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Department of Engineering Structures, Faculty of Civil and Environmental Engineering, Gdansk University of
Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
* Correspondence: ireneusz.marzec@pg.edu.pl (I.M.); jerzy.bobinski@pg.edu.pl (J.B.)

Abstract: Results of the numerical simulations of the size effect phenomenon for concrete in compari-
son with experimental data are presented. In-plane geometrically similar notched and unnotched
beams under three-point bending are analyzed. EXtended Finite Element Method (XFEM) with a
cohesive softening law is used. Comprehensive parametric study with the respect to the tensile
strength and the initial fracture energy is performed. Sensitivity of the results with respect to the
material parameters and the specimen geometry is investigated. Three different softening laws
are examined. First, a bilinear softening definition is utilized. Then, an exponential curve is taken.
Finally, a rational Bezier curve is tested. An ambiguity in choosing material parameters and softening
curve definitions is discussed. Numerical results are compared with experimental outcomes recently
reported in the literature. Two error measures are defined and used to quantitatively assess calculated
maximum forces (nominal strengths) in comparison with experimental values as a primary criterion.
In addition, the force—displacement curves are also analyzed. It is shown that all softening curves
produce results consistent with the experimental data. Moreover, with different softening laws
assumed, different initial fracture energies should be taken to obtain proper results.

Keywords: concrete; size effect; fracture energy; cohesive crack; XFEM; three-point bending

1. Introduction

During a cracking process in concrete so called fracture process zone is created. Its size
is not negligible comparing to specimen’s dimensions. As a consequence, the behavior of
concrete structures exhibits strong size effects, i.e., small elements have a greater nominal
strength than large ones. The size effect depends also on the geometry on the boundaries,
e.g., unnotched versus notched beams. All mentioned difficulties cause problems in
proper determination of concrete material properties or performing advanced numerical
simulations. There is a variety of alternative approaches and there is still no consensus in
describing the fracture in concrete. The proper description of cracks is, therefore, crucial
in obtaining physically admissible results in simulations of concrete [1,2] and reinforced
concrete specimens [3–6]. Within continuum mechanics, cracks can be defined in a smeared
sense [7,8] or as a discrete one with cohesive elements [9,10] or based on Extended Finite
Element Method (XFEM) [11–16]. In advanced formulations these two approaches can be
coupled [17,18].

A very important issue in the numerical description of cracks in concrete is a realistic
definition of a constitutive law for concrete in tension. The behaviour of concrete under
uniaxial tension is strongly nonlinear. Initially concrete behaves as a linear elastic material
(approximately up to 90% of the tensile strength) followed by a hardening phase. After
reaching the tensile strength a gradual decrease of the tensile strength starts (so-called
quasi-brittle behaviour). When a mathematical description of concrete under tension is
formulated, a hardening region before the peak is usually neglected and the material
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behaviour is assumed to be linearly elastic up to the peak. In order to the describe the soft-
ening phase (after the peak) several alternative formulations can be used. The most popular
and most commonly used are the linear, bilinear, and exponential (or quasi exponential)
softening curves.

The simplest possibility to define the softening of concrete in tension is to assume a
linear softening relationship. Unfortunately, this approach generally gives wrong (non-
physical) results and therefore it should be avoided in advanced numerical simulations of
concrete specimens. Realistic results can be obtained by adopting the bilinear softening
law [19] with two sections with different inclination (softening modulus). The additional
issue here is the definition of the kink point. Petterson [19] assumed the yield stress at the
kink point σk equal to one third of the tensile strength ft. The displacement at the kink κk
point was taken as 0.22 of the ultimate displacement κu ultimate displacement (when yield
stress is equal to zero). Wittman et al. [20] proposed the kink point at the level of 25% of the
tensile strength ft. The CEB-90 model code [21] for normal strength concrete took the ratio
between the σk and ft as 0.15. Bažant [22] stated the kink point should be defined between
the 0.15 and 0.33 of the tensile strength ft. Park et al. [23] numerically analysed several
different definitions of the kink point location with the σk/ ft ratio between the 0.18 and 0.42.
They implemented a cohesive zone model into the Abaqus software. The second family of
softening curves utilises exponential function starting from almost classical formulation
(Gopalaratnam and Shah [24]) to very complex relationships (Reinhardt et al. [25], Chen
and Su [26]).

Tang and Chen [27] compared numerically bilinear softening curve by Wittman et al. [20],
exponential relationship by Reinhardt et al. [25] and exponential formula by Chen and Su [26]
with experiments. They found the best agreement for normal strength concrete was achieved
with the curve by Reinhardt et al. [25], while the formula proposed by Chen and Su [26]
gave the best results for the high strength concrete. It should be noted, however, that the
differences were minimal. Kumar and Barai [28] numerically simulated concrete compact
tension specimen with different softening curves. The best agreement was obtained with the
exponential curve by Reinhardt et al. [25] and bilinear curve by Wittmann et al. [20] while the
linear softening relationship gave the worst results. Dong et al. [29] tested experimentally
two series of notched concrete beams under three-point bending with different notch heights
and constant height (B-series) and with different heights and constant notch size (L-series).
Next, they run numerical simulations using bilinear softening law proposed by Petterson [19].
Alternatively, the size effects for quasi-brittle materials can be described using the fractal
approach to the mechanics of material e.g., within cohesive crack model [30]. The in-depth
review of investigation and application of fractal theory in cement-based materials was
presented by Wang et al. [31].

Recently some extensive research programs were executed to improve the understand-
ing of concrete fracture. Hoover et al. [32] examined unnotched and notched concrete beams
under three-point bending. Four different geometrically similar beam sizes of five different
notch to depth ratios were analyzed. More than one-hundred specimens were tested. Based
on experimental data initial and total fracture energies were determined [33]. The identical
beams (with the respect to geometry data) were tested by Çağlar and Şener [34]. In total,
80 specimens were casted. The main difference comparing to Hoover et al. [32] research
was the direction of casting: instead of the horizontal position, beams were casted vertically.
In addition, the support rotations were measured. Independently, similar experiments
were conducted by Grégoire et al. [35]. They examined geometrically similar unnotched
and notched beams of four different sizes and three different notches to depth ratios. In
total, 34 specimens were tested.

Experimentally obtained peak loads were later used to verify different theoreti-
cal size effect laws. Hoover and Bažant [36] compared experimental results from [32]
with improved universal size effect law (USEL). A very good agreement was achieved.
Hu et al. [37] presented an extensive comparison of different formulations of size effect laws
and boundary effect model against experimental results of Hoover et al. [32]. Çağlar and
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Şener [34] on the basis of their experimental results verified universal size effect law (USEL)
proposed by Hoover and Bažant [36] and boundary effect model of Duan et al. [38,39].
They stated that Bažant’s Type I size-effect law is reasonably good for beams with small
notches, and Type II size-effect law fits favourably for beams with deep notches. They also
observed that boundary effect model provides good comparison for unnotched beams.
Grégoire et al. [35] compared the experimental outcomes with USEL proposed by Bažant
and Yu [40] and found consistent match between them.

Several researchers performed numerical simulations and compared their results with
experimental outcomes cited above. Hoover and Bažant [41] used the crack band model
defined as an isotropic damage model with an equivalent strain based on Mazar’s pro-
posal [42] and a bilinear softening law. They also tried to fit experimental data using a
linear or an exponential softening law, but without a success. They presented, however,
no results with exponential or exponential softening curves to support this statement.
Lorentz [43] formulated a nonlocal gradient model consistent with cohesive fracture. To
describe the post-peak behavior of the material he proposed a combination of a linear
polynomial and an exponential function with two parameters. Grégoire et al. [35] took
the isotropic damage constitutive law with Mazar’s [42] equivalent strain, an exponential
softening and integral non-local regularization method. They obtained a good agreement
with experiments of the middle-size specimens, but much worse results were achieved of
the smallest or largest beams. Feng and Wu [44] used phase-field regularized cohesive zone
model with a very small length scale to simulate notched and unnotched concrete beams
experimentally tested by Gregoire et al. [35] and Hoover et al. [32]. In the softening regime,
they adopted the exponential curve proposed by Reinhardt et al. [25]. Barbat et al. [45] used
a local version of an isotropic damage constitutive law with an exponential law to simulate
both experimental campaigns by Gregoire et al. [35] and Hoover et al. [32]. They reported
a good agreement between numerical simulations and experimental outcomes. Parrilla
Gomez et al. [46] simulated again these two experimental series with a model of graded
damage with Thick Level Set (TLS) method. Zhang et al. [47] used localizing gradient
damage model to numerically reproduce both Hoover et al. [32] and Grégoire et al. [35]
experiments. Wosatko et al. [48] examined the behaviour of two constitutive laws: the con-
sistency viscoplasticity and the gradient damage model against the experimental outcomes
of Grégoire et al. [35] experiment. Marzec and Bobiński [49] adopted elasto-plastic model
with Rankine criterion in tension enriched by an integral non-local regularisation approach
to simulate Hoover et al. [32] test.

Havlásek et al. [50] used an isotropic damage model with an equivalent strain corre-
sponding to the Rankine criterion with round-off in multiaxial tension region. An exponen-
tial curve was adopted in the softening regime. The integral non-local theory was used as a
regularisation method. They studied standard and distance based averaging methods. In
the second approach the characteristic length in points lying near the boundary decreased
with decreasing the distance to the specimen’s edge. They found that the distance-based
method was able to reproduce the experimental results well for all notch lengths and beam
sizes, while standard averaging significantly overestimated the nominal strength of the
small notched beams. The distance-based approach by decreasing the characteristic length
results in reducing the localisation zone width. As a consequence, the fracture energy in
the material points lying in the boundary layer is also reduced. Its idea can be related
to nonlocal boundary layer model proposed by Bažant et al. [51] to overcome numerical
problems in treating boundaries in fracture analysis when integral non-local averaging
algorithm is used as a regularisation technique. Vořechovský [52] used the similar idea
of the ‘weakened boundary layer’ to explain experimental results of van Vliet and van
Mier [53,54]. They tested the dog-bone specimens of different sizes subjected to uniaxial
tension. Surprisingly the smallest specimen turned out not to be the strongest one (with
the respect to the nominal strength).

The above review shows there is no clear consensus when modeling the softening
phase of cracks in concrete in mode I. Therefore the aim of the paper is to examine the
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performance of the discrete cohesive crack model equipped with different softening curve
definitions in simulating the size effect phenomenon in concrete beams under bending
to verify the opinion of the superiority of the bilinear softening curves over alternative
formulations. Contrary to smeared crack formulations used in simulation studies men-
tioned above, a discrete approach is used here within Extended Finite Element Method
(XFEM). The attention is paid to the ability of different softening laws: bilinear, exponential,
and based on rational Bezier curve to properly reflect the experimental outcomes. The
influence of the reduction of the fracture energy in the boundary layer is also examined.
Error measures are introduced to quantitatively estimate calculated peak loads. In none
of the papers cited above such quantitatively assessment has not been done. Obtained
force—crack mouth open displacement (CMOD) curves are compared with experimental
diagrams only qualitatively (visually). Analyses determining the best initial fracture ener-
gies are performed. The main goal of presented numerical results is the comparison with
experiments, therefore no fitting to different size effect laws is done here.

The paper is organized as follows. Section 2 outlines the main ideas of the paper.
Section 3 presents the experimental research performed by Hoover et al. [32]. Their results
serve as a verification data to rate material parameters used in FE-calculations. Section 4
provides information about the formulation of the eXtended Finite Element Method and
the constitutive law used to describe a discrete crack. Some details of the implementation
issues are also added. Numerical results are extensively presented in Section 5. The final
conclusions and future plans are listed in Section 6.

2. Significance of Research

Current research, concerning a series of geometrically scaled concrete beams with and
without notch under three-point bending, is an extension of our previous investigations of
concrete fracture properties [49]. The attention is put on influence of different softening
curves definition and material parameters in concrete (i.e., fracture energy and initial
fracture energy) on specimen strength under bending. This knowledge is important to
better understand a fracture phenomenon and to provide reliable numerical tool to describe
the size effect in concrete members. Thus, the main objective of this study that also
represent its novelty is detailed and quantitative (not only qualitative) assessment of
efficiency of different softening curves in numerical prediction of size effect for concrete
beams under bending.

3. Experiment by Hoover
3.1. Geometry of the Beams

Fracture process in one of the fundamental phenomenon in concrete. The adequate
description is a crucial issue and it is essential to formulate a proper physically meaningful
constitutive law. There have been several experimental campaigns on fracture in concrete.
One of the recently reported research was conducted by Hoover et al. [32]. They examined
128 unnotched and notched concrete beams under three-point bending. The geometry of a
beam is shown at Figure 1. Four different sizes with five notch dimensions were analysed.
The beam height D was taken as 500, 215, 93 and 40 mm for a huge, large, medium, and
small specimen, respectively. The total length of the beam was 1200, 516, 223.2 and 96 mm
for a huge, large, medium, and small specimen, respectively. The notch to depth ratio α0
(relative length of a notch with the respect to the beam’s height D) was 0.0 (no notch), 0.025,
0.075, 0.15 and 0.30. In total, 18 geometries were defined (beams with the height equal to
D = 93 mm and D = 40 mm with α0 = 0.025 were not cast). The span length L was equal
to 2.167D for all beams. The thickness was set to B = 40 mm. The width of the notch was
1.5 mm. In addition, 36 companion samples were prepared to determine the compressive
strength, modulus of rupture, Young’s modulus, and Poisson’s ratio. All specimens were
cast within three hours from the same batch of concrete. They were kept in identical curing
and environmental conditions. As a consequence, low scatter of results was achieved, and
all beams had virtually the same material properties.
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Figure 1. Geometry of the beam and imposed boundary conditions.

3.2. Experimental Results

All tests were carried out under opening displacement control. Two points at the
bottom edge lying symmetrically with the respect to the vertical axis of symmetry of the
beam were chosen and a gauge was placed. The gauge length was scaled with the beam
size. Steel loading blocks with dimensions 60 × 40 × 40, 25.8 × 17.2 × 40, 11.1 × 7.4 × 40
and 4.8 × 3.2 × 40 mm for a huge, large, medium, and small specimen, respectively, were
placed under the load and supports. The nominal strength σN was calculated for all results:

σN =
3
2
·2.176Pu

BD
(1)

where Pu is the maximum force. Table 1 presents mean nominal strengths, σ
Exp
N for

each beam geometry (after [30]). In this paper, the correction factor C f was calculated
for each geometry. This factor considers real dimensions measured in experiments, usually
different than nominal beam dimensions B and D. It is defined as:

C f =
2
3
·

σ
Exp
N BD

2.176PExp
u

(2)

where PExp
u is the averaged maximum force for a given geometry (calculated from maxi-

mum force values given in [32]). Averaged maximum forces PExp
u and correction factors C f

are presented in Table 1. The correction factor of the unnotched medium beam (D = 93 mm)
was rather unrealistic and it deviated significantly from other values (bold number in
Table 1), therefore a value 1.0 was assumed instead.

Table 1. Experimental results: nominal strengths σ
Exp
N [32], correction factors C f and averaged

maximum forces PExp
u (bold number–refer to explanation given in text).

D [mm] α0 σ
Exp
N [MPa] Cf PExp

u [kN]

40 0 7.756 0.927 4.10
40 0.075 6.694 0.978 3.35
40 0.15 5.383 0.975 2.71
40 0.30 3.550 0.986 1.76

93 0 7.350 0.880 9.52
93 0.075 5.492 0.968 6.47
93 0.15 4.541 0.975 5.31
93 0.30 3.041 0.967 3.58

215 0 6.295 0.972 17.07
215 0.025 5.323 1.032 13.59
215 0.075 4.591 1.018 11.88
215 0.15 3.678 1.023 9.47
215 0.30 2.551 1.042 6.45
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Table 1. Cont.

D [mm] α0 σ
Exp
N [MPa] Cf PExp

u [kN]

500 0 5.956 1.009 36.18
500 0.025 4.710 1.021 28.27
500 0.075 3.632 1.034 21.53
500 0.15 2.926 1.060 16.91
500 0.30 1.884 1.053 10.97

4. Constitutive Laws
4.1. General Formulation

Cohesive cracks will be described here via Extended Finite Element Method (XFEM).
This approach is based on a Partition of Unity concept [55]. It allows for adding extra
terms to the standard Finite Element (FE) displacement field approximation for a better
capture of a displacement discontinuities. The key point is to enrich only selected nodes
with additional degrees of freedom (locally “near” a crack) and to remain the remaining
part of the specimen standard. As the crack propagates during FE calculations, the number
of enriched nodes increases dynamically. Using XFEM, cracks can pass through finite
elements without any remeshing; they do not have to follow the edges of the elements.

The formulation used in this paper follows generally the classical idea presented by
Wells and Sluys [11]. The only fundamental difference is the application of the shifted-basis
enrichment (Zi and Belytschko [56]). In a body Ω cut by a discontinuity Γd (Figure 2), the
displacement field u in a point x can be calculated as (using a finite element format):

u(x) = ∑
I∈Ntot

NI(x)aI + ∑
I∈Nenr

NI(x)(ψ(x)− ψ(xI))bI (3)

where NI is a shape function in a node I, Ntot is the set of all nodes, Nenr is the set of
enriched nodes (nodes of the elements cut by the crack), aI are standard displacements
(in a node I), bI are enriched displacements in a node I and ψ denotes a (generalized) step
function (a sign function) defined as:

ψ(x) =

{
1 x ∈ Ω+

−1 x ∈ Ω−
(4)

Figure 2. Body cut by a discontinuity.

In the original formulation [11], the Heaviside step function was used. This shift
does not change the approximating basis, but it simplifies the formulation of the method.
This enrichment is equal to zero in all elements not cut by a crack; as a consequence, only
two types of finite elements have to be defined. Moreover, total displacements in nodes
are equal to standard ones. The weak form of equilibrium, discretized equations, and
the details of the finite element derivations can be found in Zi and Belytschko [56] and
Tejchman and Bobiński [57].
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4.2. Bulk Material Description

Within this approach two material laws have to be defined. The first one describes the
behavior of the material in a solid (bulk) body. In uncracked continuum, a linear elastic
constitutive relationship between strains ε and stresses σ is assumed:

σ = Deε (5)

where De is a linear elastic material matrix. Assuming plane stress conditions, the matrix
De is calculated as:

De =
E

1− υ2

 1 υ 0
υ 1 0
0 0 1− υ

 (6)

where E is Young’s modulus and ν denotes Poisson’s ratio.

4.3. Discrete Crack Definiton

The second constitutive relationship defines the behavior of the cohesive crack. A new
crack segment can be created, if the Rankine criterion (plane stress case) is fulfilled:

max{σ1, σ2} > ft (7)

where σ1 and σ2 are the principal stresses and ft is the tensile strength. This inequality is
checked in all integration points in the finite element at the front of the crack tip. The crack
grows if Equation (7) is true in at least one integration point. Due to a symmetry of the
problem (three-point bending test) and isotropic and homogeneous material definition, a
fixed vertical direction of the crack propagation is assumed. A new segment is defined
from one element’s side to another one (crack tip cannot be placed inside a finite element).
Segment end points cannot be placed at element’s vertices. For integration purposed a
cracked element is divided into three sub-triangles with one-point Gauss quadrature, while
two integration points are defined along the crack segment (Asferg et al. [58]).

Along a crack a cohesive traction vector t is defined (it is not a stress-free crack
formulation). The traction vector t is related with displacement jumps u. Both these
quantities are defined in a local coordinate system and they have normal (index n) and
tangential (index s) components. Due to the tensile dominated nature of the problem, the
following loading function f is assumed:

f (JuKn, κ) = JuKn − κ (8)

where κ is an internal variable, equal to the largest value of the normal displacement
un obtained during the loading history. Active loading occurs for f ≥ 0 and unloading
(reloading) is indicated by f < 0. During active loading the normal traction force is equal
to the yield traction ty:

tn = ty(κ) (9)

Three (basic) softening curves are used to calculate the yield traction ty. First, a bilinear
curve is defined (Figure 3a):

tn(κ) =


ft +

(
tk − ft

)
κ
κk

κ < κk

tk
κu−κ
κu−κ f

κk ≤ κ < κu

0 κ ≥ κu

(10)
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where tk and κk are the traction and the value of the internal variable κ at the kink point,
respectively, and κu is the value of the of the internal variable (crack opening) κ when the
traction tn is reduced to zero. Parameters κk and κu can be calculated as:

κk =
2G f

f 2
t

(
ft − tk

)
and κu =

2
tk

(
GF + G f

(
tk
ft
− 1
))

(11)

Figure 3. Softening curves: (a) bilinear; (b) exponential; (c,d) rational Bezier.

Using the total fracture energy GF and the initial fracture energy G f (area under the
initial tangent line from the peak point at Figure 3, marked as a green area). The equivalent
relationship (in a continuum format) was used by Hoover and Bažant [41].

As a second alternative an exponential function is chosen (Figure 3b):

tn(κ) = ft exp
(
− ft

GF
κ

)
(12)

The area under this curve is equal to the total fracture energy GF and the ratio between
the total fracture energy GF and the initial fracture energy G f is equal to 2 (it is a fixed
value, it does not depend on the curve parameters ft and GF).

The last proposal is formulated using Bezier rational curve based on the bilinear
softening definition (Figure 3c,d) to allow the smooth transition between two segments
(without a sudden change of the direction in the kink point). It is defined via two parametric
equations:

κ(t) =
2(1− t)twκk + t2κu

(1− t)2 + 2(1− t)tw + t2
and tn(t) =

(1− t)2 ft + 2(1− t)twtk

(1− t)2 + 2(1− t)tw + t2
(13)
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With a parameter t and a weight w attached to the kink point. The weight w controls
the shape of the curve; for w = 0 a linear softening is obtained and for w = ∞ it coincides
with the bilinear diagram (Figure 3a). Here the “total” fracture energy used to define the
kink point on the underlying bilinear softening curve is denoted as GB and it is not equal
to the total fracture energy GF (except for the case with w = ∞). The term GF − GB can be
interpreted as the area between the Bezier rational curve and the bilinear curve (marked as
a red area in Figure 3c). The larger the value of the weight w is taken, the smaller difference
GF − GB is obtained.

Given a basic softening curve tn, the yield traction is defined as:

ty = D f tn (14)

where D f is a correction term calculated as:

D f = 1− exp
(
−

d f ft

GF

)
(15)

With a drop factor d f (Cox [59]). The presence of the correction term D f improves the
convergence in cases where transition between tension and compression occurs, resulting
in sudden stiffness changes. With increasing the value of the drop factor d f , the correction
term D f goes to one and the original softening definition is recovered.

During unloading, the secant stiffness is used with a return to the original configura-
tion (damage format):

tn =
ty

κ
JuKn (16)

In compression the penalty stiffness Tn is taken:

Tn =
d f f 2

t

GF
(17)

It is calculated as a derivative of the yield traction (Equation (14)) at κ = 0.
In a tangential direction a linear dependence on the current yield traction is assumed:

ts = Ts
ty

ft
JuKs (18)

With the initial shear stiffness Ts. It ensures that the shear traction decreases to zero
while the crack opens. This idea is close to the exponential softening postulated by Wells
and Sluys [11].

4.4. Boundary Layer

In order to verify the necessity of introducing the weaker boundary layer postulated
by some researchers to obtain physically consistent results (Vořechovský [52]) some extra
simulations are carried out. Figure 4 presents the geometry of the weaker boundary layer
zone of the width b along the specimen’s edges (including notch). Within this zone initial
and total fracture energies are calculated as βG f and βGF, where a reduction coefficient β
is defined as:

β(x) =

{
β0 + (1− β0)

d(x)
b d(x) < b

1 d(x) ≥ b
(19)
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Figure 4. Geometry of the boundary layer zone.

Here d(x) is the distance of the point x to the nearest edge and β0 is the value of
the reduction coefficient at the boundary. A linear decrease is assumed here, but other
relationships, e.g., exponential one [50], can be also used. Although such reduction was
not performed by Hoover and Bažant [41] and Lorentz [43], it was essential to obtained
experimentally consistent results by Havlásek et al. [50].

4.5. Implementation

Numerical calculations have been performed using a commercial program Abaqus
Standard [60]. Although it includes XFEM procedures, this implementation has some
limitations. Only quadrilateral finite elements are allowed and there is no possibility to
define user’s crack direction propagation criteria. Therefore, the Abaqus user-defined
element procedure (UEL) is utilized to implement a finite element within XFEM. The
independent module in Fortran 95 has been written to handle model data and needed
subroutines. Within this module nodal coordinates, elements connectivity data, information
from integration points are kept. This module is then called in for the UEL subroutine.
Such approach gives the access to gathered model data from each finite element (it is not
possible by default). The convergence criteria taken from Abaqus [60] are applied:

rmax ≤ 0.01q̃ and cmax ≤ 0.01∆umax (20)

where rmax is the largest residual in a balance force vector (right hand side vector), q̃ is an
overall time-averaged value of all element force vectors and external loads, cmax stands for
the largest correction (change between last two iterations) of the unknown displacements
and ∆umax depicts the largest change of the unknown displacement in the increment.

The new crack segments can be created only in a converged configuration. Then,
a restart procedure is applied, and a current increment is repeated to find a converged
configuration again. A crack can be extended by one segment (in one finite element)
only between two converged configurations. This procedure is repeated as long new
crack segments are created in a current increment. If no new crack segments have been
added, the next increment starts (after convergence). In order to implement this idea into
Abaqus, an independent convergence algorithm has been developed. Information about
residuum forces and displacement corrections is gathered (independently from Abaqus)
in the Fortran module (it is transferred from user elements). One-node user elements
with zero stiffness matrix and zero force vector are manually defined in an input file
in nodes with imposed boundary conditions. These elements transfer information on
defined displacement/boundary conditions to exclude appropriate degrees of freedom
from convergence check algorithm. As a consequence, converged iterations can be detected
independently within a Fortran module. Information about the simulation process (e.g.,
start of a new increment, execution of a next iteration or creation of a new crack segment
and restart of a current increment) is “passed” to Abaqus by defining a user element with
a very large label (to be called as a last finite element in an iteration). This element (not
attached to the model analyzed) returns a very large force vector in iterations when the
start of the next increment is not permitted or zero force vector in the opposite case.
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The arc-length method has been used to control the simulation process. Generally, in
arc-length methods, a system of balance equations in an iteration i can be written as:

K(i−1)δu(i)
r = r(i)

K(i−1)δu(i)
f = f(i)

(21)

where K is the global stiffness matrix, r is the residuum force vector and f stands for a
vector of external loads. Corrections δur and δu f form the correction of total displacements:

δu(i)
t = δu(i)

r + δλ(i)δu(i)
f (22)

With the multiplier correction δλ. Abaqus Standard includes only one method based
on arc-length control, namely modified Riks procedure. This approach is suitable in global
buckling analysis, but it is not efficient in cases when deformations concentrate in small
regions with elastic unloading in the remaining part. So-called indirect displacement
control method is used here [61]. In order to implement it into Abaqus, some modifications
are required. First the set containing all nodes of the model is copied and a new set is
created with the same number of nodes and their original coordinates. The first and the
second set of nodes store ur and u f displacements, respectively. The definition of a user
element contains a subset of nodes from the first set following an analogous subset of nodes
from the second set. The total number of nodes defining the element is doubled and the
element stiffness matrix and element force vector is extended using the idea presented in
Equation (21). Note that all displacements: ur, u f and ut contain both standard and enriched
displacement terms aI and bI respectively. Another user element with zero stiffness matrix
and force vector is defined with nodes located at the ends of the gauge. It is responsible for
modifying the value of the λ multiplier based on displacement values in nodes. Its label is
manually set to one to ensure its call as the first element in the iteration.

Abaqus is not able to visualize user elements in Complete Abaqus Environment
(CAE). Therefore, a third set of nodes is defined (again with the same original coordinates).
Based on information from the original mesh, a set of built-in standard finite elements is
created on these nodes. A zero stiffness (and stress) material is assigned to these elements.
Information from user elements about strains and stresses is passed via module written in
Fortran (Intel Company, Santa Clara, CA, USA) and next it is exported as state variables in
these elements. In each node from the third set a one-node user element is created with the
unit matrix as a stiffness matrix and a force vector with appropriate terms from the total
displacement vector ut. In that way global displacements can be visualized. However, this
trick does not allow for presenting the crack pattern. It is achieved by creating Postscript
files with deformed (and cracked) FE mesh in selected simulation times. Alternatively,
each built-in standard finite element defined to visualize results, in which a crack occurs,
is replaced with three or four built-in standard triangle elements. These elements are
defined on standard nodes from the ‘master’ element and two additional pair of nodes
located at the crack segment ends. It enables to visualize the growth of the crack during the
simulation. However, this method requires some extra modifications of the input file and
the re-execution of the simulation (information about the crack geometry is available after
the completion of the job).

5. FE-Simulations
5.1. Input Data

The performance of all 18 beams are simulated, following the geometry data provided
in Section 3. Steel blocks are also created with load/support points defined in the middle
at the horizontal edge. Indirect displacement control method described in Section 4.5 is
used to apply the load. The gauge length varies for the different beam’s sizes and shapes
(between 12.7 mm and 162 mm) and it is taken directly from the experiment [32]. The
ultimate elongation of the gauge is set to ∆ = 0.3 mm. A requirement of execution of at
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least 1000 and 250 increments is imposed to complete the job in simulating unnotched and
notched beams, respectively. The starting point for a discrete crack is defined manually in
the middle of the horizontal edge at the top of the notch. The numerical calculations are
carried out assuming plane stress conditions. Triangular constant strain finite elements
are used. The FE mesh in the central region above the notch along the height is refined
with the maximum length of a finite element side about 2 mm. The total number of finite
elements is between 4981 and 11,660, depending on the beam geometry.

Elastic constants are the same as determined in the experiment. The Young’s modulus
is taken as E = 41.24 GPa and the Poisson’s ratio is ν = 0.172 [32,41]. Note that a slightly
different value of Young’s modulus has been assumed in [50]. They took E = 35.6 GPa
based on the initial slope of the experimental load-displacement curve obtained from the
largest unnotched specimen. The total fracture energy is fixed to GF = 70 N/m (after [41]),
although initially larger values GF = 96.94 N/m and GF = 110.09 N/m were reported [33].
Lorentz [43] assumed GF = 75 N/m and Barbat et al. [45] took GF = 90 N/m. In the
calculations with the bilinear softening or the Bezier rational curve the traction at the kink
point is always taken as tk = 0.15 ft (after [41]). The shear stiffness is taken as Ks = 0.0 N/m3.
The companion calculations with other values of Ks showed no difference in results. The
remaining parameters: the tensile strength ft, the initial fracture energy G f , the weight
w (for the Bezier rational curve) and the type of the softening curve vary thorough the
simulations. The behavior of the steel loading plates is simulated by defining linear elastic
constitutive law with the Young’s modulus Es = 200 GPa and the Poisson’s ratio νs = 0.3. If
not explicitly stated, no boundary layer reduction is applied.

5.2. Error Measures

In order to quantitatively estimate the quality of the simulation results, several error
measures are used. The following relative error Err0 defined as:

Err0 =
σFEM

N − σ
Exp
N

σ
Exp
N

(23)

is used to evaluate a single simulation. Here σFEM
N is the nominal strength calculated from

FE results as (using Equation (1)):

σFEM
N = C f

3
2
·2.176Pu

BD
(24)

The whole set of N results (usually N = 18) is rated using mean percentage error Err1:

Err1 =
1
N

N

∑
i=1

Err0,i (25)

or mean absolute percentage error Err2:

Err2 =
1
N

N

∑
i=1
|Err0,i| (26)

5.3. Bilinear Softening

The choice of the values of the material parameters in softening to obtain the best
fit is not an easy task. Havlásek et al. [50] calculated an error measure considering six
force values for the huge beams (D = 500 mm) and peak loads for the remaining sizes.
Lorentz [43] identified tensile parameters simulating medium (D = 93 mm) and large
(D = 213 mm) beams with notch to depth ratios α0 = 0.15 and α0 = 0.30. Then he used
these values to predict the behaviour of unnotched medium and large beams, and huge
(D = 500 mm) unnotched and notched (α0 = 0.15 and α0 = 0.30) specimens. It is interesting
to note that he did not simulate the performance of the small (D = 40 mm) beams at all.
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Grégoire et al. [35] calibrated their model parameters on the smaller beam sizes and they
used them to simulate the behaviour of the largest specimens.

5.3.1. Huge and Small Beams

First series of FE-calculations are performed using a bilinear softening law (Equation (10)).
Here two “extreme” case are investigated. After some initial studies two values of the tensile
strength are chosen for further calculations: ft = 4.8 MPa and ft = 5.2 MPa. A discrete set of
initial fracture energies G f in the range of 30 to 50 N/m and an increment of 2 N/m is assumed.
The remaining parameters are kept fixed with their initial values specified in Section 5.1.
Figures 5 and 6 present obtained nominal strengths σFEM

N for the huge (D = 500 mm) and
small (D = 40 mm) unnotched and notched specimens, respectively. In the simulations of
the huge beams, the best results are obtained for the initial fracture energy G f = 48 N/m
(Err1 = 0.07% and Err2 = 6.20%) and G f = 42 N/m (Err1 = −0.34%, Err2 = 2.72%) taking
the tensile strength ft = 4.8 MPa and ft = 5.2 MPa, respectively. Taking the tensile strength
ft = 4.8 MPa, the larger notch to depth ratio α0 is assumed, the smaller initial fracture energy
G f gives the best results. The same conclusion is true for the results with the tensile strength
ft = 5.2 MPa with an exception of the unnotched beams. It is interesting to remark that the
sensitivity of the nominal strengths σFEM

N with the respect to the initial fracture energy G f
increases with increasing the notch to depth ratio α0, e.g., the error Err0 is between 0.73% and
3.72% and between −10.13% and 9.76% for the notch to depth ratio α0 = 0.0 and α0 = 0.30,
respectively (with the tensile strength ft = 5.2 MPa).

Figure 5. Nominal strengths σFEM
N for the huge beam, different initial fracture energies and the tensile

strength: (a) ft =4.8 MPa; (b) ft = 5.2 MPa.

Calculations of the small beams give the best results for the initial fracture energy
G f = 40 N/m (Err1 = 0.32% and Err2 = 6.91%) and G f = 32 N/m (Err1 =−0.03%, Err2 = 5.84%)
taking the tensile strength ft = 4.8 MPa and ft = 5.2 MPa, respectively. Both simulation sets
confirm the previous observation of decreasing the “best” initial fracture energy G f with
increasing the notch to depth ratio α0. The sensitivity of calculated nominal strengths for the
small beams with the respect to notch to depth ratio α0 is smaller comparing with results
for the huge beams. The error Err0 is between −4.17% and 4.90% and between 4.08% and
17.56% for the notch to depth ratio α0 = 0.0 and α0 = 0.30, respectively (with the tensile
strength ft = 5.2 MPa). Graphically this fact may be seen by comparing line inclinations at
Figures 5 and 6 for different notch to depth ratios α0. Analogous parametric studies for large
(D = 215 mm) and medium (D = 93 mm) beams confirm the observation the “best” initial
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fracture energy G f decreased with decreasing the specimen’s size (e.g., the initial fracture
energy with ft = 5.2 MPa is found to be G f = 38 N/m for both large and medium beams).

Figure 6. Nominal strengths σFEM
N for the small beam, different initial fracture energies and the

tensile strength: (a) ft = 4.8 MPa; (b) ft = 5.2 MPa.

5.3.2. All Beam Geometries

The definition of objective quality measures allows for choosing the best parameters
set. Of course, such analysis should be performed with the restriction of the stochastic na-
ture of the experimental results. Therefore, the average values of maximum forces obtained
experimentally (which serve to asset simulation results) due to finite low number of real-
izations (specimens tested) can also introduce some errors in the analysis. In experiments
by Hoover et al. [32] coefficients of variation were approximately about 5% (they can be
interpreted as results scatter). However, in order to limit the number of simulations exe-
cuted, no stochastic analysis will be performed here, and averaged values of experimental
maximum forces will be treated as ‘perfect’ ones.

On the basis of the results from the Section 5.3.1., four sets of parameters are cho-
sen to perform calculations with all 18 beams: set S1: ft = 4.8 MPa and G f = 48 N/m,
set S2: ft = 5.2 MPa and G f = 42 N/m (both from simulations of the huge beams), set
S3: ft = 4.8 MPa and G f = 40 N/m, and set S4: ft = 5.2 MPa and G f = 32 N/m (both
from simulations of the small beams). Table 2 presents calculated nominal strengths ob-
tained with sets S1–S4. Graphical comparison of experimental and numerical nominal
strengths is depicted at Figure 7. The following errors are obtained: set S1: Err1 = 2.02%
and Err2 = 3.59%, set S2: Err1 = 2.57% and Err2 = 3.34%, set S3: Err1 = −2.60% and
Err2 = 3.65%, and set S4: Err1 = −4.47% and Err2 = 5.36%. In the calculations with sets
S1 and S2 the largest errors are obtained for the small beam and the notch to depth ratio
α0 = 0.3 (Err0 = 11.22% and Err0 = 12.97% for set S1 and S2, respectively). The absolute
values of the error Err0 do not exceed 7% for the remaining geometries. Generally nominal
strengths are overestimated for the small beams, while the agreement with the experimental
outcomes is very good for the other specimens (especially for the set S2). On the contrary,
results with sets S3 and S4 generally underestimate experimental peak loads for larger
beams (especially when parameters set S4 is assumed).
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Table 2. Calculated nominal strengths σFEM
N for bilinear softening curves and sets S1–S4.

D [mm] α0
σFEM

N [MPa]

S1 S2 S3 S4

40 0 7.678 7.896 7.425 7.522
40 0.075 6.762 6.896 6.521 6.489
40 0.15 5.676 5.759 5.449 5.391
40 0.30 3.948 4.011 3.795 3.757

93 0 7.145 7.357 6.931 7.058
93 0.075 5.558 5.580 5.289 5.183
93 0.15 4.663 4.654 4.437 4.328
93 0.30 3.180 3.181 3.025 2.930

215 0 6.067 6.314 5.912 6.133
215 0.025 5.625 5.691 5.394 5.380
215 0.075 4.691 4.642 4.437 4.253
215 0.15 3.833 3.784 3.618 3.430
215 0.30 2.686 2.632 2.528 2.406

500 0 5.755 6.107 5.674 6.010
500 0.025 4.558 4.585 4.361 4.251
500 0.075 3.629 3.555 3.406 3.209
500 0.15 2.950 2.862 2.761 2.558
500 0.30 2.001 1.935 1.862 1.732

The obtained results reveal some problems in determining optimum material parame-
ters in concrete. Sets S1, S2 and S3 give similar errors Err2. Sets S1 and S2 overestimate the
peak loads, while set S3 underestimate it in average, but the absolute values of the errors
Err1 are similar. Only calculations with set S4 produce larger both errors. Analysis of nomi-
nal strengths obtained from FE-calculations reported in [41] return errors Err1 = −3.76%
and Err2 = 4.43%. These values are larger than the errors obtained with sets S1, S2 and S3,
but they are smaller than errors from results with the set S4. Taking material parameters
from [41] and using the approach described here (XFEM) much larger errors are achieved:
Err1 = −7.29% and Err2 = 7.52%. The second comment should be made about the value
of the tensile strength ft. The values between 4.8 MPa and 5.2 MPa are taken here, while
Hoover and Bažant [41] assumed the tensile strength equal to ft = 3.92 MPa. On the other
hand, Havlásek et al. [50] found the optimum uniaxial tensile strength as ft = 4.984 MPa.
Lorentz [43] used a similar value, namely ft = 5.0 MPa. Note also that this high value of
the tensile strength corresponds nicely with the nominal strength for very large structures
fr,∞ = 5.27 MPa determined in [33].

A comment should be made about application of XFEM to simulate unnotched beams
under bending with only one crack. The exact solution should consider a region in the
middle at the bottom edge of the beam with several initial cracks. At the beginning a
region of diffuse damage is formed. Upon increasing the loading force, cracks develop, but
one crack dominates (in the case of the problem analysed here with the axis of symmetry
it would be crack located along this axis). Planas et al. [62] showed numerically that
in unnotched beams under bending, several cracks start to develop but only one crack
dominates at the peak. Moreover, obtained errors with calculations of unnotched beams
with only one crack defined are similar to values obtained for beams with α0 = 0.025 and
they confirm general trends observed in Section 5.3.1. Even two different size effect laws can
be postulated to describe unnotched (Type I) and notched (Type II) beams, XFEM with this
simplified approach is able to capture numerically both these phenomena. Therefore, this
simplification (one crack instead of a bundle of cracks) is justified. The same simplification
was made by Fend and Wu [44]. In the simulations of the unnotched beams they also
assumed only one crack starting from the midpoint of the bottom edge of a beam.
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Figure 7. Nominal and experimental strengths with bilinear softening law and: (a) set
S1: ft = 4.8 MPa and G f = 48 N/m; (b) set S2: ft = 5.2 MPa and G f = 42 N/m; (c) set S3: ft = 4.8 MPa
and G f = 40 N/m; (d) set S4: ft = 5.2 MPa and G f = 32 N/m.

Figure 8 presents evolution of the cracks’ lengths versus the crack-mouth open dis-
placements for all beams and parameters set S1. Red points indicate the moment when
the maximum force is obtained. The crack length Lcrack at the peak is in range 1.4–1.6 cm
(Lcrack/D = 0.35–0.40), 2.3–2.6 cm (Lcrack/D = 0.25–0.28), 3.4–3.8 cm (Lcrack/D = 0.16–0.18)
and 3.9–4.9 cm (Lcrack/D = 0.08–0.10) for small, medium, large and huge beams, respec-
tively. The larger the beam is assumed, the smaller the relative crack length is obtained [63].
For small beams a crack is always fully developed (a large horizontal plateau) while for the
huge beams a crack is still to propagate (no horizontal plateau). In general, at the peak a
crack is far away from being fully formed.
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Figure 8. Evolution of crack lengths versus crack mouth opening displacement for set S1: ft = 4.8 MPa
and G f = 48 N/m.

5.3.3. Boundary Layer

In the next phase, the influence of the boundary layer is examined. Material parameters
S1 and S2 are adopted. For each parameters set two values of the boundary layer thickness
are analyzed: b = 0.5 cm and b = 1.0 cm. Nine discrete values of the reduction coefficient
at the edge β0 in the range of 0.1 to 0.9 and the increment of 0.1 are assumed. Based on
simulations of all geometries and the analysis of errors Err1 and Err2 the best values of the
coefficient β0 are determined. Finally four new parameter sets are defined: S5: ft = 4.8 MPa,
G f = 48 N/m, b = 0.5 cm and β0 = 0.7, S6: ft = 4.8 MPa, G f = 48 N/m, b = 1.0 cm and β0 = 0.8,
S7: ft = 5.2 MPa, G f = 42 N/m, b = 0.5 cm, β0 = 0.7 and S8: ft = 5.2 MPa, G f = 42 N/m,
b = 1.0 cm, β0 = 0.8. In above sets almost the identical and relatively high values of the
coefficients β0 are assumed for different values of the boundary layer thickness. Figure 9
shows calculated nominal strengths compared with experimental values and calculated
nominal strengths are listed in Table 3. Set of force—crack mouth opening displacement
(CMOD) curves for all 18 beams is presented at Figure 10 (set S7), with grey areas between
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experimental extreme curves (here numerical force values are not corrected with the factor
C f ). It can be seen all numerical results fit into experimental limits. The error measures are
equal to: Err1 = 0.09% and Err2 = 2.92%, Err1 =−0.12% and Err2 = 2.90%, Err1 = 0.30% and
Err2 = 2.27%, and Err1 = 0.08% and Err2 = 2.28% for the set S5, S6, S7 and S8, respectively.
In all cases the largest error Err0 is obtained for the small beam with the notch to depth
ratio α0 = 0.3 and it is about 9%. The errors Err0 from the remaining beams do not exceeded
5.5% (its absolute values). Comparing with simulations S1–S4 the presence of the boundary
layer decreases the error measures, especially for the sets with the tensile strength equal
to ft = 5.2 MPa (set S2 versus sets S7 and S8). On the other hand, input parameters (S1
and S2) already produce relatively small errors. By further parametric studies even better
parameters can be found. For instance FE-calculations with the following parameters
(set S9): ft = 5.0 MPa and G f = 48 N/m give the following errors: Err1 = 0.67% and
Err2 = 2.69%, comparable with errors obtained with sets with declared boundary layer.
Therefore, the definition of the boundary cannot be treated as the significant improvement
of the results. Simulation results do not allow also for unique identification of the boundary
layer thickness.

Figure 9. Nominal and experimental strengths with bilinear softening law and: (a) set S5: ft = 4.8
MPa, G f = 48 N/m, b = 0.5 cm, β0 = 0.7; (b) set S6: ft = 4.8 MPa, G f = 48 N/m, b = 1.0 cm, β0 = 0.8;
(c) set S7: ft = 5.2 MPa, G f = 42 N/m, b = 0.5 cm, β0 = 0.7; (d) set S8: ft = 5.2 MPa, G f = 42 N/m,
b = 1.0 cm, β0 = 0.8.
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Table 3. Calculated nominal strengths σFEM
N for bilinear softening curves and sets S5–S9.

D [mm] α0
σFEM

N [MPa]

S5 S6 S7 S8 S9

40 0 7.488 7.491 7.684 7.694 7.690
40 0.075 6.587 6.593 6.664 6.662 6.744
40 0.15 5.494 5.500 5.548 5.562 5.638
40 0.30 3.820 3.828 3.854 3.868 3.928

93 0 7.026 7.018 7.229 7.225 7.171
93 0.075 5.411 5.403 5.441 5.435 5.483
93 0.15 4.553 4.545 4.514 4.510 4.579
93 0.30 3.096 3.091 3.068 3.064 3.130

215 0 5.998 5.994 6.248 6.246 6.138
215 0.025 5.535 5.525 5.576 5.567 5.571
215 0.075 4.604 4.591 4.531 4.507 4.575
215 0.15 3.762 3.743 3.711 3.689 3.753
215 0.30 2.634 2.621 2.577 2.553 2.604

500 0 5.725 5.723 6.070 6.068 5.904
500 0.025 4.496 4.488 4.495 4.488 4.492
500 0.075 3.583 3.561 3.507 3.482 3.512
500 0.15 2.924 2.906 2.835 2.819 2.834
500 0.30 1.988 1.978 1.921 1.910 1.913

5.3.4. Notched Beams

As an alternative approach, notched beams with the notch to depth ratio equal to
α0 = 0.3 are used to determine the fracture parameters. Based upon parametric studies, the
following sets are defined: set N1 with ft = 4.0 MPa, G f = 50 N/m, set N2 with ft = 4.4 MPa,
G f = 42 N/m, set N3 with ft = 4.8 MPa, G f = 38 N/m, and set N4 with ft = 5.2 MPa,
G f = 34 N/m. They give the following values of the error measures (calculated only from
four beam sizes with α0 = 0.3): Err1 = −0.02% and Err2 = 1.90%, Err1 = −0.89% and
Err2 = 2.30%, Err1 = 0.04% and Err2 = 2.85%, and Err1 =−0.96% and Err2 = 4.81%, with
the set N1, N2, N3 and N4, respectively. Figure 11 shows obtained force–displacement
curves. In general, comparable agreement with experimental outcomes is achieved for all
parameter sets. For the smallest beam, the maximum load is obtained with the set N4 and
the minimum load with the set N1, while for the largest beam the opposite case occurs.
Force–displacement diagrams for the small beam suggest also that the assumed here total
fracture energy GF = 70 N/m is too small. This observation is consistent with the larger
value of the total fracture energy (GF = 96.94 N/m) calculated by Hoover and Bažant [14] on
the basis of experimental results. On the other hand, simulations of all beam sizes with sets
N1–N4 generally underestimate experimental results. They return errors Err1 = −6.09%
and Err2 = 6.51%, Err1 = −5.53% and Err2 = 5.85%, Err1 = −3.53% and Err2 = 4.19%, and
Err1 = −2.91% and Err2 = 4.32%, for the set N1, N2, N3 and N4, respectively.

5.4. Exponential Softening

So far, only a bilinear softening law has been used. The same curve was used by
Hoover and Bažant [41] who postulated that a bilinear shape of the softening curve is
a fundamental property of concrete. They also stated that no linear nor exponential
functions in softening allowed for fitting numerical results with experiments. Despite this
information Havlásek et al. [50] and Grégoire et al. [35] used exponential relationships in
their simulations with isotropic damage models with non-local softening (to be more precise
different formulas involving exponent function were used in both papers). Lorentz [43]
also proposed a formula containing an exponential function to describe the post-peak
behavior. In order to clarify this issue, FE-calculations with the exponential softening
law (Equation (12)) are performed. The initial fracture energy is equal to G f = 35 N/m
(50% of the total fracture energy). The tensile strength is assumed as ft = 5.2 MPa (set
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S10). Obtained nominal strengths are presented at Figure 12a and in Table 4. The error
measures are equal to Err1 = 4.46% and Err2 = 4.80%. They are larger than obtained with
sets S1–S3, but comparable with errors from original simulations (Hoover and Bažant [41]).
The application of the boundary layer model (set S11 with ft = 5.2 MPa, G f = 35 N/m,
b = 1 cm and β0 = 0.6) significantly improves the results. The error measures are equal to
Err1 = 0.61% and Err2= 3.10%. Comparison between numerical and experimental nominal
strengths is made in Figure 12b. Family of force—CMOD diagrams is shown at Figure 13.
Generally, all numerical curves fall into experimental limits. Again, the application of the
boundary layer is not necessary if better parameters are found. Taking ft = 4.8 MPa and
G f = 35 N/m the errors are calculated as Err1 = 0.20% and Err2 = 3.65% (set S12).

Figure 10. Experimental and numerical force—crack mouth opening displacement curves for bilinear
softening and set S7: ft = 5.2 MPa, G f = 42 N/m, b = 0.5 cm, β0 = 0.7.
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Figure 11. Force–displacement curves for notched (α0 = 0.3) beams and sets N1–N4: (a) huge beam;
(b) large beam; (c) medium beam; (d) small beam (the first number in a label is the tensile strength in
MPa, the second number is the initial fracture energy in N/m).

5.5. Bezier Rational Curve

Finally, simulations with the softening law based on Bezier rational curve (Equation (13))
are executed. The set S13 is defined with the tensile strength ft = 5.2 MPa, initial fracture
energy G f = 35 N/m and the weight w = 4 (parameters chosen on some initial simulations).
The fracture energy GB is equal 59.52 N/m. Obtained numerical nominal strengths are shown
at Figure 14 and listed in Table 4, while force-CMOD diagrams are depicted in Figure 15.
The calculated error measures are Err1 = 0.38% and Err2 = 2.51% (values comparable with
improved parameter sets S4–S8). All numerical curves fit the experimental limits. What is
interesting is the use of the boundary layer method (set S14: ft = 5.2 MPa, G f = 35 N/m,
w = 4, b = 1 cm, β0 = 0.9) decreases the error Err1 = −0.13%, but it slightly increases the error,
Err2 = 2.55%.
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Figure 12. Nominal and experimental strengths with exponential softening law and: (a) set S10:
ft = 5.2 MPa and G f = 35 N/m; (b) set S11: ft = 5.2 MPa, G f = 35 N/m, b = 1 cm, β0 = 0.6.

Table 4. Calculated nominal strengths σFEM
N for exponential (sets S10–S12) and rational Bezier (sets

S13–S14) softening curves.

D [mm] α0
σFEM

N [MPa]

S10 S11 S12 S13 S14

40 0 7.811 7.410 7.425 7.688 7.629
40 0.075 6.882 6.455 6.551 6.686 6.623
40 0.15 5.757 5.381 5.504 5.584 5.532
40 0.30 4.007 3.739 3.828 3.894 3.854

93 0 7.276 7.015 6.921 7.184 7.150
93 0.075 5.629 5.375 5.396 5.408 5.373
93 0.15 4.733 4.515 4.545 4.521 4.493
93 0.30 3.232 3.071 3.107 3.087 3.065

215 0 6.239 6.098 5.883 6.227 6.215
215 0.025 5.718 5.525 5.469 5.530 5.504
215 0.075 4.774 4.623 4.604 4.531 4.502
215 0.15 3.926 3.810 3.797 3.715 3.703
215 0.30 2.759 2.666 2.667 2.586 2.577

500 0 6.004 5.965 5.647 6.031 6.020
500 0.025 4.654 4.527 4.457 4.448 4.433
500 0.075 3.744 3.677 3.633 3.502 3.494
500 0.15 3.077 3.029 3.004 2.855 2.851
500 0.30 2.103 2.066 2.051 1.951 1.949
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Figure 13. Experimental and numerical force-crack mouth opening displacement curves for exponen-
tial softening and set S11: ft= 5.2 MPa, G f = 35 N/m, b = 1 cm, β0 = 0.6.

Figure 14. Nominal and experimental strengths with rational Bezier softening law and: (a) set S13:
ft = 5.2 MPa, G f = 35 N/m, w = 4; (b) set S14: ft = 5.2 MPa, G f = 35 N/m, w = 4, b = 1 cm, β0 = 0.9.
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Figure 15. Experimental and numerical force—crack mouth opening displacement curves for rational
Bezier softening and set S13: ft = 5.2 MPa, G f = 35 N/m, w = 4.

6. Conclusions

Numerical simulations of unnotched and notched geometrically similar concrete
beams of different sizes and different notch to depth ratios have been presented. Obtained
results have been compared with experimental data [32]. Two error measures have been
defined and used to quantitatively assess calculated maximum forces. The influence of the
softening law has been investigated. Three alternatives have been examined: bilinear, expo-
nential and ration Bezier curves. All analysed softening curves turn out to be equivalently
good, they give results with comparable error measures consistent with experiments. This
conclusion contradicts the hypothesis of the supremacy of the bilinear definition postulated
by Hoover and Bažant [41]. At the same time, the use of different softening laws results
in different values of best initial fracture energies. This fact reveals some limitations of
the initial fracture energy definition when a nonlinear relationship is assumed instead of
segmentally linear function. The linear reduction of the initial and total fracture energies in
the boundary layer did not significantly improve the results. The assumed value of the total
fracture energy GF = 70 N/m based on analysis of the experimental curves performed by
Hoover and Bažant [33], was correct. Obtained force–displacement diagrams fitted within
experimental curves.

Simulations with the cohesive crack model were the first step. The ongoing research
aim is to define an equivalence of initial fracture energy definition for different softening
laws, especially for non-linear relationships. It will lead to a more unique definition of this
quantity and to a better understanding of the fracture process.
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