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Abstract: Cancer is one of the major diseases threatening human health. Traditional cancer treatments
have notable side-effects as they can damage the immune system. Recently, phototherapy, as a poten-
tial strategy for clinical cancer therapy, has received wide attention due to its minimal invasiveness
and high efficiency. Herein, a small organic molecule (PTA) with a D-A-D structure was prepared
via a Sonogashira coupling reaction between the electron-withdrawing dibromo-perylenediimide
and electron-donating 4-ethynyl-N,N-diphenylaniline. The amphiphilic organic molecule was then
transformed into nanoparticles (PTA-NPs) through the self-assembling method. Upon laser irradia-
tion at 635 nm, PTA-NPs displayed a high photothermal conversion efficiency (PCE = 43%) together
with efficient reactive oxygen species (ROS) generation. The fluorescence images also indicated the
production of ROS in cancer cells with PTA-NPs. In addition, the biocompatibility and photocytotoxi-
city of PTA-NPs were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay and live/dead cell co-staining test. Therefore, the as-prepared organic nanomaterials
were demonstrated as promising nanomaterials for cancer phototherapy in the clinic.

Keywords: perylene diimide; self-assembly; organic nanomaterials; photothermal therapy; reactive
oxygen species

1. Introduction

Because of its high mortality, cancer has always been a great threat to human health [1].
Today, a considerable number of traditional cancer treatments exist. However, most of
these conventional cancer treatments cause irreversible side-effects to healthy cells in
clinical application [2,3]. During the last decade, much effort has been dedicated to explore
new cancer treatment methods with low side-effects [4,5] Photodynamic therapy (PDT)
and photothermal therapy (PTT) showed the advantages of minimal invasiveness and
high therapeutic efficiency, thus attracting much attention as a promising therapeutic
technique [6–9]. In PDT, the light irradiation of photosensitizers produces reactive oxygen
species (ROS) which can abolish cancer cells and tissue [10,11]. PTT mainly depends on
the local heat effect induced by near-infrared light irradiation on photothermal agents,
resulting in the damage of tumor cells [12,13].

Based on the mechanism of PDT and PTT, much effort has been dedicated to devel-
oping photosensitizers with high ROS generation or efficient photothermal conversion
efficiency (PCE) for effective cancer phototherapy. Up to now, a great number of pho-
tosensitizers including organic and inorganic functional materials have been designed
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and studied for PTT and PDT, such as noble metal nanoparticles [14], metal chalcogenide
nanomaterials [15], carbon-based nanomaterials [16], magnetic nanoparticles [17], and
polymer materials [18]. Although inorganic materials generally exhibit high photothermal
conversion efficiency or efficient ROS generation due to their semiconductor properties,
they are limited in clinic application by their long-term toxicity toward organisms. Recently,
organic materials with excellent biocompatibility have gained considerable interest for
PTT or PDT applications, such as porphyrin [19,20], phthalocyanine [21,22], and dike-
topyrrolopyrrole [23,24]. In 2017, Dong et al. synthesized organic NPs from an organic
molecule, which was constructed by conjugating triphenylamine (TPA) with 3,6-di(2-
thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP). The prepared organic materials
showed efficient singlet oxygen (1O2) generation (Φ∆ = 33.6%) and high PCE (34.5%) under
660 nm laser irradiation [25]. Yoon et al. developed phthalocyanine-based nanomateri-
als (NanoPcTBs) with both photothermal and photoacoustic properties [26]. In recent
years, our group also developed a series of small molecule-based nanomaterials with
strong absorption in the near-infrared region, which could act as efficient nanoagents in
photodynamic or photothermal therapy [8,19,22].

Perylene diimide (PDI) derivatives have been widely studied for phototherapy for
their high thermal stability, large π–π conjugated system, good photochemical properties,
and bright luminescence. However, the absence of near-infrared (NIR) absorption and
the extreme hydrophobic properties of PDI molecules inhibit their practical application in
PTT [27,28]. Herein, we designed and synthesized a small organic molecule PTA with a
D-A-D structure, where perylene diimide was used as an electronic accepter while triph-
enylamine was used as an electronic donor. The two components were conjugated through
a triple bond, which enhanced the π conjugation of the system, leading to a red shift of
the absorption spectrum [29]. In order to enhance its water solubility, polyethylene glycol
chains were introduced onto the perylene diimide unit. The amphiphilic PTA was then
self-assembled into the related nanostructures (PTA-NPs) through the nanoprecipitation
method [30]. PTA-NPs exhibited high photothermal conversion efficiency (PCE = 43%) un-
der 635 nm laser, which was comparable to that of reported organic nanomaterials (Table 1).
The photocytotoxicity and intracellular ROS generation of PTA-NPs were finally verified
by MTT assay and fluorescence images. Compared to those reported nanomaterials, the
PTA-NPs showed several distinct properties, including (1) organic nanomaterials generated
from small molecules (PTA) with a clear structure and accurately determined molecu-
lar weight, (2) high photothermal conversion efficiency (43%), and (3) simple fabrication
method without the addition of any other reagents. Therefore, PTA-NPs are very promising
for photothermal cancer therapy in preclinical applications.

Table 1. Comparison of different organic nanomaterials for PTT.

Nanomaterials Type Size Absorption
(λmax) PCE Reference

PDI-NPs Small molecule 55 nm 630 nm 43% [31]

ZnP2 NPs Small molecule 120 nm 668 nm 33.4% [32]

BAF4 NPs Small molecule 79 nm 1000 nm 80% [33]

NDTB NPs Small molecule 110 nm 1050 nm 40.6% [34]

PTA-NPs Small molecule 200 nm 800 nm 43% This work

2. Experimental Sections
2.1. Synthesis

N,N-Bis[2-(2-(2-Ethoxyethoxy)ethoxy)ethylane]-1,7-dibromoperylene-3,4,9,10-tetracarboxylic
acid bisimide (10) [35], 4-bromo-N,N-diphenyl aniline (6) [36], and 4-ethynyl-N,N-diphenylaniline
(7) [37] were prepared according to methods in the literature (Scheme S1).
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N,N-Bis[2-(2-(2-ethoxyethoxy)ethoxy)ethylane]-1,7-di(4-ethynyl-N,N-diphenyl aniline)-
3,4,9,10-tetracarboxylic acid bisimide (PTA) [38].

A two-necked round-bottom flask was filled with Compound 10 (20.00 mg, 0.023 mmol)
THF (10 mL), triethylamine (TEA) (8 mL), CuI (0.8 mg, 0.0042 mmol), and PdCl2(PPh3)2
(3 mg, 0.0042 mmol) under an N2 atmosphere. After the temperature was increased to
50 ◦C, Compound 7 (23.52 mg, 0.069 mmol) was added to the system slowly and then
heated and kept at 70 ◦C for 6 h. The residue was obtained by solvent evaporation and
then purified through column (silica gel) chromatography (DCM:CH3OH = 45:1) to afford
the desired product as a purple-black solid (17.18 mg, 60%). 1H-NMR (400 MHz, CDCl3) δ
9.91 (d, J = 8.0 Hz, 2H), 8.65 (s, 2H), 8.47 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.3 Hz, 4H), 7.33
(t, J = 7.5 Hz, 8H), 7.20–7.10 (m, 12H), 7.05 (d, J = 8.4 Hz, 4H), 4.45 (s, 4H), 3.84 (s, 4H),
3.75–3.39 (m, 20H), 1.13 (t, J = 6.9 Hz, 6H) ppm. ESI-MS: m/z calculated for C80H68N4O10
[M + H]+ 1244.5, found 1244.5.

2.2. Preparation of Perylene Diimide-Based Nanoparticles

The solution of PTA (2 mg) in THF (1 mL) was added dropwise to 5 mL of distilled wa-
ter under continuous sonication (KQ5200B Ultrasonic machine from Kunshan Chaosheng
Instrument Limited company, Suzhou, China). After 10 min, the organic solvent was re-
moved by bubbling with nitrogen to obtain PTA-NPs as a homogeneous blue solution. The
concentration of PTA-NPs was calculated using a standard curve of the UV/Vis absorbance
of PTA [39].

2.3. Measurement of PCE

The PCE (η) of the PTA-NPs was calculated according to Equation (1).

η =
hA(Tmax − Tsurr)−QDis

I(1− 10−A635)
, (1)

where Tmax (◦C) and Tsurr (◦C) are the real-time temperature and surrounding temperature,
respectively. A635 refers to the absorbance of the PTA-NP solution at 635 nm (1.25 W/cm2)
under the experimental concentration. The value of hA was derived from Equation (2) [40].

τs =
mDCD

hA
, (2)

where τs is the time constant for heat transfer of the system, which was determined
according to the Equations (3) and (4).

T = −τs ln(θ). (3)

θ =
T − Tsurr

Tmax − Tsurr
. (4)

In Equation (2), mD and CD are the mass (3.0 g) and heat capacity (4.2 J·g−1) of the
PBS (phosphate-buffered saline) used to disperse the NPs. In Equation (1), QDis represents
the heat dissipation from the light absorbed by the water and the quartz sample cell. QDis
was calculated according to Equation (5).

QDis =
mDCD

(
Tmax(water) − Tsurr

)
τs

, (5)

where Tmax(water) = 35.9 ◦C (measured by thermal imager), Tsurr = 26.9 ◦C, andτs(water) = 667.14.

2.4. Detection of Reactive Oxygen Species (ROS) Generation

To detect ROS generation with PTA-NPs, the nonfluorescent dichlorodihydrofluo-
rescein (DCFH) was used as a probe, which can be converted to the highly fluorescent
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2′,7′-dichlorofluorescein (DCF) in the presence of PTA-NPs under 635 nm laser irradiation.
The fluorescence emission spectra of the DCF solution were measured within 500–588 nm
upon excitation at 488 nm. The intracellular ROS generation was detected using the same
method with dichlorodihydrofluorescein diacetate (DCFH-DA) as a probe. Specifically,
the cancer cells were cultivated with DCFH-DA for 4 h and treated with PTA-NP solution.
After laser irradiation at 635 nm for 5 min, the fluorescence images of cancer cells were
observed by fluorescence microscopy (Zeiss, Oberkochen, Germany) [41].

2.5. Cytotoxicity Assay of PTA-NPs

First, 200 µL of PTA-NP solutions with different concentrations (0, 1, 5, 10, 15, and
20 µg/mL) were added into the plates where A549 cells (6 × 103 cells per well) were
cultivated. After incubation for 4 h, half of the A549 cells in the presence of PTA-NPs were
irradiated with a 635 nm laser (1.5 W/cm2) for 3 min, and the other half were kept in the
dark. All cancer cells were cultivated for another 5 h, treated with MTT solution at 37 ◦C
for 4 h in 5% CO2, and then measured by a microplate reader at 570 nm. For the co-staining
study, the cancer cells were cultivated with calcein AM and PI for 4 h and treated with PBS
only, laser only, PTA-NPs only, or PTA-NPs + laser [42].

3. Results and Discussion
3.1. Synthesis of PTA and PTA-NPs

The synthetic procedures of PTA molecule and PTA-NPs are shown in Schemes 1 and S1
(see Supplementary Materials). PTA with a D-A-D structure was synthesized through a
Sonigashira coupling reaction with electron donor TPA and perylene diimide as the starting
materials. The amphiphilic organic molecule was then self-assembled into the nanoparti-
cles (PTA-NPs) by the reprecipitation method. The structure of the target molecule was
confirmed by mass and NMR spectra (see Supplementary Materials Figures S1–S6).
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Scheme 1. The synthetic routes of PTA and PTA-NPs.

3.2. Morphology and Particle Size

The morphology of PTA-NPs was studied by transmission electron microscopy (TEM),
and the particle size was determined by dynamic light scattering (DLS). As shown in
Figure 1A, a spherical morphology was observed for PTA-NPs with an average diameter
around 200 nm, which was helpful for the accumulation of nanoparticles at the tumor site
through the enhanced permeability and retention (EPR) effect. In addition, the DLS analysis
further confirmed the uniform dispersion of PTA-NPs in PBS solution with an average size
of 200 nm (Figure 1B). The zeta potential (ζ) of PTA-NPs was −10 mV, indicating the good
stability of the aqueous solution (Figure 1C).
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Figure 1. (A) TEM image of PTA-NPs; (B) DLS size profiles of PTA-NPs; (C) zeta potential of PTA-
NPs; (D) UV/Vis absorption spectra of PTA and PTA-NPs (insert: the photographs of PTA in THF
and PTA-NPs in PBS); (E) fluorescence spectra of PTA, PDI, TPA, and PTA-NPs; (F) changes in
photoluminescence (PL) intensity of the characteristic peak of DCF (525 nm) with irradiation time.

3.3. Photophysical Properties

As shown in Figure 1D, PTA exhibited a broad absorption spectrum in the UV/visible
and near-infrared region (NIR) due to the large conjugated system. After self-assembly into
PTA-NPs, the absorption spectrum was red-shifted and broadened to some extent, with
a maximum absorption peak extension to 800 nm, probably ascribed to the π–π stacking
of the conjugated structure in the nanoparticles. PTA-NPs were dispersed very well in
water and did not show any precipitation after storage for more than 2 months (insert of
Figure 1D), suggesting excellent colloidal stability. Because of the intramolecular electron
transfer from donor to acceptor upon excitation, neither PTA nor PTA-NPs displayed
any significant fluorescence (Figure 1E), which was beneficial for heat generation via a
nonradiative route.

3.4. Reactive Oxygen Species (ROS) Generation

As shown in Figure 1F, the probe of DCFH was oxidized to DCF by ROS generated from
PTA-NPs upon 635 nm laser irradiation, and the fluorescence intensity of DCF increased
linearly with time in the presence of PTA-NPs. In comparison, the probe of DCFH without
PTA-NPs did not show any sign of fluorescence under the same conditions. Therefore,
PTA-NPs upon laser irradiation could efficiently generate ROS for PDT applications.

3.5. Photothermal Properties

To evaluate the photothermal property of PTA-NPs, the temperature changes of PTA-
NPs were recorded by a Flir-E6 thermal imager under 635 nm laser irradiation. First,
the temperature elevation of PTA-NPs was recorded under laser irradiation of 635 nm at
various laser power densities (0.5, 0.75, 1.0, 1.25, and 1.5 W/cm2). Figure 2A indicates that
a higher laser power density resulted in a faster increase in the temperature of PTA-NPs.
Moreover, the temperature enhancement of PTA-NPs exhibited concentration-dependent
properties. As shown in Figure 2B, the temperature of PTA-NPs at the concentration of
45 µg/mL increased by 20 ◦C, while that at 135 µg/mL increased by 30 ◦C under 635 nm
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laser (1.25 W/cm2) irradiation for 600 s. In contrast, the temperature of DI water under the
same conditions was not changed obviously. The excellent photostability of PTA-NPs was
evaluated through five cycles of on/off laser irradiation (635 nm, 1.25 W/cm2) without
obvious variation (Figure 2C). The PCE of PTA-NPs was calculated according to the single
irradiation circulation (Figure 2D). From the linear curve of cooling time (t) vs. the negative
natural logarithm of temperature (−ln θ) (Figure 2E), the time constant (τs) was calculated
to be 625 s. With these data in hand, the PCE was calculated as 43% according to the
Equation (1). Meanwhile, the photothermal images of PTA-NPs at different concentrations
were visually recorded through a thermal infrared imager after laser irradiation for 10 min
(Figure 2F). Therefore, PTA-NPs could be used a potential photothermal agent for cancer
phototherapy.
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Figure 2. (A) Photothermal curves of PTA-NPs (45 µg/mL) under irradiation of 635 nm laser at
different power densities; (B) photothermal curves of PTA-NPs at different concentration under
635 nm laser irradiation (1.25 W/cm2); (C) photothermal stability of PTA-NPs (45 µg/mL) during
five on/off cycles of laser (1.25 W/cm2); (D) photothermal effect of PTA-NPs in water under irra-
diation of 635 nm laser (1.25 W/cm2) for 10 min, followed by the cooling for 10 min; (E) negative
logarithmic relationship between cooling time and temperature; (F) photothermal images of different
concentrations of PTA-NPs under 635 nm laser (1.25 W/cm2) irradiation (top: images of PTA-NP
solution under natural light; bottom: thermal images after 635 nm laser irradiation for 10 min).

3.6. MTT Assay

The good biocompatibility of TPA-NPs was confirmed by MTT assay. As shown
in Figure 3A, the viability of A549 cells was decreased to 78% with the concentration
of TPA-NPs up to 20 µg/mL in the dark within 4 h. It should be noted that a similar
viability of A549 cells was observed in the dark within 24 or 96 h (Figure S7). The results
indicate a relatively low toxicity against cancer cells under dark conditions. The reason
for the decreased viability is probably ascribed to the fluctuation of temperature during
the experiment, the activity of cells, and the humidity of the environment. Furthermore,
some of the cells would have inevitably died naturally in the culture medium with the
incubating time. In contrast, the viability of cancer cells incubated with 20 µg/mL TPA-
NPs was reduced to 9.6% after laser irradiation (635 nm, 1.5 W/cm2, 3 min). The half
maximal inhibitory concentration (IC50) of 6.5 µg/mL indicated the high photocytotoxicity
of PTA-NPs under light irradiation.
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PTA-NPs + laser irradiation (scale bar = 25 µm); (C) the intracellular ROS generation of PTA-NPs
using DCFH-DA as a fluorescent probe (scale bar = 25 µm).

3.7. Intracellular Co-Staining Assay

The good biocompatibility and the photocytotoxicity of PTA-NPs were further verified
in the live/dead cell co-staining test, where the live cells were stained with calcein AM
(green fluorescence), while the dead cells were stained with propidium iodide (PI) (red
fluorescence). As indicated in Figure 3B, the A549 cells treated with “PBS only”, “laser
irradiation only”, or “PTA-NPs only” exhibited a green emission, indicating a negligible
damage effect of bare PTA-NPs or laser irradiation alone. In contrast, the cancer cells
showed a red emission after the treatment with PTA-NPs and 635 nm laser irradiation, sug-
gesting that almost all of the cells were killed by the phototherapeutic effect of nanoagents.

3.8. Intracellular ROS Generation

HeLa cells incubated with PTA-NPs were investigated for intracellular ROS generation
using DCFH-DA as a probe. A bright green emission was observed in the cytoplasm of
A549 cells (Figure 3C) as a result of the ROS generation and the subsequent formation
of green luminescent DCF. Thus, PTA-NPs could efficiently generate ROS in cancer cells
under 635 nm laser irradiation.

4. Conclusions

In summary, organic nanoparticles (PTA-NPs) were prepared from a D-A-D struc-
tural organic molecule (PTA) through the nanoprecipitation method. PTA-NPs displayed
good dispersibility and a uniform size in aqueous solution. The synergistic photother-
mal/photodynamic effects were demonstrated by the significant photothermal effect with
PCE up to 43% and efficient ROS generation under 635 nm laser irradiation. The ROS
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generation of PTA-NPs in cancer cells was further evaluated using DCFH-DA as a probe.
Lastly, the good biocompatibility and high photocytotoxicity of PTA-NPs were confirmed
by MTT assay and a live/dead cell co-staining test. The results evidence that the as-
prepared PTA-NPs can be used as promising nanomaterials in synergistic photodynamic
and photothermal cancer therapy.
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mediates 4 and 9 and precursors 7 and 10; Figure S1: The 1HNMR of structure 6; Figure S2: The
1HNMR of structure 7 with the protection of trimethyl silica; Figure S3: The 1HNMR of structure 10;
Figure S4: The ESI-MS of structure 9; Figure S5: The 1HNMR of PTA; Figure S6: The MALDI-TOF of
PTA; Figure S7: The cell viability of A549 cells incubated with different concentrations of TPA-NPs
for a period of 24 and 96 h in the dark.
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