rate. The corrosion rate after 14 days of immersion can be
calculated according to a combination of the reaction (Mg+ 2H2O→ Mg(OH)2 + H2 ↑ ) and
Equation (2). Therefore, the corrosion rates of the Mg-2Zn-0.5Zr, Mg-2Zn-0.5Y-0.5Zr, Mg-2Zn-
0.5Gd-0.5Zr and Mg-2Zn-0.5Nd-0.5Zr alloys were 0.86 mm/y, 0.69 mm/y, 0.52 mm/y and
0.37 mm/y, respectively. Figure 11b shows the pH change in the solution during the immersion
period. The Mg-2Zn-0.5Nd-0.5Zr alloy also shows the lowest pH value. Figure 11c presents
the corrosion rate of the samples after 7 days and 14 days of immersion in Hank’s solution. The
corrosion rates of the Mg-2Zn-0.5Zr, Mg-2Zn-0.5Y-0.5Zr, Mg-2Zn-0.5Gd-0.5Zr and Mg-2Zn-
0.5Nd-0.5Zr alloys after 7 days of immersion were 0.77 ± 0.10 mm/y, 0.63 ± 0.06 mm/year,
0.48 ± 0.09 mm/year and 0.35 ± 0.05 mm/y, respectively. After 14 days of immersion,
the corrosion rates of all of the samples increased slightly, recording 0.80 ± 0.10 mm/y,
0.65 ± 0.05 mm/year, 0.53± 0.06 mm/year and 0.42± 0.04 mm/year, respectively. Figure 12
shows the corrosion morphologies of the four-pass extrusion alloys after 14 days of immersion
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in Hank’s solution with corrosion products. It was found that there were many corrosion
products deposited on the surface. However, the corrosion products on the surface of the
Mg-2Zn-0.5Nd-0.5Zr alloy were more compact and exhibited a cluster appearance. According
to the EDS analysis (Table 8), it was observed that the clusters were mainly MgO and calcium
phosphates. Figure 13 shows the corrosion morphologies of the four-pass extrusion alloys
after 14 days of immersion in Hank’s solution with the removal of the corrosion products. For
the Mg-2Zn-0.5Zr alloy, it was corroded severely, with many deep corrosion pits observed
(Figure 13a). For the Mg-2Zn-0.5Gd-0.5Zr alloy, a relatively uniform corrosion was observed,
with a few deep corrosion pits (Figure 13b). For the Mg-2Zn-0.5Nd-0.5Zr alloy, it showed a
uniform corrosion with few corrosion pits observed, exhibiting the best corrosion resistance
(Figure 13c). For the Mg-2Zn-0.5Y-0.5Zr alloy, many corrosion pits could also be observed,
with its corrosion resistance only just better than the Mg-2Zn-0.5Zr alloy. Consequently, it
can be concluded that the corrosion resistance according to the immersion test is ranked as
follows: Mg-2Zn-0.5Nd-0.5Zr alloy > Mg-2Zn-0.5Gd-0.5Zr alloy > Mg-2Zn-0.5Y-0.5Zr alloy >
Mg-2Zn-0.5Zr alloy.
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Table 8. Chemical composition of the areas marked in Figure 10.

Position
Chemical Composition (wt.%)

C O Mg P Ca

A 8.66 53.58 40.00 3.61 3.15
B 5.21 54.34 36.46 2.38 1.58
C 9.61 49.22 21.75 9.98 9.44
D 8.93 51.09 29.06 5.52 5.40
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Figure 12. Corrosion morphologies of the four-pass extrusion alloys after 14 days of immersion in
Hank’s solution with corrosion products: (a) Mg-2Zn-0.5Zr alloy; (b) Mg-2Zn-0.5Gd-0.5Zr alloy;
(c) Mg-2Zn-0.5Nd-0.5Zr alloy; and (d) Mg-2Zn-0.5Y-0.5Zr alloy.
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3.6. Cytotoxicity

Figure 14 shows the cell viability of MC3T3 cells after culturing with extracts of
different alloys. It can be found that all the RGR values of the Mg-2Zn-0.5Zr alloy at 1, 3
and 5 days were approximately 75–80%. Moreover, the RGR values of the Mg-2Zn-0.5Y-
0.5Zr, Mg-2Zn-0.5Gd-0.5Zr and Mg-2Zn-0.5Nd-0.5Zr alloys at different culture times were
approximately 85%, 90% and 95%, respectively. With an increase in the culture time, the
RGR values of all of the groups increased. According to the ISO10993-5 standard, all of
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the alloys exhibited a grade 1 cytotoxicity within the range of 75–99%. Moreover, the
Mg-2Zn-0.5Nd-0.5Zr alloy possessed the best cytocompatibility.
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4. Discussion
4.1. Effects of Different Rare Earth Elements on the Mechanical Properties of the ECAPed Alloys

Recently, rare earth elements containing biodegradable Mg alloys have attracted many
researchers’ attention due to their high mechanical properties and corrosion resistance.
However, few studies that clearly illustrate the different roles of the different rare earth
elements in the Mg alloys are available. This part will discuss the effects of different rare
earth elements on the mechanical properties of the ECAPed alloys.

The bimodal grain structure played an important role in the mechanical proper-
ties [15,16]. Generally speaking, the smaller the grain size, the higher the strength and
ductility of the alloy. The large grains are therefore detrimental to the mechanical prop-
erties of the alloys. After the four-pass extrusion operation, an obvious bimodal grain
structure could be observed. However, this structure was not so evident in the other alloys
(Figure 3). For the bimodal grain structure, the larger grains usually cannot coordinate the
deformation and cracks then easily emanate from the larger grain boundaries. Therefore,
the bimodal grain structure should be avoided. Xiang et al. [17] found that graphene
nanoplatelets could reinforce the bimodal structural of the Mg-6Zn alloy by the synergistic
strengthening effect of the graphene nanoplatelets and the precipitates. Park et al. [18]
found that the addition of elements with a high solid solubility in the α-Mg matrix, such
as Sn, could significantly improve the strength of the extruded Mg-Al alloy via enhanced
precipitation/grain-boundaries strengthening, and without a loss of ductility. In this study,
it was found that the addition of rare earth elements could also decrease the formation
of bimodal grain structures. After addition of Gd, Nd and Y, the grain size decreased
obviously (Table 3). According to a previous study [19], grain refinement strengthening
played an important role in the mechanical properties by increasing the number of ECAP
passes. Therefore, the rare earth elements containing Mg alloys exhibited a much higher
strength, especially, the Nd and Y elements. It was found that [20] the deformation mecha-
nism in the bimodal grain structure alloy was dominated by basal slips in fine grains and
twinning in coarse grains. The twinning deformation needs more energy than the basal slip.
Moreover, the twinning deformation is small, which is another factor that can influence
the ductility of the Mg-2Zn-0.5Zr alloy. With the addition of rare earth elements, the large
grain size decreased, and the deformation changed to a basal slip (Figure 6), leading to the
enhancement of the ductility.

Second phases also played vital importance in the mechanical properties after the four-
pass extrusion operation. For the Mg-2Zn-0.5Gd-0.5Zr alloy, the main large second phase
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was the W phase, and the amount of small second phases, mainly the Mg-Zn phase, was low;
therefore, they cannot effectively inhibit the movement of the dislocation. Thus, the strength
was relatively lower. For the Mg-2Zn-0.5Nd-0.5Zr alloy, the large second phase was the T
phase, and the amount of small second phases increased with the obvious enhancement
of the second phase strengthening effect. Moreover, it was reported that [21,22] the solid-
soluble Nd atoms could activate the non-base slip and decrease the stacking fault energy
of Mg alloys. For the Mg-2Zn-0.5Y-0.5Zr alloy, the main large second phase was the W
phase. However, the amount of small second phases significantly increased with a uniform
distribution. Zn has been found to have an excellent strengthening effect in the Mg alloys,
with the highest solubility of 6.2 wt.% [23]. Hence, the combination of second phase
strengthening and grain refinement strengthening in the Mg-2Zn-0.5Y-0.5Zr alloy aided its
highest strength.

The mechanism behind the increase in strength after the addition of RE elements can
be explained as follows: on one hand, after the addition of the RE elements, the grain refine-
ment effect was improved during the plastic deformation. Moreover, the grain refinement
effect was ranked as: Y > Nd > Gd; on the other hand, after the addition of different RE
elements, the amount of second phases increased. The second phase strengthening played
a vital importance in the enhancement of the strength. Moreover, different strengths were
exhibited due to the variations of the second phase distribution. The Y-containing second
phases distributed uniformly with a strong dispersion-strengthening effect exhibited the
highest strength (Figure 5f). The Gd-containing second phases were much larger than the
other two alloys, and the amount was relatively little (Figure 5b). The Mg-2Zn-0.5Gd-0.5Zr
alloy exhibited the lowest strength amongst the three kinds of alloys. The strength of the
Mg-2Zn-0.5Gd-0.5Zr alloy was, however, in the intermediate.

4.2. Effects of Different Rare Earth Elements on the Corrosion Resistance of the ECAPed Alloys

Both plastic deformation and alloying could improve the corrosion resistance of Mg
alloys. This part will discuss the effects of different rare earth elements on the corrosion
resistance of the ECAPed alloys.

Plastic deformation, especially severe plastic deformation, such as ECAP extrusion,
could break the large second phases and make them more uniformly distributed in the
Mg alloys [14]. According to a previous study [24], the corrosion rate of Mg alloys is
closely related to the microgalvanic effect, which is determined by the second phase and
the matrix. The amount of second phases in the four-pass extruded Mg-2Zn-0.5Y-0.5Zr
alloy was much larger than that of the Mg-2Zn-0.5Gd-0.5Zr alloy and Mg-2Zn-0.5Nd-
0.5Zr alloy (Figure 5), exhibiting a stronger microgalvanic effect. Therefore, the corrosion
resistance of the Mg-2Zn-0.5Y-0.5Zr alloy was lower. The second phases in the four-pass
extruded Mg-2Zn-0.5Gd-0.5Zr alloy were larger than that of the Mg-2Zn-0.5Nd-0.5Zr alloy.
It is well known that the larger second phase is detrimental to the corrosion resistance
of alloys. Thus, the corrosion rate of the Mg-2Zn-0.5Gd-0.5Zr alloy was faster than the
Mg-2Zn-0.5Nd-0.5Zr alloy. Another factor influencing the corrosion resistance of the
Mg-2Zn-0.5Nd-0.5Zr alloy is that Nd could increase the matrix potential and decrease
the microgalvanic effect between the matrix and the second phase [25]. After four-pass
extrusion, the grain size was decreased obviously. However, a bimodal grain structure
formed in the alloys. It was found that the microgalvanic effect also exists between the large
grains and the ultrafine grains [3,26]. The surface energy of ultrafine grains is much higher
than the large grains. The ultrafine grains acted as an anode and the large grains acted as a
cathode. The four-pass extruded Mg-2Zn-0.5Zr alloy showed an obvious bimodal grain
structure. After the addition of Gd, Nd and Y, the bimodal grain structure was inhibited to
some extent. Therefore, the rare earth element-containing alloys exhibited a much better
corrosion resistance than the Mg-2Zn-0.5Zr alloy. Corrosion products on the surface of Mg
alloys also played an important role in enhancing their corrosion resistance. Although the
corrosion product of the MgO film was not dense, with a low protective effect, it was found
that calcium phosphate deposition could protect the matrix [27,28]. From the corrosion
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product observation (Figure 12), it was discovered that flocculent corrosion products that
contained large amounts of Ca and P elements were deposited on the surface of the Mg-2Zn-
0.5Nd-0.5Zr alloy. Calcium phosphate deposition also improved the corrosion resistance of
the Mg-2Zn-0.5Nd-0.5Zr alloy and exhibited uniform corrosion in Hank’s solution.

4.3. Effects of Different Rare Earth Elements on the Cytocompatibility of the ECAPed Alloys

It has been proven that Mg alloys have good biocompatibility, and some nutritious alloy-
ing elements, such as Ca, Sr, Si, Mn, etc., have also proven to be non-toxic. However, the bio-
compatibility of the rare earth elements still remains a subject of debate. Feyerabend et al. [29]
found that the cytotoxicity of the rare earth elements may be related to their ionic radii. For
the highly soluble elements, Dy and Gd are more suitable than Y. Suitable elements with
a low solid solubility are Nd, Eu and Pr. In this study, it was found that Nd had the best
cytocompatibility and Y exhibited the lowest cytocompatibility. For Mg alloys, the cytocom-
patibility is closely related to their degradation rate, where a faster degradation rate means a
lower cytocompatibility. After the four-pass extrusion, the Mg-2Zn-0.5Nd-0.5Zr alloy showed
the lowest corrosion rate, with a degradation rate of 0.42 mm/y in Hank’s solution after
14 days of immersion. In addition, a previous study on the Mg-Nd-Zn-Zr alloy also indicated
that Nd had good cytocompatibility [30]. It has been proven that Nd3+ is beneficial to the
differentiation and formation of mineralized matrix nodules of osteoclasts at concentration of
1 × 10−8 mol/L and 1× 10−5 mol/L, respectively [31].Therefore, the Mg-2Zn-0.5Nd-0.5Zr
alloy showed the highest cell viability. Although there is still controversy about the biosafety
of Y, it was found that the Mg-2Zn-0.5Y-0.5Zr alloy has a relative low cytocompatibility in
this work. For the Mg-2Zn-0.5Y-0.5Zr alloy, it was easily corroded due to the microgalvanic
effect and low Gibbs free energy of Y, where a faster degradation would produce more Mg2+

ions and a higher pH value, thus decreasing the cell viability of the alloys. A further study
was carried out in order to analyze the cytocompatibility of Y3+, and it was found that the
effects of Y3+ on the proliferation, differentiation and mineralization functions depended
on the concentration and culture time [32]. For the Mg-2Zn-0.5Gd-0.5Zr alloy, though it
exhibited a good cytocompatibility, there was no metabolic pathway for the Gd element
in vivo that would accumulate in the organs of rats after implantation [33]. Thus, Gd-free
WE43 (MgYREZr) alloys are being explored and applied in clinics [34], and, in this sense, the
Mg-2Zn-0.5Nd-0.5Zr alloy shows the best potential to be used in the field of biomaterials.

5. Conclusions

In this study, the effects of different rare earth elements Gd, Nd and Y on the degra-
dation and mechanical properties of the ECAP extruded Mg-2Zn-xRE-0.5Zr alloys were
investigated. Some conclusions that can be drawn are as follows:

(1) After the ECAP extrusion, the Mg-2Zn-0.5Y-0.5Zr alloy shows the highest strength
due to the second phase dispersive strengthening. Moreover, the Mg-2Zn-0.5Nd-0.5Zr
alloy exhibits the best ductility due to the grain refinement and activation of the
non-basal slip. This means that both Y and Nd are beneficial to the enhancement of
strength and ductility, respectively;

(2) The Mg-2Zn-0.5Nd-0.5Zr alloy shows the best corrosion resistance, exhibiting a uni-
form corrosion; the Mg-2Zn-0.5Y-0.5Zr alloy exhibits the lowest corrosion resistance,
revealing a pitting corrosion. The corrosion resistance of the alloys by the addition of
the three elements is ranked as follows: Nd > Gd > Y;

(3) The three added elements (i.e., Nd, Gd and Y) possess good cytocompatibility. Mean-
while, combining the three parameters of the mechanical property, corrosion resistance
and cytocompatibility, the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy shows a good applica-
tion prospect in the field of orthopedics.
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