\

Y| materials MBPI|
e w Z
Article

Label Noise Learning Method for Metallographic Image
Recognition of Heat-Resistant Steel for Use in
Pressure Equipment

Zhiyuan Shen 12

check for
updates

Citation: Shen, Z.; Hu, H,; Huang, Z,;
Zhang, Y.; Wang, Y.; Li, X. Label
Noise Learning Method for
Metallographic Image Recognition of
Heat-Resistant Steel for Use in
Pressure Equipment. Materials 2022,
15,7037. https://doi.org/10.3390/
ma15197037

Academic Editor: Thomas Niendorf

Received: 14 August 2022
Accepted: 14 September 2022
Published: 10 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Haijun Hu "*

, Ziyi Huang !, Yu Zhang 3, Yafei Wang !® and Xiufeng Li **

School of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266000, China
School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

China Special Equipment Inspection and Research Institute, Beijing 100029, China

*  Correspondence: huhaijjun@mail.xjtu.edu.cn (H.H.); lixiufeng@csei.org.cn (X.L.)

[T I N

Abstract: In metallographic examination, spherular pearlite gradation, an important step in a met-
allographic examination, is the main indicator used to assess the reliability of heat-resistant steel.
Recognition of pearlite spheroidization via the manual way mainly depends on the subjective per-
ceptions and experience of each inspector. Deep learning-based methods can eliminate the effects of
the subjective factors that affect manual recognition. However, images with incorrect labels, known
as noisy images, challenge successful application of image recognition of deep learning models to
spherular pearlite gradation. A deep-learning-based label noise method for metallographic image
recognition is thus proposed to solve this problem. We use a filtering process to pretreat the raw
datasets and append a retraining process for deep learning models. The presented method was
applied to image recognition for spherular pearlite gradation on a metallographic image dataset
which contains 422 images. Meanwhile, three classic deep learning models were also used for image
recognition, individually and coupled with the proposed method. Results showed that accuracy of
image recognition by a deep learning model solely is lower than the one coupled with our method.
Particularly, accuracy of ResNet18 was improved from 72.27% to 77.01%.

Keywords: heat-resistant steel; metallographic image recognition; deep learning; label noise learning

1. Introduction

High-pressure equipment is widely used in the oil, chemical, and power industries.
It has been reported that 4,396,300 pressure vessels and 1,012,600 km of high-pressure
pipelines are currently in use in China [1]. Chromium-molybdenum steel is one of the main
materials used to manufacture pressure vessels and high-pressure pipelines. The normal
microstructures of this steel are ferrite and pearlite. However, pearlite spheroidization
will occur in chrome-molybdenum steel after long-term exposure to a high-temperature
environment, and this results in material degradation or even structural failure. Therefore,
spherular pearlite gradation is an important evaluation indicator used to judge the perfor-
mance of chrome-molybdenum steel [2,3]. In practice, the gradation of spherular pearlite is
determined by metallographic examination, which is a microscopic examination method
used to establish the microstructures and damage modes of metal materials, as illustrated
in Figure 1.

The number of metallographic examination tasks that must be performed are increas-
ing as the amount of high-temperature high-pressure equipment in use continues to grow.
However, manual metallographic examination is a low-efficiency technique and is unable
to meet the requirements of massive examination tasks. Computer vision methods have
been applied successfully to facial image recognition [4] and object detection [5] and can
also be extended to industrial testing applications. The CNPC Tubular Goods Research
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Institute [6] designed a metallographic structure analysis system based on digital image
processing that involves image preprocessing, image segmentation, and pattern recognition.
Deep learning-based methods are also receiving increasing attention from researchers [7].
Convolutional neural networks (CNNSs; a type of deep learning model) have been applied
to metallographic image recognition tasks, including microstructural segmentation [8],
defect detection [9], and microstructure classification [10].
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Figure 1. Diagram of metallographic examination procedure.

High-quality data and high-performance models are key factors in the successful
application of deep learning methods. However, label noise in the datasets is a consid-
erable problem for practical machine learning [11]. In practical tasks of industry defects
classification, datasets always have incorrect labels. It is very hard or is not productive for
data scientists to correct noisy labels manually. Damage assessment from metallographic
examination of heat-resistant steel is mainly dependent on the subjective perceptions and
experience of the individual inspector. In practice, therefore, some metallographic images
will be wrongly labeled as damage images. For example, images of pearlite spheroidiza-
tion are almost always incorrectly classified. Manual labeling of the data is essential for
automatic recognition methods such as deep learning. Incorrectly labeled inputs, which
are called noisy samples, thus represent obstructions to the construction of recognition
models. Noisy samples in the training dataset will interfere with the real mapping between
instances and their classes and will thus seriously degrade the performance of the deep
learning model [12]. The influence of such noisy samples on deep learning models can be
weakened by applying label noise learning methods, which can be divided into explicit
methods and implicit methods [13]. The explicit methods focus on controlling the inputs
to the model during the training process by removing or correcting the noisy samples in
the datasets [14-16]. The implicit methods focus on construction of robust models for the
noisy data [17-20]. Works of this type always build models based on noisy training sets
and evaluate these models on clean test sets, thus ignoring the fact that such clean test
sets do not exist in practical tasks. Noisy datasets are realistic and thus the accuracy of the
models described above cannot be reliable.

When the accuracy of a model based on a noisy distribution approaches its maximum,
the model will then approach the global optimum [21]. Therefore, evaluation of recognition
models using noisy test datasets is a reliable approach. In this study, we propose a label
noise learning method for metallographic image recognition of heat-resistant steel for use
in high-pressure equipment. Incorrectly labeled metallographic images are filtered out
gradually, and the number of images is controlled using a filter threshold. The influence of
this threshold on the accuracy of CNN models is determined via a classification experiment
performed on the cassava leaf disease dataset [22]. A case study of metallographic images
of pearlite spheroidization is then performed.

2. Methods
Negative Impact of Label Noise

Grades of material spheroidization are estimated by inspectors. However, these es-
timation processes are always affected by the subjective judgments of these inspectors.
Therefore, automatic recognition techniques have become an important approach to elim-
ination of the influence of these subjective factors during manual determination of the
spheroidization grades [3]. Deep learning models require manually labeled data for train-
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ing to allow them to obtain optimal parameters. Pearlite spheroidization grades can be
divided into grades 1-5 based on metallographic images [2]. Sometimes, however, the
classification is wrong or may be confused because these grades are assessed manually.
Therefore, noisy labels may appear in the metallographic images dataset. This causes the
problem of label noise, which can reduce the accuracy of a deep learning model greatly [23].

Automatic gradation of pearlite spheroidization is an N-class classification
task. We use D to denote the unknown distribution and obtain an input dataset
Sn = {(x1,y1), (x2,¥2),..., (xn,yn)} C D. The learning objective is to determine the
best mapping function f:X—Y that can be obtained from the deep learning models. The
parameters of the deep learning models are defined as 6. A loss function 1 is used to show
the error of these models. The empirical risk over the distribution above is given as follows.

N
Rip = %Zl(fe(xi)/yi) 1)
i—1

The optimal parameters 0 are obtained when the empirical risk reaches a minimum.
0 = argminR; p 2)

The label noise means that the correct input (image) corresponds to
the wrong output (grade). In practice, we always obtain noisy data denoted by
Sn={(x1,y1), (x2,¥2),-..,(xNn,YN) } € D. The optimal model parameters 6 are then given
by

6= argminﬁl,p 3)

Obviously, 6 # 0. Considerable effort must thus be made to determine @ from Sy

Reducing the influence of noisy samples on the model training process is essential
for label noise learning. To delete the samples that are most likely to have been wrongly
labeled, we added a filtering process for the datasets and a retraining process for the models.
Models that were trained on raw datasets were used to filter out the noisy images, and
these models were then retrained on the remaining datasets to obtain the classification
models. A gradation of spherular pearlite by metallographic image recognition is an image
classification task. CNNs are used as classification models in this paper. However, the
datasets would normally be too small to train deep learning models if too many samples
were deleted. A filter threshold was thus proposed to control the number of samples that
were deleted. The optimum filter threshold was determined based on the prediction results
of the classification models. The steps of the proposed method are illustrated in Figure 2.

The clean dataset S, was split into a clean training set P, and a test set Qy by K-fold
cross-validation.

K
Sn = Zun,kr Pe=Sp —Upk, Q= Uk @
k=1

We split the raw noisy dataset S, via K-fold cross-validation to obtain the noisy
training set P, and the noisy test set Q. The relationship between S, and S, is illustrated
in Figure 3.

K
Sn = Zan,kr Pe=Sp. = Uyg, Qk = Uy g ©)
k=1
The noise filtering model was obtained based on the noisy training set and test set.

M= fj, (ﬁk) (6)
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Figure 2. Process flowchart for the proposed method.
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Figure 3. Relationship between the clean sets and the raw sets.

The real class of the nth sample in the test set is c. The noise filtering model was used

to output the probability that the sample is in class c.

proby , . = softmax <f§k (Qk) )

A filter threshold v was set and was then compared with the probability.

For the nth sample, if re, 4,
removed. The remaining set Q; , = ;k
sample filtering.

1, proby,, . > v,v € (0,1)

Teyth = {

0, proby . < v,v € (0,1)

@)

®)

= 1, then it would be retained; otherwise it would be
»» Which contained q samples, was obtained after

As shown in Figure 4, when a sample is input, deep learning models will output its

probability in each class. If the probability of the sample being in its real class is greater
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than or equal to the filtering threshold, the sample is considered to be a clean sample and
retained. Otherwise, the sample is removed from the raw dataset since it is considered to
be a noisy sample.

o

Class-10.15
Class-3 0.25 /" (or noisy sample)

Class-4 0.45

|
|
Class-2 0.15 » Clean sample I 5
¥ e R
|
|
|

Prediction

The raw dataset Filter processes The dataset of remaining samples

Figure 4. Process to filter out noisy samples.

We obtain a remaining dataset S ,, a remaining training set P , and a remaining test
set Q; , using this approach. They are given as,

K K

Sio =3 Qo= Y Uik ©)
k=1 k=1

p I:(,v = S;,v - ;,k,v/ Qlt,v = U;,k,v (10)

The relationship between these datasets and the raw sets is shown in Figure 5.

The remaining . The remaining

training set Py, = testset Qp ,,

Figure 5. Relationship between the raw sets and the remaining sets. The remaining training set and
the raw test set are used during retraining. The same test set is always used throughout the process.

The classification model M can be obtained based on the remaining training set P

and the test set Q. During this process, only the training set was changed, while the test
set remained the same.

My, = for (Po) (11)
We define Score as the accuracy that is obtained by My and My , on the test set. It is
given as,
1 nsam es A~
Score = ———). "] & 19 = vi) (12)
Msamples

where 7; is the predicted value of the i-th sample, y; is the corresponding true value, and
1(x) is the indicator function [24].

The following relationships (Equation (13)) should be satisfied according to ref. [21],
where M; is obtained based on the noisy dataset and M , is obtained based on the remain-
ing dataset.

Score(M,‘;v(Qk)) > Score(Mk(@k)>,Score(M,f,v(Qk)) > Score(Mk(Qk)>,Elv €(0,1) (13)

A model that demonstrates a better performance than other models on a noisy distri-
bution will also produce a better performance on a clean distribution. The optimal filter
threshold can then be determined based on the accuracy of the model. It is given as,

v = argmax (score (M,’gv (Qx) ) ) (14)
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3. Results and Discussion

In the proposed method, the filter threshold is a decision variable and will affect the
accuracy of the deep learning models. The threshold should thus be determined optimally
before training commences.

Metallographic image recognition of spherular pearlite gradation is a fine-grained
image classification task. A similarly fine-grained image classification task in the form of
cassava leaf disease classification [22] was performed to determine how the filter threshold
affects the CNN model accuracy. We selected 2000 images (two classes) from the total image
dataset [22]. Noise labels were then created by exchanging some labels of their respective
samples in two classes. Additionally, the label noise rate was set to vary from 10% to 40%
in steps of 10%. The filter threshold was set to vary from 0.1 to 0.9 in steps of 0.1. ResNet18
was selected as the recognition model. Results of this analogue experiment are shown in
Table 1. A model with higher classification accuracies on the noisy test set also raises higher
classification accuracies on the clean test set. The filtering threshold can be determined to
be the point at which the model accuracy on the noisy test set reaches a maximum.

Table 1. Accuracy of ResNet18 classification for cassava leaf disease with various noise rates.

Rates of Label Noise
Filter Threshold 10% 20% 30% 40%
Noisy Clean Noisy Clean Noisy Clean Noisy Clean
Test Set Test Set Test Set Test Set Test Set Test Set Test Set Test Set

0 0.8610 0.9494 0.7686 0.9382 0.6662 0.9014 0.5640 0.7732
0.1 0.8672 0.9576 0.7614 0.9310 0.6642 0.8922 0.5652 0.7684
0.2 0.8696 0.9580 0.7658 0.9414 0.6662 0.9082 0.5658 0.7582
0.3 0.8718 0.9610 0.7764 0.9528 0.6724 0.9148 0.5678 0.8038
0.4 0.8732 0.9632 0.7736 0.9532 0.6836 0.9340 0.5792 0.8104
0.5 0.8752 0.9648 0.7772 0.9564 0.6848 0.9384 0.5892 0.8420
0.6 0.8732 0.9620 0.7796 0.9596 0.6814 0.9286 0.5832 0.8376
0.7 0.8738 0.9630 0.7762 0.9502 0.6778 0.9214 0.5432 0.6840

3.1. Dataset of Pearlite Spheroidization Images

The degradation of pearlite spheroidization could be divided into 5 grades according
to a related standard [2]. Pearlite spheroidization of grade-1 and grade-2 has little impact
on the safety and reliability of pressure equipment [2]. A dataset of pearlite spheroidization
was built which contained 422 metallographic images of heat-resistant steel. Thus, pearlite
spheroidization of grade -1 and grade-2 is regarded as normal. In the dataset, 107 images
are labeled as normal, 115 images are labeled as grade-3, 89 images are labeled as grade-4,
and 111 images are labeled as grade-5 (see Table 2 and Figure 6). The filter threshold was
set to vary from 0.1 to 0.5 in steps of 0.1.

3.2. Training Details

The parameters used for this experiment are given in Table 3. The learning rate would
be reduced to one half of the previous learning rate if the model loss did not decrease for
three consecutive epochs. Data augmentation [25] was performed during model training
in forms including blurring, flipping, and cropping. Image normalization was performed
during model testing. ResNet18 [26], EfficientNet-BO [27], and RepVGG-A2 [28] were
selected to verify the universality of the proposed method. In all experiments, only the
training set was changed.
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Table 2. Image numbers for spherular pearlite gradation with each class.

Classes Explanation Numbers
Normal . e

(Grade-1 and Grade-2) Grade-1 and Grade-2 mean that pearlite spheroidization has not occurred. 107
Grade-3 Grade-3 means mild pearlite spheroidization. 115
Grade-4 Grade-4 means moderate pearlite spheroidization. 89
Grade-5 Grade-5 means serious pearlite spheroidization. 111

(e) (f)

Figure 6. Problems with spherular pearlite gradation. Some images appear very similar but are
labeled using different grades. (a) Normal; (b) Grade-5; (c) Normal; (d) Grade-5; (e) Grade-4 (elbow);
(f) Grade-5 (body).
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Table 3. Experimental settings for spherular pearlite gradation.

Parameters Settings
Input image size 1000 x 750
Batches 30
Batch size 16
Initial learning rate 3e 4
Optimizer Adam
GPU Nvidia GeForce RTX 3090

Take ResNet18 as an example. The implementation includes the following steps:

(1) The dataset of spherular pearlite gradation was divided into five subsets. One subset
was taken as the raw test set and the others were treated as the raw training sets.
ResNet18 was trained on the raw training sets. After being well trained, it is regarded
as the baseline model.

(2) A filter process was carried out to remove noisy samples from the raw test set. Some
remaining subsets were obtained by five-fold cross-validation. ResNet18 was retrained
on the remaining subsets. If well retrained, it is used as the classification model.

(8) Comparisons between the baseline model and the classification model were carried
out to check whether the filter-retraining process is valuable.

It should be mentioned that the test set was not changed during training and retraining
steps. Thus, comparisons between trained-ResNet18 and retrained-ResNet18 are fair.

3.3. Results and Discussion

The models that were obtained from regular training were regarded as the baseline
models. The models that were obtained after image filtering and retraining were regarded
as the classification models. The accuracy values for these models are given in Table 4 and
Figure 7. For example, the initial accuracy of the ResNet18 (the baseline model) was 72.27%.
When the filter threshold was set at 0.3, the accuracy of the ResNet18 (the classification
model) improved from 72.27% to 77.01%, an increase of 4.74 percentage points. Similarly,
when the filter threshold was set at 0.2, the accuracy of the EfficientNet-B0 improved from
69.91% to 72.99%. When the filter threshold was set at 0.4, the accuracy of the RepVGG-A2
network improved from 72.51% to 73.93%. The proposed method caused the deep learning
models to learn and be optimized effectively on the noisy datasets.

Overall, the accuracy initially increased and subsequently decreased when the filter
threshold increased. The results in Table 5 show that the image numbers decreased when
the filter threshold increased. Therefore, the filter threshold is an upper-limited-type
threshold. The value of the filter threshold should not be too large to ensure that the
required recognition effect is realized. It is set to be less than 0.5 to ensure that more than
50% of the images are retained. The images in the training set can then represent the overall
distribution of the dataset and reduce overfitting of the model.

The proposed method coupled with CNNs was compared with NTS [21] (NT: Noisy
best teacher, NS: Noisy best student), which shows better performance than other label noise
learning methods (GCE [18], Co-teaching [15], and DMI [29]) on noisy sets of CIFAR-10 [30]
and CIFAR-100 [30]. Those CNNs that were obtained from regular training processes were
regarded as baseline models. Experimental settings of NTS were the same as those in
Section 3.2. The results are given in Table 6. The proposed method coupled with ResNet18
achieved an accuracy of 77.01% while NTS reached an accuracy of 73.70%. Predictions
by baseline models were disturbed by noisy samples. NTS replaced the original labels of
samples in datasets with labels predicted by baseline models. Thus, some labels incorrectly
predicted are noisy labels and result in a limited model accuracy.

On the other hand, samples whose original labels are not as same as predicted labels
are partially retained in the training set by our method and are helpful for our model to
learn correct mapping relations between metallographic images and their grades.
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Table 4. Model accuracy values for spherular pearlite gradation with each filter threshold (%).

Accuracy
Filter Threshold
ResNet18 EfficientNet-B0 RepVGG-A2
0 7227 69.91 72.51
0.1 76.30 72.27 73.46
0.2 74.41 72.99 72.04
0.3 77.01 71.33 7251
0.4 75.12 72.51 73.93
0.5 73.70 69.67 69.43
0.6 7227 71.80 71.56
0.7 69.91 67.77 65.88
0.8 70.14 67.06 63.51
0.9 64.69 65.88 62.80
100} ResNet
90+ BXX LfticientNet
S0t . Rep¥GG
79
== 70 [
= o
5 60
S 50
2
2 40t
30}
20r
107 ; 2 % -]
0.1 0.2 0.3 0.4 0.5

Filter threshold

Figure 7. Variation of model accuracy with filter threshold.

Table 5. Image numbers for spherular pearlite gradation with each filter threshold.

Number
Filter Threshold
ResNet18 EfficientNet-B0 RepVGG-A2

0 422 422 422
0.1 377 366 382
0.2 352 342 360
0.3 327 318 328
0.4 307 301 295
0.5 293 284 257
0.6 263 272 223
0.7 228 257 196
0.8 200 239 171
0.9 156 211 128

Table 6. Comparison of the proposed method and NTS [21].

Accuracy
Methods
ResNet18 EfficientNet-B0 RepVGG-A2
Baseline 7227 69.91 72.51
NTS 73.70 69.91 71.56

Ours 77.01 72.99 73.93
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4. Conclusions

In this study, a label noise learning method coupled with deep learning models for
metallographic image recognition is proposed that benefits deep learning models by aiding
in the learning of the correct mapping from incorrectly labeled samples of spherular pearlite
gradation used in practical inspection tasks. We used a filtering process to pretreat the
raw datasets and appended a retraining process for deep learning models. Additionally, a
filter threshold was proposed to control the remaining image count. The proposed method
effectively suppresses the negative influence of noise samples on model training.

First, an analogue experiment on cassava leaf disease classification was performed to
disclose how the filter threshold affects the accuracy of deep learning models.

Next, the proposed method was applied to spherular pearlite gradation by image. We
created a dataset containing 4-level gradation and 422 images of pearlite spheroidization.
Three CNN models, ResNet18, EfficientNet-B0, and RepVGG-A2, were used to perform
image classification, individually and coupled with the proposed method. The proposed
method effectively improved the accuracy of deep learning models by using optimal
filtering thresholds. The accuracy of ResNet18 was improved from 72.27% to 77.01% with
a filter threshold of 0.4. In addition, the accuracy of EfficientNet-B0 was improved from
69.91% to 72.99%, and the accuracy of RepVGG-A2 was improved from 72.51% to 73.93%.
Comparisons between our method and NTS were carried out. The proposed method
coupled with ResNet18 reached an accuracy of 77.01% while NTS reached an accuracy
of 73.70%.

Our work will be helpful in enabling deep learning models to learn real mappings
from datasets with noisy labels in similar industry applications.
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