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Abstract: The lives of many people around the world are impaired and shortened mostly by cardio-
vascular diseases (CVD). Despite the fact that medical interventions and surgical heart transplants
may improve the lives of patients suffering from cardiovascular disease, the cost of treatments and
securing a perfect donor are aspects that compel patients to consider cheaper and less invasive
therapies. The use of synthetic biomaterials such as titanium-based implants are an alternative for
cardiac repair and regeneration. In this work, an in situ development of Ti-Al-xNb alloys were
synthesized via laser additive manufacturing for biomedical application. The effect of Nb composi-
tion on Ti-Al was investigated. The microstructural evolution was characterized using a scanning
electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). A potentiodynamic
polarization technique was utilized to investigate the corrosion behavior of TiAl-Nb in 3.5% NaCl.
The microhardness and corrosion behaviour of the synthesized Ti-Al-Nb alloys were found to be
dependent on laser-processing parameters. The microhardness performance of the samples increased
with an increase in the Nb feed rate to the Ti-Al alloy system. Maximum microhardness of 699.8 HVN
was evident at 0.061 g/min while at 0.041 g/min the microhardness was 515.8 HVN at Nb gas carrier
of 1L/min, respectively.

Keywords: lens; microhardness; densification; anti-corrosion

1. Introduction

Titanium and its alloys, along with stainless steel (SS) and Co-Cr alloys, are the most
used metallic biomaterials in cardiovascular application [1]. This material was adopted
following clinical trials carried out in the late 1930s that provided evidence that Ti exhibited
similar biological characteristics to SS and cobalt alloys. Titanium became a prospective
material because of its interesting features, such as of lightness and equivalent strength
when compared to both SS and cobalt alloys [1,2].

Metallic biomaterials such as titanium and its alloys are presently used as structural
materials in artificial hip joints, artificial dental roots, bone plates and screws. These classes
of materials are primarily utilized in implants that replace hard tissue [3–5]. Among biomet-
als, titanium alloys have a high specific strength, biocompatibility and good corrosion
resistance, and they display the most appropriate physical characteristics for biomedical
applications [6–8]. On the other hand, titanium and titanium alloys cannot meet all the
desired clinical requirements. The most frequently used titanium alloy for medical ap-
plications today is Ti6Al4V [9]. Nevertheless, Ti6Al4V alloys are normally restricted to
non-friction occasions due to the low hardness and poor wear resistance properties and they
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also present poor corrosion resistance properties in aggressive environments [10,11]. Cruz,
Souza [12] stated that the degradation of titanium implants is as a result of a combination
of micro-motions, the working environment and poor wear resistance.

In recent research, hydroxyapatite (HAp) is considered the most biocompatible mate-
rial for use in the replacement and regeneration of bone material [13]. The main component
that is present in the hard-body tissues is a hydroxyapatite nanostructure [11]. HAp is
widely utilized as a bioactive coating material in metallic implants in biomedical applica-
tions due to their outstanding biocompatibility, osteo-conductivity and its chemical and
structural similarity to natural bone. HAp is also coupled with quicker implant fixation
along with a strong bond between implants and the living bone. However, the way the
state of the art nano-technology can be exploited to fabricate hydroxyapatite nanophase
with similar properties compared to natural hydroxyapatite found in hard tissues presents
many challenges [13–16].

Hence, the demand for new materials with enhanced properties for biomedical ap-
plications is growing. In the coming decades the mortality and morbidity rates of CVD
disease are anticipated to rise. Unfortunately, the expected rise in these rates brings along
hefty financial burdens [17]. Hence, new technologies for fabrication of new biometals
need to be implemented. The high strength-to-weight ratio property of titanium aluminide
(TiAl)-based intermetallic alloys makes researchers view this type of material as a potential
biometal. Due to the lack of ductility in TiAl alloys, additional alloying elements to improve
the ductility of the alloy are investigated for potential biometals.

Many studies have been conducted to investigate titanium-based alloys’ improve-
ments in oseointegration with bones, which lead to poor bonding between bone tissue
and implants [18–23]. Laser Engineered Net-shaping (LENS) in Additive Manufacturing
(AM), is a breaking-edge manufacturing technique presenting the possibility of changing
the perception of design and manufacturing as a whole. LENS manufacturing provides an
opportunity to produce Ti alloys with layer by layer melting and the potential to design
complex components for biomedical applications. The technique is also recognized for
reducing the necessary time and machining-cost in such processes [19,22,24]. Many authors
have used LENS to develop titanium alloys for biomedical application [25,26]. The scope of
industrial application of LENS technology is largely reliant on process efficiency, precision
of design-to-build, build consistency and repeatability, all of which depend on a developed
knowledge of the process parameters and powder characteristics [27,28]. Das, Balla [24]
fabricated cp-Ti using LENS for potential biomedical implants application. The author also
studied the influence of laser processing parameters and revealed that the density of the
cp-Ti decreases with an increase in the powder-feed rate and that laser power decreases
as a result of partially molten powder which creates porosity. Branzoi, Iordoc [29] stud-
ied the surface characteristics of Ti-based (TiAl6V4, Ti6Al7Nb and TiNi) alloys in a fetal
bovine serum solution. The results indicated that the TiAlNb alloy had an outstanding
corrosion behaviour compared to the TiAlV alloy, and that Nb was more stable and less
toxic compared to V.

The literature shows that laser additive manufacturing can be used to fabricate Ti-Al
based alloys. Information on the fabrication of TiAl based alloys fabricated via in situ laser
additive manufacturing for biomedical applications is limited. In this research, attempts
were made to produce defect-free Ti-Al-xNb-based 3D printed samples, with improved
mechanical properties, high densification and good electrochemical behaviour using direct
laser metal deposition for potential biomedical application.

2. Materials and Methods
2.1. Materials

Pure elemental powders of Ti and Al were used as feedstocks in this study. Ti and
Al powders were sphere-shaped, with a particle distribution size range of 45–90 µm. The
powders were supplied by TLS Technik (Bitterfeld-Wolfen, German) while Nb (irregular in
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shape) was supplied by Weartech (Johannesburg, South Africa). Powders were deposited
onto Ti6Al4V substrates with dimensions of 140 × 140 × 7 mm3.

2.2. Methods
2.2.1. Laser Metal Deposition

LENS additive manufacturing is a process used for fabricating high quality com-
ponents for advanced biomedical and engineering purposes. The CSIR’s LENS® 850-R
system, manufactured by Optomec, Albuquerque, NM, USA), was utilized to synthesize
Ti-Al-xNb alloys on a grade 5 titanium alloy (Ti-6Al-4V) substrate. This LENS system
uses a 1 KW IPG fiber laser mounted onto the deposition head so that the head and laser
beam could be manipulated or controlled simultaneously. The system was received as
standard, with two hoppers used for binary laser in situ alloying or FGMs research. For
research regarding laser in situ alloy ternary and powders, GTV (Verschleiss-Schutz Gmbh,
Luckenbach, Germany) powder hoppers are externally attached to the LENS to produce
3 modified hoppers in the LENS set-up. All powder feeders are connected to the bulk
Argon gas supply that is used as a carrier gas during processing. The modified LENS
set-up was then automatically controlled from a central computer working station that was
installed an Optomec software, version 3.1.6. Table 1 reports the process parameters that
were used to manufacture the Ti-Al-xNb coupons studied in this paper.

Table 1. DED process parameters.

Parameter Symbol Set-Value Unit

Laser power P 450 W
Laser spot size D 1.4 mm

Deposition speed S 26 in/min
Al powder M-Al 2.4 L/min
Ti powder M-Ti 4.2 L/min
Nb powder M-Nb 1.0 L/min

The Ti gas carrier was set to 4.2 L/min, while Al was 2.4 L/min which equated
to 2.21 g/min and 0.48 g/min, respectively. The LENS set-up was composed of three
hopers of which Ti, Al and Nb powders were carried by the Argon gas to the deposition
zone. The development of Ti-Al-Nb occurred on the base plate that was continuously
heated around the temperature below the phase transformation in relation to the Ti-Al
phase diagram. Table 2 presents the sample code of the manufactured Ti-Al alloys used to
fabricate the Ti-Al alloy at an Nb gas carrier flowrate of 1 L/min and the equivalent Nb
powder feed rate in g/min.

Table 2. Sample code and the Nb feed rate applied in developing Ti-Al based alloys.

Nb Feed Rate (g/min)

Sample Code
A 0.041
A0 0.043
A1 0.052
A2 0.055
A3 0.061

2.2.2. Sample Preparation and Analyses

The synthesized cube samples were cut from the substrate and mounted in an epoxy-
based resin, grinded and polished using typical metallography procedures and etched
with a Kroll agent solution to evaluate the microstructural evolution. Olympus BX51M
was mounted on a SC30 camera, and was used for microstructural visualisation while Joel,
JSM-6010Plus/LAM scanning electron microscopy (SEM) (Peabody, MA, USA) equipped
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with energy dispersive X-ray (EDS) and used for microstructural and chemical composi-
tion analyses. The phase of the alloys was identified using the X’Pert PANalytical X-ray
diffraction machine (PANalytical Empyrean model, Malvern Panalytical Ltd., Royston, UK)
that uses a Cu source. During data acquisition, the Cu source was excited with a current
and voltage of 40 mA and 54 kV, respectively.

2.2.3. Microhardness

The Vickers microhardness (HVN) measurements of the synthesized alloys were
analyzed using an Zwick/Roell Indentec (ZHVµ) microhardness tester machine (Zwick
Roell AG, Ulm, Germany). An indention load of 500 kgf was applied on the surface of the
samples with a dwell time of 15 s. The fabricated sample surfaces were indented randomly
at ten different positions and the mean value was recorded.

2.2.4. Density

Archimedes’ principle was employed to measure the densities of the fabricated sam-
ples using a Density-o-meter measuring scale. For accurate statistical data, five measure-
ments were carried out on each of the samples and the relative density was calculated as a
function of the theoretical and measured density of the developed Ti-Al-Nb.

2.2.5. Corrosion Test

Corrosion testing was performed using the autolab pontetionstat to determine the
linear polarisation of the fabricated samples. The samples were tested in an NaCl environ-
ment as one of the main constituents of human body fluid and the tests were performed at
a scan rate of 0.01, with a start and stop potential of −1.5 V and 1.5 V, respectively.

3. Results and Discussion
3.1. Microstructural Results

Figure 1 present the microstructural evolution of laser synthesized Ti-Al-Nb alloy
at 26 in/min and laser power of 450 W. The effect of Nb feed rate on TiAl matrix was
studied from 0.041 to 0.061 g/min. The difference in the microstructural evolution of the
laser fabricated alloy occurred due to the variation of the Nb feed rate which resulted
in a unique compositional effect hence, leading to unique micrographs. The developed
alloys resulted in non-homogenous structures with irregular Ti rich precipitates. The
fabricated Ti-Al-Nb alloys were free from pores and cracks or any initiation of stress. We
also observed that, with an increase in Nb rpm, the alloy grains became finer. According to
Malatji, Popoola [30], Nb has the capability to induce grain refinement in the alloy matrix
and can also form a solid solution with other incorporated elements. At 0.041 g/min Nb
feed rate (5at% Nb), it is clear that the grains are large in size as compared to samples
developed at 0.052 g/min (A1) and 0.061 g/min (A3). The nature of laser manufacturing
could also play a role in the observed general fine microstructure, as a result of fast cooling
of the melt pool affording less time for grain growth [31]. The benefit of Nb incorporation
in titanium was reported to stabilize the formation of β-phase (bcc) with high strength but
moderate ductility. The addition of Nb in a Ti-Al alloy matrix can act as BCC β-stabilizer
in both γ-TiAl and α2-Ti3Al phases, which leads to the formation of ordered orthorhombic
Ti2AlNb phases. Moreover, Nb acts as a substitutional or interstitial solute in the crystal
lattice matrix [32]. This helps to induce the distortion of the crystal lattice, resulting in
a reduction of dislocation movements, which lead to an improvement in the mechanical
properties of the alloys [33]. Figure 2 presents images of EDS elemental mapping of the
alloy at a given area, where the elemental maps show a uniform distribution of particles
for Nb, Ti, and Al. The images also indicate that titanium is the richest phase in the alloy
by atomic percentage.
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Figure 3 presents SEM images of Ti-Al-xNb alloys with varied Nb feed rates along
with the EDS analysis graphs of the respective alloys. Figure 3A has a distinct dark spots
phase which is an indication of the partial melted titanium rich particles as suggested by
the EDS, and this affects the special distribution of titanium particles within the alloy. From
the elemental composition of the developed alloys (Table 3), it can also be noticed that as
the Nb feed rate increased, the amount of Nb in the matrix of the alloys also increased,
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which can also be observed on the Nb peaks apparent in Figure 3A–C. Table 3 also present
the theoretical and the actual density of the in situ laser fabricated Ti-Al-Nb alloys. The
densities were measured by Archimedes’ principle.
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Table 3. Elemental composition (at%) and actual density of the developed alloys.

Elements in Atomic % Theoretical
Density (g/cm3)

Actual Density
(g/cm3)

Sample Ti Al Nb
A 56.22 (56) 38.75 (39) 5.04 (5) 4.06 4.0245
A1 47.34 (47) 42.44 (42) 10.22 (10) 4.22 4.2035
A3 51.34 (51) 34.89 (35) 13.77 (14) 4.50 4.4585

3.2. Phase Analysis Results

Figure 4 represent the XRD pattern of the 3D printed Ti-Al-xNb via laser in situ
alloying, fabricated at different laser processing parameters. The sample A presented
major diffraction peaks of 38.21◦, 40.45◦, 42.62◦, 56.39◦, 70.74◦, 78.75◦, 83.01◦ and 88.03◦

their inter-planar distance of 2.35 Å, 2.23 Å, 2.12 Å, 1.63 Å, 2.13 Å, 1.71 Å, 1.67 Å and
1.33 Å, respectively. At 14at% Nb (A1) content, the diffraction peaks were found at 34.86◦,
39.89◦, 42.48◦, 52.78◦, 56.06◦ and 70.41◦ and inter-planar distances of 2.57 Å, 2.25 Å, 2.13 Å,
1.73 Å, 1.64 Å and 1.33 Å were found, respectively. The XRD spectrum of sample A (5at%
Nb) shows the major phases (α-phase and γ-phase) present and the high peaks. The
same peak was slightly reduced at sample A1 (10at%). Normally, the shift in the crystals
structure and peak intensity decrease indicate atomic rearrangement. Furthermore, peak
broadening, appearance and disappearance can be noticed with an increase in Nb content.
A disappearance of γ phase can be noticed at 78.75◦, 83.01◦ and 88.03◦ (2θ). The peak
intensity decreased due to the dissolution of unstable phases to form stable phases with
increasing Nb content. This is an example of twinning in Ti-Al-xNb. The synthesized alloys
presented a higher fraction of γ phase in both powder-feed rates. From the study of [34],
the combination of the β and γ phases are known to have moderate ductility and to induce
toughening, whereas the α2 phase imparts strengthening in the advanced γ-TiAl alloys
which makes it suitable for potential biomedical application. The present phases can be
related to SEM images, as presented β and γ phases (Figure 1).
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3.3. Densification Results

Figure 5 present the effect on Nb on the densification properties of Ti-Al-xNb devel-
oped via laser in situ alloying. The principle used by Archimedes’ states the difference
in weight of the material measured in air along with the sample material measured in
suspended water as the volume of an object. The Archimedes’ equation of relative density
is presented Equation (1);

rs =
(ms·rw)

(ms −mw)
(1)
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The Ti-Al-xNb alloys densities (rs) in g/cm3 are derived from the amount of the
product of the mass of the alloy in air (ms) in grams (g) and the density of water at room
temperature (rw) in g/cm3 with the difference between the mass of the alloy in air and the
mass of alloy in water (mw) in g. Generally, the developed alloys are much denser with
a densification of more than 99%. This can be attributed to the high laser power (450 W)
used to melt the Ti, Al and Nb powders, which resulted in minimal micro-pores present
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in the fabricated alloys. Furthermore, it is known that high temperatures during laser
fabrication result in high particle-to-particle fusion, which result in a good relative density
of the material [35]. Authors have mentioned the relationship between the density of the
material and its microhardness properties. According to [36], the densification of alloys
has a significant influence on its microhardness properties. High alloy densification has
been associated with improved microhardness value. According to [37], high densification
properties of titanium aluminides can also be attributed to particle rearrangement and the
homogeneous distribution of phases which are more favored for biomedical applications.

3.4. Microhardness Results

Figure 6 depicts microhardness properties of the synthesized Ti-Al-xNb at different
Nb feed rates. The results present the mean microhardness value for Ti-Al-xNb with
varying compositions as a result of the different feed rate of Nb. The samples were in-
dented randomly at 10 different points and the average value was presented. Vickers
microhardness tests were performed to assess the tendency of the developed alloys to
resist plastic deformation. It is obvious from the presented results that the Ti-Al-xNb at
the Nb gas carrier of 1 L/min and feed rate of 0.055 g/min led to better enhancement
compared to other fabricated alloys, which presented the maximum microhardness value
of 699.8 HVN. However, as the Nb flow rate increased to 0.061 g/min (A3), the micro-
hardness slightly reduced to 684.6 HVN. There was a clear relationship between the Nb
feed rate and microhardness properties at 1 L/min gas carrier. It can be confirmed from
the graph that the increase in the microhardness was a result of the Nb feed rate increase.
Generally, the strengthening mechanism of the developed Ti-Al-xNb can be attributed
to the rapid cooling of the melt pool during laser manufacturing, which results in small
grains, known for their good mechanical properties. According to Masina, Skhosane [38]
and Malatji, Popoola [30], laser processing parameters also play an important role in im-
proving microhardness properties of laser-developed materials. The incorporation of Nb
as an alloying element is also known for improving mechanical properties such as high
microhardness, high fracture toughness and outstanding wear resistance, which makes it
applicable for biomedical purposes [3,39,40].

Materials 2021, 14, x FOR PEER REVIEW 8 of 13

rearrangement and the homogeneous distribution of phases which are more favored for 
biomedical applications. 

Figure 5. Densification results of synthesized Ti-Al-xNb.

3.4. Microhardness Results 
Figure 6 depicts microhardness properties of the synthesized Ti-Al-xNb at different 

Nb feed rates. The results present the mean microhardness value for Ti-Al-xNb with 
varying compositions as a result of the different feed rate of Nb. The samples were 
indented randomly at 10 different points and the average value was presented. Vickers 
microhardness tests were performed to assess the tendency of the developed alloys to 
resist plastic deformation. It is obvious from the presented results that the Ti-Al-xNb at 
the Nb gas carrier of 1 L/min and feed rate of 0.055 g/min led to better enhancement 
compared to other fabricated alloys, which presented the maximum microhardness value
of 699.8 HVN. However, as the Nb flow rate increased to 0.061 g/min (A3), the 
microhardness slightly reduced to 684.6 HVN. There was a clear relationship between the
Nb feed rate and microhardness properties at 1 L/min gas carrier. It can be confirmed from 
the graph that the increase in the microhardness was a result of the Nb feed rate increase. 
Generally, the strengthening mechanism of the developed Ti-Al-xNb can be attributed to 
the rapid cooling of the melt pool during laser manufacturing, which results in small 
grains, known for their good mechanical properties. According to Masina, Skhosane [38] 
and Malatji, Popoola [30], laser processing parameters also play an important role in 
improving microhardness properties of laser-developed materials. The incorporation of 
Nb as an alloying element is also known for improving mechanical properties such as 
high microhardness, high fracture toughness and outstanding wear resistance, which 
makes it applicable for biomedical purposes [3,39,40].

 
Figure 6. HT effect on microhardness properties of developed Ti-Al-Nb.

The annealing heat treatment effect on the microhardness properties of synthesized Ti-
Al-xNb alloys was investigated. The samples were heat treated at a temperature of 1200 ◦C
for 2 h in a muffle furnace. LENS-developed samples are known for low ductility. The rea-
son relates to the fact that laser material processing results in rapid cooling that takes place
in the process. Annealing heat-treatment helps with stress relief and re-crystallization in
the alloys. The dramatic microhardness decrease can be attributed to the fact that annealing
could result in rapid grain growth as the samples are cooled slowly in the furnace [41–43].
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3.5. Corrosion Results

Figure 7 represents the potentiodynamic polarization of LENS manufactured Ti-Al-
xNb alloys at various Nb feed rates and a gas carrier of 1 L/min. The native film (oxide
layer), which forms spontaneously at room temperature on the Ti alloys’ surface provides
them with an outstanding biocompatibility property. In most cases, biocompatibility of
biomaterial implants is measured by the response of host post implantation. The human
body is considered to be a very hostile environment for any foreign objects, including
biomaterials. What makes the human environment aggressive is its components, such
as blood and other body fluids such as water, proteins, plasma and amino acids. These
constituents are composed of various ions such as chloride, phosphate, and bicarbonate,
sodium, potassium, calcium, magnesium ions, etc. [44]. Among these ions, chloride ion is
recognized as the most aggressive and corrosive to metals. As the human body contains
many salts, the electrochemical behavior of the Ti-Al-xNb biomaterial was examined in
3.5% NaCl medium to understand the response of Ti-Al based alloy in Cl conditions
for potential biomedical applications. The plots show a shift in the pitting potential
of the alloys, along with a trend of passivating behavior. There was a positive shift of
corrosion potential (Ecorr) of the synthesized samples from sample A (0.041 g/min) to A3
(0.052 g/min). According to Krzywicka, Antoszewski [45], in the case of more positive
Ecorr values, the sample shows a greater ability to develop a protective oxide layer to
inhibit corrosion. The high potential of −0.62267 V was evident in sample A2 with a
current density of 8.28 × 10−5 A/cm2 as indicated in Table 4 of the corrosion-dynamic fit
of the Ti-Al-based samples. We observe no clear relationship between the Nb feed rate and
corrosion-resistance behaviour. Additionally, a larger active range on the anodic branch is
observed with sample A, A2 and A3 when compared to samples A0 and A1 which show
oxide-protective behaviour, further indicating a greater susceptibility to corrosion after
passivation is attained.
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Table 4. Tafel results of Ti-Al-xNb LENS manufactured alloys in NaCl.

Sample Code Ecorr, Obs (V) Jcorr (A/cm2)
Corrosion Rate

(mm/Year)
Polarization

Resistance (Ω)

A −0.80245 6.99 × 10−5 0.021175 1258.5
A0 −1.1062 3.63 × 10−5 0.082186 1140.83
A1 −1.0843 0.000267 0.081057 1128.75
A2 −0.62267 8.28 × 10−5 0.01023 2536.41
A3 −0.94834 0.000181 0.06053 1464.46
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SEM Images of Corroded Samples in 3.65% NaCl Solution

Figure 8 presents the SEM/EDS microstructure of corroded Ti-Al-xNb samples devel-
oped both at A1 and a gas carrier of 1 L/min. The morphological evolution of the fabricated
Ti-Al-xNb samples demonstrates the existence of the oxide film of the elements on the
alloy surface. From the EDS analysis of corroded Ti-Al-xNb samples, it can be observed
that the samples presented a depleted Nb and Al content, respectively. The presence of
a high oxygen content shows that the formation of oxide products occurs on the surface
of the alloys. These products result in cation vacancy diffusivity across the oxide layer
and consequently cause more defect sites and a breakdown of the passive film oxide. In
support of the TiO2 breakdown mechanism, the localized exposure of TiO2 to chloride ions
encourages the formation of unstable titanium oxychloride [46]. The study conducted by
Shi et al. [47] showed that the presence of Ti and Nb in s 3.5 wt.% NaCl solution presented
outstanding anticorrosion behaviour, which is attributable to the fact that Ti and Nb content
facilitate the formation of the protective oxide layer (TiO2 and Nb2O5) on the surface of
Ti-Al-xNb alloys. It is evident from literature that the Al2O3 layer is porous and because of
this, it allows for the penetration of detrimental Cl− ions on the exposed surface [48–50].
Moreover, the presence of the Cl elemental peak on the EDS could be a result of corrosion
products containing Cl. These products may include AlCl3, TICl4 as identified through
Equations (2)–(4). The following reactions may occur during corrosion tests:

Al + 3NaCl→ AlCl3 + 3Na (2)

Ti + 4NaCl→ TiCl4 + 4Na (3)

Nb + 5NaCl→ NbCl5 + 5Na (4)

Materials 2021, 14, x FOR PEER REVIEW 10 of 13 
 

 

Table 4. Tafel results of Ti-Al-xNb LENS manufactured alloys in NaCl. 

Sample 
Code 

Ecorr, Obs (V) Jcorr (A/cm²) Corrosion Rate 
(mm/year) 

Polarization  
Resistance (Ω) 

A −0.80245 6.99 × 10−5 0.021175 1258.5 
A0 −1.1062 3.63 × 10−5 0.082186 1140.83 
A1 −1.0843 0.000267 0.081057 1128.75 
A2 −0.62267 8.28 × 10−5 0.01023 2536.41 
A3 −0.94834 0.000181 0.06053 1464.46 

SEM Images of Corroded Samples in 3.65% NaCl Solution 
Figure 8 presents the SEM/EDS microstructure of corroded Ti-Al-xNb samples 

developed both at A1 and a gas carrier of 1 L/min. The morphological evolution of the 
fabricated Ti-Al-xNb samples demonstrates the existence of the oxide film of the elements 
on the alloy surface. From the EDS analysis of corroded Ti-Al-xNb samples, it can be 
observed that the samples presented a depleted Nb and Al content, respectively. The 
presence of a high oxygen content shows that the formation of oxide products occurs on 
the surface of the alloys. These products result in cation vacancy diffusivity across the 
oxide layer and consequently cause more defect sites and a breakdown of the passive film 
oxide. In support of the TiO2 breakdown mechanism, the localized exposure of TiO2 to 
chloride ions encourages the formation of unstable titanium oxychloride [46]. The study 
conducted by Shi et al. [47] showed that the presence of Ti and Nb in s 3.5 wt.% NaCl 
solution presented outstanding anticorrosion behaviour, which is attributable to the fact 
that Ti and Nb content facilitate the formation of the protective oxide layer (TiO2 and 
Nb2O5) on the surface of Ti-Al-xNb alloys. It is evident from literature that the Al2O3 layer 
is porous and because of this, it allows for the penetration of detrimental Cl− ions on the 
exposed surface [48–50]. Moreover, the presence of the Cl elemental peak on the EDS 
could be a result of corrosion products containing Cl. These products may include AlCl3, 
TICl4 as identified through Equations (2)–(4). The following reactions may occur during 
corrosion tests: 

Al + 3NaCl → AlCl3 + 3Na (2)

Ti + 4NaCl → TiCl4 + 4Na  (3)

Nb + 5NaCl → NbCl5 + 5Na (4)

 
Figure 8. SEM/EDS of corroded sample in 3.65% NaCl.

4. Conclusions

X Ti-Al-xNb was successfully synthesized as a biomaterial by means of LENS-additive
manufacturing and the following conclusions were drawn:

X The EDS of the samples suggested that all incorporated elemental powders were
available in the fabricated Ti-Al-xNb alloy.

X The effect of the Nb feed rate was sufficient to create different microstructural evolu-
tions, as presented by SEM images
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X Heat-treatment of the developed samples presented a significant decrease in micro-
hardness with a maximum hardness value of 521.4 HV, which suggest that stress relief
was achieved.

X A high potential of −0.62267 V was evident for sample A2, with a current density of
8.28 × 10−5 A/cm2.

X SEM/EDS of corroded samples presented no evidence of rust, however, oxide-
protective layers are evident on the surface of the alloys
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