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Abstract: The study of the bifurcation, random vibration, chaotic dynamics, and control of lami-

nated composite beams are research hotspots. In this paper, the parametric random vibration of an 

axially moving laminated shape memory alloy (SMA) beam was investigated. In light of the Timo-

shenko beam theory and taking into consideration axial motion effects and axial forces, a random 

dynamic equation of laminated SMA beams was deduced. The Falk’s polynomial constitutive 

model of SMA was used to simulate the nonlinear random dynamic behavior of the laminated beam. 

Additionally, the numerical of the probability density function and power spectral density curves 

was obtained through the Monte Carlo simulation. The results indicated that the large amplitude 

vibration character of the beam can be caused by random perturbation on axial velocity. 

Keywords: axial motion with variable velocity; laminated SMA beam; random parametric  

excitation; Monte Carlo simulation 

 

1. Introduction 

Axially moving structures are widely found in aerospace, civil engineering, machin-

ery, and transportation industries. In theoretical analysis, these structures are modeled as 

beams, chords, or plates. So far, the nonlinear vibration behaviors of axially moving 

beams, chords, and plates have been extensively studied. Chen et al. [1] applied a multi-

ple-dimension Lindsted–Poincare (L–P) process to examine internal resonance in the vi-

bration of axially moving beams. Ding et al. [2] used a multi-scale procedure to analyze 

the stability and steady-state response of axially moving viscoelastic beams. Yang et al. 

[3] established a dynamics model of an axially moving viscoelastic beam and discussed 

how axial motion parameters and system viscoelastic coefficients affect the bifurcation 

behavior of this beam. Liu et al. [4] compared the vibration characteristics of three typical 

types of axially moving structures—Euler beams, panels, and plates with two opposite 

sides simply supported and the other two left free. Tang et al. [5] probed into the trans-

verse nonlinear vibration of a viscoelastic plate moving axially with variable velocity. Al-

Bedoor et al. [6] found the approximate analytical solution of beam vibration during axial 

motion. Chen et al. [7] investigated the nonlinear vibration of axially moving beams using 

the harmonic balance method. Burak et al. [8] used a method of multiple time scales (a 

perturbation method) to examine the nonlinear vibration and stability of axially moving 

beams with variable velocity and axial force values. Lenci et al. [9] investigated the non-
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linear free oscillations of a planar Timoshenko straight beam using the asymptotic expan-

sion method. Xiao et al. [10], Liu et al. [11], and Jin et al. [12] studied vibration complex 

problems in other important engineering structures. 

Shape memory alloys (SMAs) feature particular shape memory and pseudo elasticity 

characteristics. They are more sensitive to stress and temperature and are more deforma-

ble and elastic than common metals [13]. Laminated beams are a usual form of laminated 

structures, which are structures composed of SMAs on the surface and linear elastic ma-

terial in between. Ren et al. [14–16] carried out a succession of studies on SMA fiber hybrid 

laminated beams. They developed a theoretical analysis model describing the natural fre-

quency of a kind of hybrid laminated beam composed of SMA fibers laminated with com-

mon fibers and observed the effects of the content, installation angel, and transverse shear 

deformation of SMA fibers. Collet et al. [17] considered a hypothesis that SMA remains 

symmetric under tensile, compressive, and temperature loading and tested the dynamical 

behaviors of an SMA beam by applying external moving loads on the material. Through 

hierarchical Rayleigh–Ritz simulation, de Matos Junior et al. [18] studied the nonlinearity 

of the aeroelastic behavior of stiffened SMA hybrid composite (SMAHC) cylindrical plates 

on a carbon fiber–SMAHC laminated plate. Zhang et al. presented an experimental study 

on the random vibration of aviation conduits with SMA joints [19]. Razavilar et al. [20] 

developed a semi-analytical procedure for studying the free vibration and forced vibra-

tion of an SMA beam with pseudoelastic behavior. They established the control dynamics 

equations of a deformation–strain-coupled SMA beam and analyzed its thermodynamic 

properties with phase trajectory. Nassiri-monfared et al. [21] characterized the thermome-

chanical behavior of a beam reinforced with SMA elements on an improved Brinson pol-

ynomial constitutive model. Zhang [22] tested how external excitation and structural pa-

rameters (parameters related to the thickness ratio between the SMA layer and the beam 

substrate) affect the one-third subharmonic and third superharmonic resonance of an 

SMA-laminated beam supported at both ends. Nejati et al. [23] analyzed the thermal vi-

bration of SMA hybrid composite double-curved sandwich panels. Samadpour et al. [24] 

looked into the nonlinear aero-thermal flutter postponement of supersonic-laminated 

composite beams with SMA. 

Given the possibility of complex nonlinear dynamics in the system, such as sharp 

vibration, the resonance of parametric vibration with forced vibration, bifurcation, and 

chaos, in response to axial velocity and external excitation, studying the transverse vibra-

tion mechanism of axially moving beams is both theoretically and practically useful for 

optimizing engineering system components. By considering the effects of shear modulus 

and moment of inertia, Li et al. [25] used the multiple time scale method to examine the 

steady-state response of an axially moving viscoelastic Timoshenko beam to forced trans-

verse nonlinear vibration. Ding et al. [26] introduced finite support stiffness and investi-

gated the chaotic nonlinear dynamics of an axially moving viscoelastic beam subject to a 

combination of external excitation and parametric excitation. Ding et al. [27] applied Ti-

moshenko beam theory to the nonlinear dynamics studies of a structure moving axially 

with high speed for the first time. They derived the static balance equation of the beam, 

deduced the critical velocity of an axially moving Timoshenko beam and discussed the 

effects of system parameters on equilibrium bifurcation and critical speed. Wang et al. 

[28,29] discussed the magneto-elastic primary and internal resonances of axially moving 

conductive beams in a magnetic field. Tang et al. [30] established the nonlinear dynamics 

model of an axially accelerating viscoelastic beam by considering the non-uniform bound-

ary conditions induced by the Kelvin viscoelastic constitutive relation. Through a numer-

ical example, they analyzed the effects of material viscoelastic coefficient and axial veloc-

ity fluctuation amplitude on steady-state vibration response. Based on the Galerkin 

method and fourth-order Runge–Kutta method, Shao et al. [31] studied the nonlinear vi-

bration of a thin film moving axially with variable velocity and analyzed its chaotic and 

bifurcation behaviors in response to changed average velocity and velocity fluctuation 

amplitude. Sahoo et al. [32] examined the steady-state response of an axially accelerating 
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viscoelastic beam to dual-frequency parametric excitation both analytically and numeri-

cally. Through phase diagram, time history, and Poincare mapping analyses, they discov-

ered the Hopf bifurcation, saddle node bifurcation, and pitch-fork bifurcation present in 

the system. Yang et al. [33] analyzed the stability of a compressible laminated beam mov-

ing with variable velocity. In addition, on the problem of random vibration, Hu [34–36] 

analyzed the response and control for random time-delay systems under wide-band ran-

dom excitations and Harmonic and Wide-Band Noises. 

At present, the research on the axially moving continuum mainly focuses on homo-

geneous materials, and the laminated structure is rarely considered in the modeling pro-

cess and analysis of axially moving beams. Most of the existing literature considers non-

linear dynamic problems such as the internal resonance, principal resonance, and bifur-

cation of laminated beams, but there is a lack of research that considers the random dis-

turbance of axial velocity on the nonlinear stochastic dynamic behaviors. In this disserta-

tion, based on the force balance conditions, deformation compatibility equation, and 

Falk’s polynomial constitutive model of SMA, the random vibration differential equation 

of laminated SMA beams is derived and numerically solved. The effects of random per-

turbation intensity and axial velocity on steady-state response are analyzed.  

2. Random Vibration Equation of Laminated SMA Beams Moving Axially with Varia-

ble Velocity 

2.1. Polynomial Constitutive Relation of SMA 

For an SMA-laminated beam with a complex structure and complicated stress condi-

tions, it is sometimes difficult to obtain the dynamic equation of the system by using other 

constitutive models, and the nonlinear dynamics characteristics of the system can be eas-

ily obtained and analyzed by using this constitutive model. Paiva and Savi’s [34] research 

shows that the polynomial model can qualitatively describe the dynamic behavior of 

SMA. This dissertation used this quantic polynomial stress–strain constitutive relation of 

SMA in Ref. [37], which was written as  

σ = a(T - TM)ε - b𝜺3 + e𝜺5 (1) 

where a, b  and  e = 
b2

4a(TA-TM)
 are material constants; TAis the temperature above which 

austenite is stable, and TMis the temperature below which marten site is stable; a = 1 × 103 

MPa/K, b = 40 × 106 MPa/K, TA = 313 K, and TA = 287 K, which were obtained from exper-

iments in Ref. [37], and the stress–strain curve is shown in Figure 4-2 (Ref. [37]). 

2.2. Dynamics Equation of Laminated SMA Beams 

The geometric model of a laminated beam with length L, width b1, substrate beam 

height H, and SMA height h for both the upper and lower layers is established, as shown 

in Figure 1. ξ(t) is the random perturbation term on axial velocity, which can be nomi-

nally seen as Gaussian white noise with noise intensity D. Pz(x,t) and P are the uniform 

loading and axial pressure acting on the laminated beam. 
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Figure 1. The structural diagram of the axially moving laminated SMA beam. 

In the figure, oxz is the stationary coordinate system; the axial velocity is V = v + ξ(t), 

with traverse displacement being recorded as ω(x,t); the beam transverse velocity is 
dw

dt
 =

 ∂w

∂t
 + V

∂w

∂x
, and the acceleration is 

d2w

dt2  = 
∂2w

∂t2  + 2V
∂2w

∂x∂t
 + V2 ∂2w

∂x2 . Assuming the forced exci-

tation, Pz(x,t) =  f
0
sin(γt) where f0 is the excitation amplitude. Additionally, the density of 

the matrix beam is ρ, the damping coefficient per unit length is c, and the elastic modulus 

is E. 

Hao et al. [38,39] gives the force diagram of the micro-body (Figure 2 in Ref. [38]). 

Introducing the random perturbation of the axial velocity, the random transverse vibra-

tion equation of the main beam can be obtained: 
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12

∂4w
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+

H

2
Eb1H[(
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∂x2
)

2

+
∂w
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]-b1Hh[a(T-TM)
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2

∂4w

∂x4
-
3

8
b(H+h)3 (

∂w

∂x
)

2 ∂4w

∂x4
-

3

4
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(

∂3w
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)

2

+
5

32
e(H+h)5 (

∂2w

∂x2
)

4
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+

5

8
e(H+h)5 (

∂2w

∂x2
)

3

(
∂3w

∂x3
)

2

] 

-P
∂2w

∂x2
-ρb1H

d2w

dt2
-c

∂w

∂t
+Pz = 0 

(2) 

Considering the first-order mode, the boundary condition of simple support at both 

ends, the displacement solution can be set as:  

w(x,t) = f(t)sin(
π

L
x) (3) 

If the displacement solution in Equation (3) is introduced to Equation (2), we can 

obtain: 

b1Hh

2
[a(T-TM)(H+h) (

π

L
)

4

f(t) sin (
π

L
x) +

3

2
b(H+h)3 (

π

L
)

8

f(t)3 sin (
π

L
x) cos2 (

π

L
x)] + 

b1Hh
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f(t)3 sin3 (
π

L
x) -

5

4
e(H+h)5 (
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π

L
x) cos2 (

π

L
x)] + 
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b1H3E
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π

L
x) +P (

π

L
)

2

f(t) sin (
π

L
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-ρb1Hf(t)̈ sin (
π

L
x) +ρb1Hv2 (

π

L
)

2

f(t) sin (
π

L
x) -2ρb1Hvf(t)̇ cos (

π

L
x) -cf(t)̇ sin (

π

L
x) 

            +f
0

sin(γt) =0 

(4) 

Then, introducing the dimensionless parameters q = f/L, τ = tωn, ωn = 
√3

6
√

EH2π4

ρL4 , H1 = 

h/H, H2 = H/L, E1 = a(T − TM)/E, E2 = b/E, E3 = e/E. The continuous simply supported beam is 

discretized by the Galerkin method. 
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Next, rearranging the differential equation, the dimensional vibration differential 

equation is yielded:  

q̈ + q + c0q̇ + k1q + k3q3 + k5q5 + F0f
0

sin(γt) = 0 (6) 

where:  

c0=√
12

EH2
4ρb1

2π4
c, k1=-6E1H1(1+H1)-

12P

6H2
3Lπ2E

-
12ρV2

H2
2π2E

, k3=
9

8
E2H2

2π4H1(1+H1)3  

k5=-
15

64
E3H2

4π8H1(1+H1)5, F0=-
48

π5b1H2
3E

 

3. Numerical Example and Parametric Effects 

For the axially moving laminated SMA beam, give L = 0.5 m, b1 = 0.05 m, H = 0.02 m, 

E = 206 GPa, ρ = 7900 kg/m3, and T = 300 K. The parametric effects on system steady-state 

response are analyzed. 

3.1. Effect of Random Intensity 

Figure 2 compares the time histories of the system steady-state response to different 

random intensities (D), given v = 10 m/s, γ = 0.97. At D = 0, the system steady-state re-

sponse consists of a periodic motion, as shown in Figure 2a. As random perturbation in-

tensity increases, transverse vibration amplitude changes randomly near 0.01, and the pe-

riodic motion disappears. A similar conclusion was found in Ref. [38] (Figure 7); as the 

random perturbation intensity increases, the phase diagram changes into a diffused limit 

cycle. It means that the steady-state response becomes more random and large amplitude 

vibration appears. Comparison of the four groups of time histories reveals that, with the 

appearance of random perturbation, a relatively large vibration amplitude appears in the 

system; meanwhile, the time history curve becomes less orderly. 



Materials 2022, 15, 562 6 of 12 
 

 

Figure 2. Time histories of q under different random intensities. (a) D1 = 0, (b) D1 = 10, (c) D1 = 100, 

(d) D1 = 500. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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. 

Figure 3. Variation of system marginal probability density function with random perturbation in-

tensity. 

Equation (4) is solved, and the system steady-state probability density function is 

simulated using the Monte Carlo algorithm, which is a method that uses random numbers 

to solve many computational problems based on probability and statistical theory meth-

ods. During the calculation, 105 sample numbers are given by adopting Rung–Kutta 

fourth-order algorithm, the Monte Carlo simulation is run until the steady state, in the 

statistical sense, is reached. Figure 3 considers the effects of different random perturbation 

intensities on the marginal density corresponding to the system steady-state probability 

density function. It can be seen that increasing random perturbation intensity does not 

change the peak numbers in the probability density function (PDF) curves, but the value 

of the peaks gradually flattens and approach the origin. That is, noise intensity will not 

induce a phase transfer in the system. 

3.2. Effect of Axial Velocity 

Given parameters: γ = 0.96, D = 10. Figure 4 compares the time histories and phase 

diagrams of the system steady-state response to different axial velocities. As axial velocity 

increases, the system steady-state response gradually increases from small-amplitude os-

cillation; however, as axial velocity further increases to a given limit, the steady-state re-

sponse amplitude gradually decreases.  

From Figure 5, the value of q at the marginal probability density peak first increases 

then decreases with increasing axial velocity. When the axial velocity is less than 90 m/s, 

with the increase in axial velocity, the peaks’ values in the PDF curves gradually move far 

away from the origin. The results of the Monte Carlo simulation further show that when 

the axial velocity is low, the lower the velocity, the smaller the steady-state response am-

plitude. When the axial velocity is greater than 90 m/s, with the increase in axial velocity, 

the peaks’ values in the PDF curves become close to the origin. 
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(g) 

 

(h) 

Figure 4. Time history curves and phase diagrams of q at different axial velocities v. (a) displace-

ment–time history curve at v = 10 m/s, (b) displacement–velocity phase diagram at v = 10 m/s, (c) 

displacement–time history curve at v = 50 m/s, (d) displacement–velocity phase diagram at v = 50 

m/s, (e) displacement–time history curve at v = 90 m/s, (f) displacement–velocity phase diagram at 

v = 90 m/s, (g) displacement–time history curve at v = 120 m/s, (h) displacement–velocity phase dia-

gram at v = 120 m/s. 

 

Figure 5. Variation of system marginal probability density function with axial velocity v0. 

As axial velocity increases, the shape of the marginal probability density curve does 

not change qualitatively. Comparison of the power spectral density curves of the trans-

verse displacement of the laminated SMA beam under four different velocities reveals 

that, under a small velocity, the power spectral density curve contains several energy-

concentrated frequency components. The energy at the natural frequency is prominent, 

whereas those at the subsequent frequency components are less impressive; as axial ve-

locity increases, the second frequency component gradually disappears, as shown in Fig-

ure 6. With the increase in axial velocity, the system internal energy shows the following 

transformation: the width of the spectrum first narrows sharply then gradually broadens, 

with the maximum standing at the system natural frequency all the time. The power spec-

tral density value at the system natural frequency first increases and then begins to de-

crease when the velocity is greater than v = 90 m/s.  
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(a) (b) 

Figure 6. Variation of power spectral density with axial velocity. (a) ω from 0 to 3 rad/s (b) ω from 

0.8 to 1.3 rad/s. 

4. Discussion 

In this paper, nonlinear random parameter vibration of variable-speed axially mov-

ing SMA-laminated beam is studied. Compared with the standard limit cycle oscillation 

of deterministic systems, the time history curve of SMA-laminated beams shows a large 

oscillation attributed to the random axially moving velocity disturbance. With the increase 

in the intensity of random axial velocity disturbance, the randomness of the response time 

history curve of the system increases. As a result, the time history curve becomes more 

disordered.  

Laminated structures are seldom considered in the modeling of axially moving 

beams or plates in the existing literature, most of which studied nonlinear dynamics such 

as internal resonance, principal resonance, and bifurcation chaos of axially moving beams 

and plates. The laminated structure studied in this paper is a common structural form 

consisting of SMA as the surface and linear elastic material as the sandwich. More im-

portantly, the effect of random axial velocity disturbance on nonlinear random parameter 

vibration of laminated structures in this paper is rarely mentioned in the existing litera-

ture.  

Ref. [38] considered the nonlinear random vibration of axially moving SMA-lami-

nated beams under the simultaneous presence of transverse harmonic excitation and ran-

dom disturbance. Its random excitation is forced excitation in essence. In this paper, the 

influence of velocity random disturbance is studied, which is parametric random excita-

tion in essence. So, there are essential differences between this paper and Ref. [38]. How-

ever, no matter what kind of random factor exists, the time history curve or phase diagram 

of the system response will be greatly oscillated, and the greater the intensity of the ran-

dom factor, the stronger the randomness of the system response will be. The conclusion 

obtained in Figure 7 in Ref. [38] is similar to that in this paper, and this conclusion can be 

verified mutually. 

The SMA Falk’s polynomial model is used to analyze the effects of axial movement 

and random perturbation in this paper. The advantage of this polynomial model is that it 

can be used to describe the basic constitutive relations of SMA and it is widely used, while 

the limitation is that it is simple. In the following work, the nonlinear stochastic dynamics 

of SMA-laminated plates under the coupling action of multiple fields (including temper-

ature fields) based on complex SMA constitutive relations model will be considered. 
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5. Conclusions 

The parametric random vibration of axially moving laminated SMA beams subject to 

random perturbation was investigated. The dynamic equation of laminated SMA beams 

subject to uniform transverse loading was established. The random vibration equation 

was numerically simulated via the Monte Carlo method. The system steady-state response 

was analyzed in the time and frequency domains:  

As random perturbation intensity increases, large-amplitude oscillation appears ran-

domly in the steady-state response. However, the marginal density curve of the system 

steady-state response does not change qualitatively. Changed random perturbation inten-

sity does not induce a phase transfer in the system.  

As the axial velocity increases, the system steady-state response gradually increases 

from small-amplitude oscillation and then gradually decreases. As the axial velocity grad-

ually decreases, the width of the spectrum first narrows sharply then gradually broadens. 

A second energy-concentrated frequency component appears on the power spectral den-

sity curve, with the maximum width standing at the system natural frequency all the time.  
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