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Abstract: This work aims to determine the orthotropic linear elastic constitutive parameters of Pinus
pinaster Ait. wood from a single uniaxial compressive experimental test, under quasi-static loading
conditions, based on two different specimen configurations: (a) on-axis rectangular specimens
oriented on the radial-tangential plane, (b) off-axis specimens with a grain angle of about 60◦(radial-
tangential plane). Using digital image correlation (DIC), full-field displacement and strain maps are
obtained and used to identify the four orthotropic elastic parameters using the finite element model
updating (FEMU) technique. Based on the FE data, a synthetic image reconstruction approach is
proposed by coupling the inverse identification method with synthetically deformed images, which
are then processed by DIC and compared with the experimental results. The proposed methodology
is first validated by employing a DIC-levelled FEA reference in the identification procedure. The
impact of the DIC setting parameters on the identification results is systematically investigated. This
influence appears to be stronger when the parameter is less sensitive to the experimental setup used.
When using on-axis specimen configuration, three orthotropic parameters of Pinus pinaster (ER, ET

and νRT) are correctly identified, while the shear modulus (GRT) is robustly identified when using
off-axis specimen configuration.

Keywords: wood; inverse identification; full-field measurements; DIC; synthetic images; FEMU;
orthotropic elasticity; compression tests

1. Introduction

Engineering materials based on renewable and recyclable natural resources are regain-
ing momentum towards policies and practices of sustainable green economy. Wood and
wood-based products are an important class of these materials, with a long-term increase
in demand worldwide [1]. Wood is a complex, heterogeneous, and hierarchical biological
material. Therefore, it is quite complex to mathematically describe or characterise from
both numerical and experimental points of view. At the macroscropic scale, where the
concept of clear wood is introduced, a mechanical model based on an anisotropic behaviour
is typically accepted, assuming three orthotropic material directions: the longitudinal direc-
tion (L) along the tracheids, the radial direction (R) parallel to the rays, and the tangential
direction (T) to the annual growth rings [2]. However, several degrees of heterogeneities
exist. On the one hand, locally, in earlywood (EW) and latewood (LW) cellular tissues,
different physical and mechanical properties can be identified at the growth ring scale [3,4].
On the other hand, globally, radial and longitudinal spatial gradients can be observed at
the structural (stem) scale [5,6].

The use of wood and wood-based products for structural applications implies the
understanding of the material behaviour under mechanical loadings. Although the use of
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finite element analysis (FEA) to simulate processes is well established, the calibration of ma-
terial constitutive models is still a bottleneck in terms of feasibility. The characterisation of
material parameters is critical in computer-aided engineering systems to properly replicate
the material behaviour [7–9]. Experimental mechanics typically rely on surface deformation
data. Classical mechanical tests are based on a uniform or linear stress field at the gauge sec-
tion, under simplified assumption, to allow the derivation of closed-form solutions for the
inverse problem of determining mechanical properties from measurements (geometry, load
and strain) [2,10,11]. Nevertheless, only a limited number of parameters can be identified
per test configuration, due to the simplified geometry and loading scenarios. Therefore, for
fibre-based or advanced composite material, a large number of independent test methods
are typical required to obtain all the constitutive parameters. This approach proves to
be time-consuming and costly [12]. Moreover, homogeneous strain fields are required in
each test, to measure in-point displacements and strains using extensometers and strain
gauges [13,14]. These methods also do not address the problem of spatial variability of
mechanical properties caused by the natural heterogeneity of biological materials, such as
wood [2,15].

Recent advances in digital imaging technology have enabled the development of novel
optical techniques in solid and fluid experimental mechanics [16–18]. These techniques are
being increasingly used in diverse applications since these are contact-free and provide
full-field measurements. Among these techniques, digital image correlation (DIC) [19–26]
and the grid method [27–29] have been exponentially used in the recent past due to their
simplicity and good balance between spatial resolution and accuracy. The 2D-DIC subset-
based correlation technique is highlighted and is used in this work. In this technique, the
DIC setting parameters, such as subset size, step size, strain interpolant, strain interpolation
and window size can significantly impact the measured strain fields and the absolute error
of measurements [2,30,31], and therefore directly influence the identification of material
constitutive parameters [32]. The selection of these settings should not be overlooked
when performing displacement and strain measurements through DIC, being particularly
important in heterogeneous materials, such as wood, where deformation gradients are
expected due to the annual growth ring structure.

The development of full-field measurement techniques has allowed a new insight
in the experimental characterisation. These techniques have the potential to reduce the
number of experimental tests required to fully characterise a material, given that a het-
erogeneous test configuration is used, producing heterogeneous stress and strain fields
in the specimen so that all material properties take a role in the mechanical behaviour.
Furthermore, it is appropriate for addressing current open issues on the identification
of mechanical properties for heterogeneous materials, such as the spatial variability of
mechanical properties over the region of interest (ROI), in materials such as wood or
composites [2]. When compared to classical experimental tests, full-field measurement
techniques bring far more versatility and can provide incredibly detailed experimental
data when using complex test configurations, thus allowing the identification of more con-
stitutive parameters with a single test, and therefore reducing the number of experimental
tests needed. To take advantage of full-field measurements, several inverse identification
approaches have been proposed [33], i.e., the equilibrium gap method [34], the constitutive
equation gap method [35], the finite element model updating method (FEMU) [36–38]
and the virtual fields method (VFM) [39–42]. The VFM is a well-established approach for
characterising material properties directly from full-field measurements using a specific
application of the principle of virtual work [13]. The FEMU involves the development of a
finite element (FE) model of the experimental test and the minimisation of a cost function
based on the difference between measured and calculated values through an iterative
optimisation process.

The experimental validation of FEA is critical to develop the credibility in numerical
model predictions for engineering design. Traditionally, the data from experimental DIC
measurements and FEA would be directly compared. However, the experimental character-
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isation is evolving to a new paradigm [43]. The direct comparison between the numerical
and experimental DIC data can lead to differences being falsely associated with model
inaccuracies. This can be due to different aspects, such as the different filtering of regions
of high strain gradients, differences in data locations and strain formulations, or different
spatial cut-off frequencies (the numerical mesh can be further refined according to user
details, while the DIC data points are fixed by the camera spatial resolution) [44]. Recently,
the photomechanical experimental community is focusing on an alternative approach to
compare the differences between the full-field maps from the experimental DIC and the
numerical results. This alternative approach involves using the numerical results, such
as the FEA displacements and the mesh data, to synthetically deform an experimental
image of the specimen with the speckle pattern [45]. The FEA-based synthetic image can
then be processed using DIC with the same setting parameters used for the experimental
measurements, guaranteeing that both FEA and experimental results have the same spatial
resolution, filtering and strain formulation, therefore removing the differences in the full-
field maps comparisons that are not due to inaccuracies in the material constitutive model
calibration. Furthermore, this approach can also distinguish some pattern-related image
artefacts issues from actual constitutive model issues. This is primarily due to the inclusion
of these image artefacts issues in the DIC-levelled FEA data, since it involves images of a
real DIC speckle pattern [44].

The goal of this work is to identify the linear elastic orthotropic constitutive parameters
of Pinus pinaster Ait. using uniaxial compression tests under quasi-static loading conditions,
with on-axis rectangular specimens oriented on the radial-tangential (RT) plane and off-
axis specimens at an orientation to the grain of 60◦(RT plane). The influence of the test
configuration on the identifiability of certain material parameters is also investigated.
Several images of the experimental tests were captured using a digital camera and then
processed using DIC with different settings to evaluate the influence of DIC settings on
the identified parameters. Heterogeneous full-field displacement and strain maps with
strain gradient at the wood growth ring structure were measured and used to determine
the material properties, such as modulus of elasticity, Poisson’s ratio, and shear modulus.
A FE model was developed considering wood as an orthotropic homogenous material
and the numerical results were used to synthetically deform the reference experimental
image, further processing this synthetic image with the selected experimental DIC settings,
resulting in DIC-levelled FEA results. The FEMU method was used for the identification
process, which involves the minimisation of a cost function that represents the difference
between the experimental and numerical results, including the load and strain fields,
resulting in four calibrated material properties determined.

2. Materials and Methods

The FEMU-based material parameter identification process is illustrated in Figure 1.
The DIC technique is used to obtain full-field experimental measurements, which are
then compared to DIC-levelled FEA results. The DIC settings are chosen by performing
a parametric analysis of various sets of settings. The DIC-based experimental boundary
conditions (BC) are used in the FE model. The DIC-levelled FEA results are iteratively
generated by updating the material parameters set through an optimisation algorithm
to minimise the discrepancies between the experimental observations and the virtual
experiment results until convergence is achieved.
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Figure 1. Flow diagram describing the material parameters identification process using FEMU.

2.1. Raw Material and Specimen

Clear wood specimens were cut from a single Pinus pinaster tree. A radial board
was selected and air-dried to a moisture content of about 12%. Wood samples were
then manufactured considering the radial-tangential (RT) orthotropic orientation with
nominal dimensions of 20(R) × 10(T) × 4(L) mm3. A total of 9 on-axis and 9 off-axis
specimens were manufactured in order to compare or enhance the identifiability of the
inverse material parameter identification (see Figure 2a,c for the mesostructure of one
specimen of each configuration, the images with the annual growth ring structure were
recorded with the same DIC optical system as presented below). An off-axis angle of 60◦

was selected considering preliminary calculation based on anisotropic elasticity theory,
with the criterion of balancing out both linear and shear in-plane strain components in the
material coordinate system [5,46]. No specific standard test method was used, therefore
the length-to-width ratio of two for the specimens was selected to prevent buckling, shear
or other non-homogeneous deformation modes at the gauge section.

2.2. Compression Tests and Full-Field Measurements

A universal Instron 5848 MicroTester machine (Instron, Barcelona, Spain) was used
to carry out the compression tests, with displacement control at a cross-head velocity of
0.5 mm/min. A 2 kN load cell was used to measure the resultant uniaxial load. To minimise
friction and avoid excessive barrelling, a lubricant was applied between the specimen and
the compression platens. To improve flatness of the compression surfaces, loading and
unloading cycles of up to 20 N were performed before testing. Image focusing over the
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target pattern surface was then adjusted accordingly for stable measurements during the
test.

The camera-lens optical system consisted of a Baumer Optronic FWX20 camera
(Baumer Optronic GmbH, Radeberg, Germany) coupled with an AF Micro-Nikkor 200 mm
f/4D ED-IF lens (Nikon, Portugal). The image field of view covered an area integrat-
ing several annual growth rings. The field of view targeted a physical region of about
20.5× 15.5 mm2. The surface of the specimens was painted to carry out DIC measurements.
The speckle pattern was created by means of an airbrush painting with a 0.18-mm nozzle
(IWATA, model CM-B, Anesta Iwata Iberica SL, Barcelona, Spain). Figure 2b,d show the
speckle pattern applied on an on-axis and off-specimen, respectively, as well as the grey
level frequency histogram. The lighting system and the exposure time were set to avoid
pixel saturation and image blurring during testing. Loading and image recording were
synchronized during the test at an acquisition frequency of 1 Hz.

Figure 2. Experimental setup regarding: (a) Experimental boundary conditions on on-axis specimen;
(b) Speckle pattern detail and gray level frequency histogram for one on-axis specimen; (c) Experi-
mental boundary conditions on off-axis specimen; (d) Speckle pattern detail and gray level frequency
histogram for one off-axis specimen.

2.3. Digital Image Correlation: Parametric Analysis

In this work, the MatchID subset-based DIC 2D software (Ghent, Belgium [47]) was
used to reconstruct the displacements and strain fields. In this technique, a mathematical
correlation criterion is minimised with respect to the unknown parameters of the displace-
ment shape function, by considering, iteratively, a sub-region centred on a pixel in the
undeformed image f(x, y) and searching for the subset transformation on the deformed
configuration g(x, y) [32]. A square subset can be defined by 2N + 1 pixels, where N is a
positive integer, defining the subset size (SS) or displacement spatial resolution. The size of
the subsets may respect the rule of thumb of at least three contrasted pixelated speckles.
On the other hand, a single speckle must contain at least three to five pixels to avoid
aliasing effects. Therefore, as a first approximation, the subset size can be a multiple of
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three regarding the average speckle size across the image, providing that a regular pattern
is created.

The zero-mean normalized sum-of-squared-differences (ZNSSD) criterion was selected
mainly due to its good performance on a wide range of image contrast variations and
lightning intensity shifting. DIC uses subset shape functions to match locations in the
undeformed image to corresponding positions in the deformed image. The polynomial
order of these shape functions determines how the subset can deform throughout the
correlation process since this subset must be able to change size, shape and position during
the entire deformation in order to be traced back in the deformed image. It is possible to
choose between affine, irregular and quadratic shape functions, depending on the local
strain gradients. Moreover, the coordinates of points in the deformed subset may be
located between pixels. The intensity of these points with sub-pixel positions must be
given before assessing the similarity between reference and deformed subsets using the
correlation criterion, hence the need for using a sub-pixel interpolation method, such as
bilinear, bicubic or bicubic spline interpolation [48].

In contrast with a finite element mesh, the correlation domains can overlap by sharing
gray intensity pixels over the boundaries. The distance between adjacent centroid of the
subsets is the step size (ST), which will define the mesh data points to be used in the
reconstruction of the strain fields. Nevertheless, when analyzing areas with substantial
heterogeneous deformation, this ST should be carefully set to achieve smooth displacement
fields in particular close to holes or material transition zones.

The strain fields are then reconstructed from the displacement fields by a suitable
filtering and differentiation algorithm. Typically this operation is defined locally across a
strain window (SW), embedding some displacement data points N × N over which a local
surface fitting approach is applied on a least-square regression sense [48]. The polynomial
order of these bi-dimensional functions can be defined as bilinear or biquadratic, for
instance. It is pointed out that the selected SS and ST parameters in the correlation process
will propagate over the strain reconstruction by defining the final spatial resolution. This
parameter can be estimated based on the following virtual strain gauge (VSG) measure
(units in pixel) [47]:

VSG = [(SW− 1)× ST] + SS. (1)

Similar to SS, using a larger VSG translates to smoother results. However, the signal
measured can be inaccurate in areas with high heterogeneous deformation and gradients
properties. A smaller VSG, on the other hand, produces noisier results but with improved
strain spatial resolution. Moreover, settings such as the SS, ST and VSG may be easily
translated to physical units by means of the magnification factor of the optical system.

The selection of the DIC setting parameters is therefore critical as it influences the
measurements and identification results [2]. On the one hand, using a larger SS increases
the resolution, minimising the noise, but decreases the spatial resolution, which is not ideal
for measuring strain gradients or heterogeneous strain fields. On the other hand, using
smaller SS decreases the resolution of the measurements, however, the spatial resolution
is increased.

In this work, the selection of the DIC settings was carried out with the support of the
performance analysis module within MatchID [47]. This tool allows performing a large
set of DIC analysis by covering a spectrum of different setting combinations at once. This
analysis was systematically performed on both on-axis and off-axis specimens (Figure 2),
since the off-axis angle orientation will generate a different mechanical response under
the same uniaxial compressive loading. A total of 1800 analyses (900 for each specimen
configuration) were performed. Table 1 reports the different parameters sets used in the
parametric analysis.
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Table 1. Different combinations of DIC parameters set used on the parametric analysis.

Correlation Settings On-Axis Specimen Off-Axis Specimen

Subset size {9–81 px}, 4 px increment {9–81 px}, 4 px increment
Step size {5 px}, fixed {5 px}, fixed

Shape function {Affine, quadratic} {Affine, quadratic}
Strain window size {3–27}, 2 point increment {3–27}, 2 point increment
Strain interpolation {Bilinear Q4, Biquadratic Q8} {Bilinear Q4, Biquadratic Q8}
Strain convention {Green–Lagrange} {Green–Lagrange}

The sets of different DIC settings tested correspond to a VSG range between 23 and
211 pixels, or approximately 0.3 to 2.79 mm. The convergence study performed for the on-
axis and off-axis specimens is summarized in Figures 3 and 4, respectively, by comparing
the signal measured of the strain component on the radial direction (εR) for the on-axis
specimen and on the x direction (εxx) for the off-axis specimen, with the VSG size at four
different points: (a) two earlywood points and (b) two latewood points.

Figure 3. Signal versus virtual strain gauge for an on-axis specimen for different points from the ROI:
(a) Small earlywood (EW) tissue; (b) Large earlywood (EW) tissue; (c) Small latewood (LW) tissue
and (d) Large latewood (LW) tissue.
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Figure 4. Signal versus virtual strain gauge for an off-axis specimen for different points from the ROI:
(a) Small earlywood (EW) tissue; (b) Large earlywood (EW) tissue; (c) Small latewood (LW) tissue
and (d) Large latewood (LW) tissue.

A larger VSG smooths the measurements, reducing the built-in noise in the experimen-
tal data, but also decreases the strain gradients that are expected in heterogeneous materials
like wood, which are created by the growth ring structure [2]. Furthermore, higher VSG
values appear to result in reduced magnitude of the strain signal reconstruction in the
earlywood, which is to be expected given the effect of latewood tissue. When looking at
the effect of VSG on strain signal reconstruction in latewood tissue, bigger values of VSG
appear to lead to a higher strain signal reconstruction, in magnitude, due to the earlywood
tissue influence, which is less stiff and deforms more at the same stress value. However, in
some results of this parametric analysis, it is also possible to observe that the measured
strain signal does not have a significant variation when the VSG increases. This is due
to the VSG not being large enough to capture the transition between the earlywood and
latewood tissues, which can also be confirmed by the VSG size representations found in
Figures 3 and 4. Furthermore, the affine and quadratic subset shape functions give compa-
rable measurements, according to the obtained results. Likewise, bilinear and biquadratic
strain interpolation, which are used to reconstruct strain fields from displacement mea-
surements, appear to converge, suggesting that, for this analysis, the VSG size has a larger
effect on the observations than these parameters. Nevertheless, these results show that
when dealing with highly heterogeneous materials, it is important to carefully select the
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DIC setting parameters to well-balance reconstruct the strain gradients, achieving a balance
between spatial resolution and accuracy.

For this work, three different sets of DIC parameters were selected for the on-axis and
off-axis specimens to study the influence of spatial resolution and accuracy on the material
parameters identification results, which are also represented as differently coloured dots in
Figures 3 and 4. The different DIC settings were selected according to different trade-offs
between accuracy and spatial resolution. The first set of settings selected (P1) is charac-
terized by good spatial resolution due to the lower value of VSG size and, consequently,
adequate accuracy. The second set of settings (P2) has a lesser spatial resolution when
compared to P1, but slightly improved accuracy due to the higher VSG size. Finally, the
third set of setting parameters (P3) is characterized by good accuracy, owing to the high
level of smoothing imposed by the larger VSG, but significantly less spatial resolution,
which in turn compromises the measurement of strain gradients. Table 2 lists the 2D-DIC
parameters used in this work for the on-axis and off-axis specimens, concerning the three
different sets of settings chosen.

Table 2. 2D-DIC settings used for the experimental DIC measurements using MatchID DIC Soft-
ware [47].

2D-DIC Setting Parameters On-Axis Specimens Off-Axis Specimens

Camera Baumer Optronic FWX20
Lens AF Micro-Nikkor 200 mm f/4D ED-IF

Field of view 21.5 × 16.5 mm2

Image conversion factor 0.0132 mm/px
Working distance 721 mm

Image aquisition frequency 1 Hz
Speckle pattern technique Airbrush painting

Average speckle size 2.69 px/0.036 mm | 4 px/0.053 mm
Image resolution 1624 × 1236 px2

Correlation criterion ZNSSD
Interpolant Bicubic spline

Subset shape function Quadratic

Subset size 17 px (P1), 21 px (P2), 41 px
(P3) | 21 px (P1), 25 px (P2), 41 px

(P3)
Step size 5 px

Image pre-filtering Gaussian, 5 px kernel
Strain window size 9 (P1), 13 (P2), 23 (P3) | 11 (P1), 15 (P2), 23 (P3)
Strain interpolation Bilinear Q4
Strain convention Green–Lagrange

2.4. Finite Element Model and Synthetic Images

A FE model was implemented in ANSYS Mechanical APDL software (Pennsylvania,
Canonsburg, United States of America [49]) using DIC-based experimental boundary
conditions on the left and right boundaries of the region of interest (ROI), interpolated
between the DIC and FEA meshes. Wood was modelled as a homogeneous orthotropic
linear elastic material.

According to Hooke’s Law, if a plane stress condition is applied to an orthotropic
material, the relationship between stress and strain in the global coordinate system can be
expressed by [50]: σx

σy
σs

 =

Qxx Qxy 0
Qxy Qyy 0

0 0 Qss

εx
εy
εs

, (2)

where Qij are the stiffness matrix components in the global coordinate system, while σi
and εi are the stress and strain fields, respectively, and the subscripts describe the three
stress/strain components (x → xx, y → yy and s → xy). The stress/strain relationship
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described in Equation (2) can also be expressed regarding the modulus of elasticity, Poisson’s
ratio and shear modulus by the following:


σx

σy

σs

 =


Ex

1− νxyνyx

−νyxEx

1− νxyνyx
0

−νxyEy

1− νxyνyx

Ey

1− νxyνyx
0

0 0 Gxy




εx

εy

εs

, (3)

where Ei is the modulus of elasticity, νij is the Poisson’s ratio, Gij is the shear modulus and
the subscripts represent the different components of the global coordinate system. The
Poisson’s ration in the different components of the global coordinate system can be further
related by the following expression:

νyx = νxy
Ey

Ex
. (4)

As presented by Equations (3) and (4), the linear elastic orthotropic constitutive model
has a total of four independent parameters to calibrate (Ex, Ey, νxy and Gxy). Moreover,
the geometry of the FE models was defined considering the real rectangular shape of
the specimens based on the reference experimental image. The finite element PLANE182
was selected for meshing, which is a two-dimensional four-node structural solid element.
Using plane stress and pure displacement formulation, this element was defined as a
plane element with two degrees of freedom at each node, which are the translations in
the nodal x and y directions. The element size was set to 0.085 mm, and there were
roughly 30,300 nodes and 30,000 elements on the on-axis FE models and 25,600 nodes and
25,300 elements on the off-axis FE models.

In the proposed FEMU approach, the main goal is to fit the FEA results with exper-
imental data. However, before doing this comparison, numerous inconsistencies must
be handled, including differing coordinate systems, data locations, strain formulations,
spatial resolutions and data filtering. To solve these issues, it was proposed to synthetically
deform the reference image of the DIC speckle pattern by means of coordinates and nodal
displacements of the FE model, creating a set of deformed synthetic images for further
evaluation by the DIC approach. The synthetically deformed image can then be processed
using the same DIC settings as the experimental images, ensuring that both sets of data
have the same filtering, spatial resolution, and strain formulation. Furthermore, using this
approach guarantees that both DIC and FEA are subjected to the same calibration and
triangulation processes, directly expressing both data meshes inside the same coordinate
frame with coincident data point positions, avoiding further interpolation steps between
the two meshes. On top of that, the experimental data are accompanied by noise and
errors. However, due to this approach, which uses a real DIC reference image, numerous
potential error sources associated are inadvertently included in the DIC-levelled FEA data.
As a result, some pattern-related image artifacts, such as saturation, aliasing and lightning
issues, may be more easily distinguished from actual model problems [44].

Following this approach, the FE model was implemented considering the whole
DIC ROI. The DIC-based experimental boundary conditions were extrapolated from the
experimental data points to the left and right edges of the defined ROI. Figure 5 shows the
surface plot of the full-field displacement measurements along the x axis (ux) and y axis
(uy), along with the extrapolated boundary conditions, which are applied on the FE model
of one of the off-axis specimens under analysis.
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Figure 5. Experimental full-field displacement measurements and extrapolated boundary conditions
(BC) for the FE model for an off-axis specimen on the: (a) x direction; (b) y direction; (c) Representation
of the FE mesh and experimental boundary conditions (BC) applied to the FE model.

This extrapolation approach is required to fully deform a region in the synthetic
image that is equal to the experimental DIC ROI, thus ensuring an equal ROI on both the
experimental and synthetic images, addressing the data location issue and eliminating extra
interpolation processes. For the sake of simplicity, Figure 5 only shows the extrapolation
results for one specimen, although this procedure was individually performed for all the
specimens under analysis. The extrapolation was done considering the whole full-field
displacement measurements and smoothed by a fourth-order polynomial function.

The mesh and displacement FE fields were then used to synthetically deform the
experimental reference image using MatchID FE deformation module [47], as represented
in the workflow in Figure 1. Afterwards, the MatchID FE validation module [47] was
used to process the synthetic image, using the same DIC software and the same setting
parameters used for the experimental data. This approach has increased accuracy since
the discrepancies in the processing method between the two sets of data are addressed,
especially when compared to the direct interpolation method [44].
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2.5. Finite Element Model Updating Technique

The FEMU is used to find the four orthotropic linear elastic parameters of wood. An
optimisation approach is used to continuously update an unknown material parameter
set in order to minimise a cost function that reflects the difference between experimental
measurements and FEA results. This characterisation method returns the elastic properties,
which are defined by the parameter values used in the last numerical simulation of the
iterative process when the minimum is reached and the optimisation process converges.
Using this method, all the elastic parameters may be determined concurrently from a single
experiment, given that the experimental test submits the material to a heterogeneous state
of stress and strain. Displacements, stresses, loads and temperatures are all examples of
data that may be used in the comparison. Because of its adaptability and simplicity of
application, FEMU is a popular inverse identification approach [33,51], although the main
disadvantage is the high computational time [52], which is due to the necessity for a FEA
and, in this case, the generation of a synthetic image and additional processing with DIC
for each objective function (OF) evaluation.

The OF used in this work describes the difference between experimental and FEA
results, including the load and strain fields, and can be represented by the following ex-
pression:

ϕ(χ) = (1−WF)IT2
S (χ) + WF IT2

F(χ), with 0 6 WF 6 1. (5)

where χ is a vector containing the four unknown material parameters (ER, ET, νRT, and
GRT) and WF is a weighting coefficient between the strain (ITS) and force (ITF) terms. The
strain term is characterized as follows:

ITS(χ) =
1

3n


√√√√ n

∑
k=1

(
ε

exp
xx − εnum

xx (χ)

ε
exp
xx,max

)2
2

+

√√√√ n

∑
k=1

(
ε

exp
yy − εnum

yy (χ)

ε
exp
yy,max

)2
2

+

√√√√ n

∑
k=1

(
ε

exp
xy − εnum

xy (χ)

ε
exp
xy,max

)2
2, (6)

where the variable n is the total number of full-field measurement data points, while εexp

and εnum are the experimental and numerical strain fields, respectively, considering the dif-
ferent components of in-plane strain fields (εxx, εyy, and εxy). The variables ε

exp
xx,max, ε

exp
yy,max,

ε
exp
xy,max represent the maximum value of the experimental full-field strain measurements

for each correspondent component. Moreover, the force term is defined as:

ITF(χ) =
Fexp − Fnum(χ)

Fexp . (7)

Similarly, the variables Fexp and Fnum reflect the experimental and numerical loads for the
selected stage, respectively.

To begin the iterative process of FEMU, a starting set of parameters χ(ER, ET, νRT, GRT)
is given to the FEA. The numerical results are then used to generate a synthetic image,
which is then processed through DIC with the same setting parameters as the experimental
data, matching numerical data locations and experimental data points. The DIC-levelled
FEA data are then used to evaluate the cost function and the iterative process continues, by
means of an optimisation algorithm, which iteratively updates the material parameter set
until a minimum of the cost function is reached.

The Nelder-Mead simplex method, which is a simple direct-search algorithm, was
used in the optimisation process. In this method, a simplex is formed with as many vertices
as the number of variables plus one, followed by a series of modifications aimed at minimis-
ing the OF value at its vertices [53]. The fminsearch function from MATLAB’s library (Mas-
sachusetts, Natick, United States of America [54]) was used as the optimisation technique.
Moreover, the initial starting parameters were considered to be reference values [2,55]
(see Table 3).
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Table 3. Reference constitutive parameters for Pinus pinaster [2,55].

ER (MPa) ET (MPa) νRT GRT (MPa)

Reference parameters 1912 1010 0.586 176

The described methodology is first validated using the DIC-levelled FEA results as
our reference in the FEMU technique (Section 3.1). With this approach, an exact solution
for the constitutive parameters is known, and expected to be identified, being the reference
parameters given to the FE model (the case of virtual experiments). Moreover, the WF
used in this method validation approach is 10−10. The WF value used on the experimental
identification is 10−1, which privileges the strain term minimisation, while also being
capable of minimising the difference between the numerical and experimental loads, as is
shown on the convergence study for the identified parameters (Section 3.3). The difference
between the WF used in both cases is due to the ITS value, which is lower in the method
validation, since we are using the DIC-levelled FEA results as our reference, and therefore
the FE model should be able to precisely reproduce the same results in the parameters
identification procedure. The ITS on the experimental identification is higher since there are
differences between the experimental observations and the numerical results, coming from
the constitutive model used in the FEA, and in this case also owing to the homogeneous
modelling of wood used in this work. The WF determines a balance between the strain
and forces terms, and the goal is to minimise the difference between the strain fields,
while also being able to minimise the differences between the experimental and numerical
loads. If the ITS value is low (which is the case for the virtual experiments validation, see
Section 3.1), it means that the WF value has also to be low. A lower WF value gives more
weight to the strain fields differences minimisation and allows the ITS to converge to a
lower value than the ITF, while also allowing the optimisation method to more easily
reach a global minimum instead of a local minimum. However, the WF should be carefully
selected, because if an overly low value is used for this weight, the force term may not
be minimised. As a result, the difference between the experimental and numerical loads
should be verified alongside the identification results.

Furthermore, as illustrated in Figure 2, on the off-axis specimens, the global coordinate
systems and fibre coordinates systems are rotated by the off-axis angle (α). This angle was
measured for each of the off-axis specimens under analysis and taken into account in the
rotation matrix between the two coordinate systems. Therefore, the constitutive parameters
of the off-axis specimens were identified on the fibre orientation coordinate system, thus
comparable to the reference parameters and the values identified for the on-axis specimens.

Moreover, when the load is increased, the measured displacements rise as well, which
improves the signal-to-noise ratio and hence the identification. However, the load cannot
be raised above a certain point without deviating from linear elastic behaviour. Therefore,
the stage selection for the identification process was performed based on this premise,
by selecting a later stage, in order to achieve a good signal-to-noise ratio, while also making
sure that the material is still undergoing linear elastic deformation.

3. Results
3.1. Method Validation

The validation of the described methodology was carried out for the two specimen
configurations (on-axis and off-axis specimens) by running a FEA with the experimental
boundary conditions and the reference parameters for this wood species. Then, using
nodal displacements and mesh information from the FEA, a synthetic image was generated,
which was processed by DIC using the P1 settings described in Table 2. These results were
then used as the reference in the identification procedure. To evaluate the convergence
to the known solution, the starting parameters given to the FE model at the start of
the iterative process deviate from the reference parameters (starting parameters used:
ER = 1298 MPa; ET = 548 MPa; νRT = 1; GRT = 211 MPa).
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Table 4 summarizes the final OF, strain and force terms values, as well as the compari-
son between the reference and the final calibrated numerical force for the two specimen
configurations.

Table 4. Summary of FEMU parameters on the final iteration, for an on-axis and off-axis specimens
using a DIC-levelled FEA reference.

Specimen ϕ(χ) ITS(χ) ITF(χ) Fref [N] Fnum(χ) [N]

2.59× 10−22 1.61× 10−11 1.68× 10−9 326.4 326.4

8.45× 10−25 9.13× 10−13 1.05× 10−8 128.4 128.4

The differences between the reference and numerical strain fields and loads are min-
imised, with the linear elastic orthotropic constitutive parameters being the only variables
to be determined in the optimisation procedure. Figure 6 shows the convergence study
for all four material parameters identified (ER, ET, νRT, and GRT) during the identification
process for both specimen configurations.

Figure 6. Convergence study for an on-axis specimen and off-axis specimen using a DIC-levelled
FEA reference with reference parameters [2,55], regarding: (a) ER and ϕ(χ); (b) ET; (c) νRT; (d) GRT.
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Table 5 shows the identification results for the four material parameters. The results
obtained validate the methodology applied since the inverse identification procedure was
able to converge to the known solution, with errors of 0% for both specimen configurations.

Table 5. Identification results for an on-axis specimen and an off-axis specimen, using a DIC-levelled
FEA reference with reference parameters [2,55].

ER (MPa) ET (MPa) νRT GRT (MPa)
Reference Parameters 1912 1010 0.586 176

Id. value 1912 1010 0.586 176
Error (%) 0.000 0.000 0.000 0.000

Id. value 1911.9 1010 0.586 176
Error (%) 0.005 0.000 0.000 0.000

3.2. Influence of the DIC Settings on the Identified Parameters

The methodology was further extended to the experimental data, investigating how
DIC settings affect the identification results for two specimens with different specimen
configurations. The identification was performed on one on-axis and one off-axis spec-
imens using the DIC setting parameters summarised in Table 2. Figure 7 describes the
obtained results.

Figure 7. Results for the identification process for an on-axis and off-axis specimens using three
different DIC settings (Table 2), and compared to the reference values [2,55], regarding the identified
parameters: (a) ER; (b) ET; (c) νRT; (d) GRT.
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On the on-axis specimen, the variation of the ER and νRT appears to be small as the
VSG size increases. However, on the off-axis specimen, the variation for these parameters
appears to be larger as the VSG size changes. On the other hand, the variation of GRT is
lower on the off-axis specimen and higher on the on-axis specimen, whereas the ET varies
almost linearly on both specimen configurations. Theoretically, the modulus of elasticity
in the radial direction (ER) is the parameter with the most identifiability on the on-axis
specimen, given the test configuration used. Similarly, the shear modulus of the RT plane
(GRT) is, theoretically, the most identifiable parameter for the off-axis specimen. These
results suggest that DIC settings have less impact on parameters with high identifiability.
Nonetheless, there are still differences that have a particular impact on the identification
of heterogeneous material properties. The identification results for the various VSG sizes
tested are shown in Table 6 for both specimen configurations.

Table 6. Results from the experimental identification for an on-axis specimen and off-axis specimens,
using different DIC settings and compared to the reference parameters [2,55].

VSG (mm) ER (MPa) ET (MPa) νRT GRT (MPa)
Reference Parameters 1912 1010 0.586 176

0.7524 1578.8 823.7 0.783 187.3
1.0692 1548.5 981 0.775 122.2
1.9932 1492.5 1384.1 0.758 125.5

0.9372 521.5 418.2 0.679 161.7
1.254 741.7 508.2 0.624 163.4
1.9932 3041.5 725.4 0.395 162.3

The DIC settings influence the amount of smoothing introduced into the results,
averaging the measurements in a given VSG. For the tested wooden specimens, the volume
fraction of earlywood tissue was greater than latewood. It is noticed that the elastic
properties of latewood are greater than that of earlywood. When the measurements are
averaged, the results are expected to be influenced primarily by the material with the
highest volume fraction. As a result, as the VSG size increases, the identified value for the
ER for the on-axis specimen decreased, averaging out the results and resulting in the loss
of strain gradients.

Wood is a natural material with a high degree of natural variability. Therefore, the
experimental and identification procedures were carried out on a total of 18 specimens
(9 on-axis specimens and 9 off-axis specimens), in order to conduct a statistical analysis
of the identification results. For the remainder of this work, the P1 DIC settings from
Table 2 were used, since these settings allow for the measurement of strain gradients, which
is especially important when identifying constitutive parameters of heterogeneous materials.

3.3. Convergence Study for Identified Parameters

The differences between the full-field experimental strain measurements and numer-
ical strain, as well as the difference between the experimental and numerical loads are
minimised, where the optimisation variables are the material constitutive parameters (ER,
ET, νRT, GRT). Table 7 outlines the final OF, strain and force term values, and also the
comparison between experimental force measurement and final calibrated numerical force
for the 18 specimens analysed.
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Table 7. Summary of the OF terms at the end of the identification procedure using FEMU.

Orientation Specimen ϕ(χ) ITS(χ) ITF(χ) Fexp (N) Fnum(χ) (N)

1 4.462× 10−4 2.227× 10−2 3.737× 10−5 273.4 273.4
2 2.505× 10−4 1.668× 10−2 1.402× 10−5 314.0 314.0
3 9.682× 10−5 1.037× 10−2 2.198× 10−4 298.8 298.8

On-axis 4 1.072× 10−5 3.451× 10−3 1.514× 10−4 148.9 148.9
specimens 5 2.531× 10−4 1.676× 10−2 1.332× 10−3 327.6 327.2

6 4.694× 10−4 2.284× 10−2 1.768× 10−4 295.4 295.4
7 1.710× 10−5 4.359× 10−3 6.874× 10−5 137.2 137.2
8 2.957× 10−5 5.732× 10−3 4.127× 10−5 120.6 120.6
9 1.554× 10−4 1.314× 10−2 1.245× 10−5 404.3 404.3

10 3.718× 10−5 6.427× 10−3 9.683× 10−6 106.0 106.0
11 5.516× 10−5 7.829× 10−3 1.406× 10−5 100.1 100.1
12 2.762× 10−4 1.752× 10−2 1.163× 10−5 101.6 101.6

Off-axis 13 6.004× 10−5 8.168× 10−3 3.317× 10−5 73.7 73.7
specimens 14 9.178× 10−6 3.193× 10−3 1.890× 10−5 73.7 73.7

15 2.571× 10−4 1.690× 10−2 9.720× 10−5 97.7 97.7
16 2.544× 10−4 1.681× 10−2 3.837× 10−5 99.1 99.1
17 1.117× 10−3 3.523× 10−2 1.132× 10−4 104.0 104.0
18 3.063× 10−4 1.845× 10−2 9.825× 10−5 102.5 102.5

From Figures 8–10, it can be seen that the identification of the parameters of specimens
4 and 14 proved to be more time-consuming in terms of computational time, requiring
close to 1200 (specimen 4) and 1000 (specimen 14) iterations to reach the minimum and
for the process to stagnate. It is also worth noting that the ER was the overall most stable
parameter throughout the identification process, whereas the GRT was the most stable
parameter for the off-axis specimens.

Figure 8. Convergence of the OF value during the identification process for: (a) On-axis (1–9)
specimens and (b) Off-axis (10–18) specimens.
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Figure 9. Convergence of the identified parameters for the on-axis (1–9) specimens during the
iterative procedure, compared to the reference values [2,55]: (a) ER; (b) ET; (c) νRT; (d) GRT.
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Figure 10. Convergence of the identified parameters for the off-axis (10–18) specimens during the
iterative procedure, compared to the reference values [2,55]: (a) ER; (b) ET; (c) νRT; (d) GRT.

3.4. Experimental and Numerical Full-Field Strain Maps

The numerical strain maps are reconstructed over the same filtering as the experi-
mental DIC full-field measurements. This allows for a fair comparison of strain maps
and inspecting the differences that come out from constitutive model issues, as well as
the differences resulting from the homogeneous modelling of wood used in this work.
Figure 11 shows the experimental DIC strain fields in comparison to the final calibrated
numerical strain fields for both on-axis and off-axis specimens. Moreover, the residual
differences between numerical and experimental strain fields, normalized by the maximum
value of strain of each correspondent component, are also plotted. The residual maps show
a systematic pattern related to the fact that the finite element model was built under the
assumption of a homogeneous material, while experimentally, at the scale of observation,
the annual rings morphology generate a heterogeneous strain map due to local stiffness
difference between the wood meso layers.
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Figure 11. Experimental calibrated numerical and difference full-field strain maps for: (a) Specimen 1
and (b) Specimen 17.

3.5. Identified Orthotropic Linear Elastic Parameters

The orthotropic linear elastic constitutive parameters of Pinus pinaster for the RT
plane are identified. The constitutive parameters were determined for each on-axis and
off-specimen and are listed in Tables 8 and 9, respectively, and include the average value,
standard deviation (Sdt), and coefficient of variation (CoV).

The results show some dispersion, which is to be expected given wood intrinsic
natural variability. The average values of the modulus of elasticity identified for the on-axis
specimens on the radial and tangential directions, as well as the Poisson’s ratio on the RT
plane, agree with the reference values for this wood species, while also showing a CoV
inferior to 20%.

The off-axis specimen identification results, on the other hand, showed an excep-
tionally consistency on the shear modulus on the RT plane, with a CoV less than 10%
and an average value that agrees with the reference value reported in the literature. The
Poisson’s ratio on the RT plane also agrees with the reference value, although with a higher
dispersion (CoV of 28.86%).
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Table 8. Identified orthotropic linear elastic parameters for the on-axis specimens and comparison to
the reference values [2,55].

ER (MPa) ET (MPa) νRT GRT (MPa)
Reference Parameters 1912 1010 0.586 176

Specimen 1 1578.8 823.7 0.783 187.3
Specimen 2 1065.1 749.9 0.697 148.6
Specimen 3 1687.0 1250.3 0.698 623.4
Specimen 4 1725.4 1138.2 0.774 158.3
Specimen 5 1964.2 971.0 0.815 280.0
Specimen 6 1591.4 817.6 0.779 349.4
Specimen 7 1535.8 1116.1 0.575 622.8
Specimen 8 1173.6 846.1 0.807 255.9
Specimen 9 1961.4 845.7 0.727 671.7

Average 1587.0 951.0 0.739 366.4
Sdt 307.7 176.4 0.076 214.4

CoV 19.39% 18.55% 10.22% 58.53%

Table 9. Identified orthotropic linear elastic parameters for the off-axis specimens and comparison to
the reference values [2,55].

ER (MPa) ET (MPa) νRT GRT (MPa)
Reference Parameters 1912 1010 0.586 176

Specimen 10 521.5 418.2 0.679 161.7
Specimen 11 352.0 411.1 0.580 159.5
Specimen 12 2313.1 1019.6 0.327 188.1
Specimen 13 359.9 337.1 0.699 180.1
Specimen 14 579.6 348.5 0.284 169.0
Specimen 15 1469.9 601.0 0.629 160.0
Specimen 16 530.7 417.3 0.742 158.1
Specimen 17 2398.1 600.2 0.740 156.5
Specimen 18 1011.8 418.6 0.661 146.0

Average 1059.6 507.9 0.593 164.3
Sdt 815.7 214.2 0.171 12.8

CoV 76.99% 42.18% 28.86% 7.82%

4. Discussion

The proposed FEMU methodology, which is based on a synthetic image approach and
uniaxial compression tests, while using on-axis specimens proved to be effective in the
identification of three out of four RT orthotropic linear elastic constitutive parameters of
Pinus pinaster, which were the modulus of elasticity in the radial and tangential directions
and the Poisson’s ratio on the RT plane. The mean value for these parameters can be
compared to the typical values reported in the literature, with a CoV ranging from 10.2% to
19.4%. The shear modulus identified using the on-axis configuration has a higher dispersion
with a CoV of 58.5%. Furthermore, for the identified mean values, the anisotropy ratio
on the RT plane, which is determined by the ratio between ER and ET, is 1.67, which is
comparable to the values reported in the literature [6].

Moreover, the proposed approach was successful in identifying the shear modulus of
the RT plane on off-axis specimens. The average identified value of this parameter agrees
with the reference value and has a low CoV of 7.8%. While the remaining parameters show
a higher dispersion with a CoV in between 28.9% and 77.0%. These results show that due
to the lack of sufficiently heterogeneous strain fields, there is a dependency on the test
configuration and the identifiability of some material parameters.

Some of the dispersion found in the results is most likely due to variations in material
properties between specimens. It should be noted that the specimens used in this work
were manufactured from a different tree and position within the stem than specimens
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tested to identify reference values, therefore some variability in elastic constants is to be
expected [6].

5. Conclusions

An inverse identification strategy based on FEMU was proposed in this work to iden-
tify orthotropic elastic properties of wood from a single test configuration. The advantage
of the proposed approach, with regard to common optimisation, was that the algorithm
had been designed to evaluate a cost function based on numerical and experimental strain
fields that were reconstructed from the same DIC filtering computation workflow. The
approach was applied to the material parameters identification of Pinus pinaster wood on
the radial-tangential plane. The methodology to simultaneously identify the linear elastic
orthotropic constitutive parameters was based on uniaxial compression tests with on-axis
and off-axis specimens. A synthetic image approach based on DIC was coupled to FEMU
to identify the parameters of the constitutive model. The following main conclusions can
be drawn from this study:

• The proposed methodology using a DIC-levelled FEA reference (virtual experiment)
in the identification procedure was successfully validated. The iterative process of
FEMU was also coupled to synthetic image generation, taking into consideration the
FEA nodal displacements and mesh information.

• For each specimen configuration, a convergence study of the DIC settings was sys-
tematically carried out. The effect of the selected DIC parameters on the identification
results was evaluated. When the material parameter was well identified, the DIC
settings had no significant influence on the convergence. However, when the elastic
parameters were less sensitive to the identification, this influence was higher.

• The average values identified on the on-axis specimens for the modulus of elasticity
on the radial and tangential directions, as well as the Poisson’s ratio of the RT plane,
show an agreement to the reference value and a lower variation when compared to
the values identified for the shear modulus.

• On the off-axis specimens, the shear modulus of the RT plane agrees with the reference
value, while also showing a low variation, with a CoV of 7.82%. Given the natural
variability of natural materials such as wood, the scatter in the identification results is
to be expected.

• The results show that three out of four RT linear elastic orthotropic parameters of
Pinus pinaster were identified based on an on-axis specimen configuration (ER, ET
and νRT), and one of the four parameters was correctly identified when using off-axis
specimen configuration (GRT).

• Other heterogeneous test configurations should be investigated in future work to in-
crease the identifiability of all constitutive parameters using a single test. Furthermore,
this methodology may be used to identify the heterogeneous orthotropic constitutive
properties of wood.
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