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Abstract: Al–Zn composite coating can provide effective cathodic protection for E235 steel. This
study aims to obtain the Al–Zn composite coating with the best anti-corrosion performance by
optimizing the spraying temperature, spraying distance and powder-feeding motor speed. The Al
and Zn powders were analyzed by scanning electron microscope (SEM), and the microstructure of
the coatings prepared by different process parameters was observed by optical microscope. The
mechanical and anticorrosive properties of the coating were evaluated using hardness, porosity,
thickness and electrochemical tests. According to the experimental results, when the spraying
temperature, spraying distance and powder-feeding motor speed were 500 ◦C, 27 mm and 1.5 r/min,
respectively, the hardness of the coating was 67 HV, the porosity was 0.57% and the thickness was
0.588 mm. The EIS test results show that the coating has the maximum polarization resistance, and
therefore the coating has good corrosion resistance at this parameter.

Keywords: cold spraying; Al–Zn coating; corrosion properties; microhardness; porosity

1. Introduction

E235 steel is a kind of ordinary carbon structural steel with good mechanical per-
formance, plasticity, toughness and strength, and is a commonly used plate at present.
However, it is easy to produce surface cracks, corrosion and other defects in the working
process. In the long run, equipment made of E235 may not operate normally, stably and
safely [1]. Therefore, it is urgent to carry out proper surface treatment for protection and
repair [2]. Common surface treatment methods include electroplating, electroless plating
and thermal spraying techniques such as supersonic flame spraying and plasma spray-
ing. However, the above technologies have a complex operation process, high production
cost, and thin coating thickness with low protection ability [3]. Due to the high spraying
temperature of thermal spraying technology, easily oxidized powder or substrate will be
oxidized, reducing the performance [4]. As a protective coating preparation technology,
cold-spraying technology attracts wide attention because of its low working temperature,
which could retain the original properties of the powder and substrate, and could quickly
prepare coatings of a certain thickness [5].

The deposition of cold-spray particles is a mechanical process. Particles with high
kinetic energy and high velocity (typically 300 to 1200 m/s) cause interactions between the
deposited surface and individual particles, resulting in a coating buildup. The deposition
of the coating depends on the plastic deformation of the solid particles rather than the heat
input [6,7]. For a particular material, the degree of plastic deformation depends on the
particle velocity [8]. Based on the above discussion, cold-spraying technology is suitable for
heat-sensitive materials [5,9], and appropriate process parameters can improve the particle
deposition effect and coating performance [10].
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Al and Zn coatings have good corrosion resistance and could provide effective pro-
tection for the substrate [11–13]. Maledi [14] uses cold-spraying technology to prepare a
zinc coating on a steel surface, and discusses the relationship between process parameters
and coating properties and structure. When the temperature is 500 ◦C and the pressure is
0.7 MPa, the hardness of the coating is the highest. Zhang [15] successfully deposits three
kinds of dense Al-based coatings by low-pressure cold spraying, and these coatings could
provide excellent long-term anticorrosive protection for the substrate. Zhang [16] prepares
Al2024-Al2O3 coating with different Al2O3 content onto a 2024-T3 alloy substrate, and the
experimental results show that the corrosion resistance of the coating is the best when the
mass fraction of Al2O3 is 20%. Kumar [17] studies the correlation between SiC particle
fraction and the mechanical properties of cold-sprayed Al-SiC MMC coating. Wang [18] pre-
pares SiC particle-reinforced Al5056 alloy coating and Al5056 substrate composite coating
with a particle size of 20µm and high spraying efficiency and the best corrosion resistance.
Xie [19] prepares a pure Zn coating on an AZ31b substrate by cold spraying and it is
characterized by electrochemical performance. The results show that a Zn coating could
protect an AZ31b substrate to a great extent. Legoux [20] studies the effect of substrate
temperature on the formation mechanism of low-melting-point coatings (Al, Zn and Sn).
It is found that the surface temperature has a negative effect on the deposition efficiency
of the Zn coating, and a high driving gas temperature will reduce the hardness of the Zn
coating. Wu [21] uses cold-spraying technology to prepare a Zn-G/Al coating on carbon
steel, and the results show that the coating has cathodic protection abilities on steel.

In this study, a Zn–Al composite coating is prepared on E235 steel using cold-spraying
technology. The aim is to optimize the spraying temperature, spraying distance and feeding
motor speed, and improve the corrosion performance of the coating. The microstructure of
the coating is analyzed by optical microscope. The corrosion resistance and mechanical
properties of the coating are evaluated by electrochemical and hardness tests. Relevant
experiments have been carried out without any systematic study on the effect of the process
parameters on the microstructure and properties of cold-sprayed Zn–Al coating. Therefore,
based on P800Q2-II automatic portable cold-spraying equipment, this paper prepares a
cold-sprayed Zn–Al composite coating on an E235 substrate. By optimizing different
process parameters, the effects of these parameters on the coating properties are studied. It
provides theoretical guidance for preparing cold-spray Zn–Al coating.

2. Materials and Methods
2.1. Experimental Materials

The chemical elements of aluminum zinc powder are shown in Table 1. The mor-
phology of the powder materials used in the experiments was observed using a scan-
ning electron microscope (SEM, Nova Nano SEM450, FEI Sirion, Hillsboro, OR, USA),
as shown in Figure 1. As can be seen from Figure 1, the particle sizes of the aluminum
powder and zinc powder were 30–50 µm and 5–30 µm, respectively. The E235 plate was
100 mm × 60 mm × 3 mm, and the chemical composition of the plate is shown in Table 2.

Table 1. Chemical composition of aluminum and zinc powder (wt.%).

Si Fe Cu Al Cd Pb Zn

Al 0.03 0.058 0.001 Bal. - - -
Zn - 0.006 - - 0.004 0.004 Bal.
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Figure 1. Particle morphology diagram: (a) aluminum particles, (b) zinc particles.

Table 2. Chemical composition of substrate (wt.%).

C Mn Si S P Fe

E235 0.15 0.5 0.2 0.2 0.03 Bal.

2.2. Experimental Methods
2.2.1. Pretreatment of Powder and Substrate

First, the aluminum powder and zinc powder with a mass ratio of 3:1 were weighed.
Then, the mixed powder was dried for 2 h in a vacuum-drying oven at 90 ◦C to remove the
moisture and to improve the fluidity of the powder and facilitate mechanical mixing. The
dried powder was poured into a 3D moving mixer for mechanical mixing for 1 h to ensure
an even mixture. The substrate surface of E235 was treated with sandpaper and cleaned
with alcohol.

2.2.2. Coating Preparation

The coating preparation experiments mainly included optimization experiments of
spraying temperature, spraying distance and powder-feeding motor speed. The specific
spraying parameters are shown in Table 3. All spraying experiments were done using
P800Q2-II automatic portable cold-spraying equipment. N2 was used as the compressed
gas, and the spraying pressure was 1.9 MPa. The corresponding coating samples were
obtained by spraying the substrate four times. The spray track adopted the shape shown in
Figure 2.

Table 3. Optimization experiment of temperature parameters of cold spraying.

Samples Spraying Distance
(mm)

Temperature
(◦C)

Powder-Feeding Motor Speed
(r/min)

1 20 550 1.5
2 20 500 1.5
3 20 450 1.5
4 20 400 1.5
5 18 500 1.5
6 20 500 1.5
7 22 500 1.5
8 25 500 1.5
9 27 500 1.5
10 30 500 1.5
11 27 500 1.0
12 27 500 1.2
13 27 500 1.5
14 27 500 1.7
15 27 500 2.0
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Figure 2. Trajectory of the spray gun.

2.2.3. Performance Detection Method

The surface and cross-section of the coating were observed with a 3D laser scanning
confocal microscope (VK-X1000; KEYENCE, Osaka, Japan), and the surface roughness
Ra and thickness of the coating were measured. ImageJ was used to characterize the
porosity of the coating cross-section. The hardness of the coating was measured by a
MHV-1000Z Vickers microhardness tester with a load of 50 g and a holding time of 10 s.
Five points on the cross-section of the coating were selected for the hardness test, and the
average value was taken as the coating hardness. In order to test the corrosion resistance
of the coating sample, the electrochemical performance of the coating sample was tested.
All electrochemical experiments were performed based on the CHI660E electrochemical
workstation (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). A cold-sprayed Al–
Zn coating sample was used as the working electrode, with an area of 5 mm × 5 mm. The
reference electrode was saturated calomel electrode (SCE) and the auxiliary electrode was a
10 mm × 10 mm platinum sheet. The working solution used for the test was 3.5 wt.% NaCl
solution. Impedance spectroscopy (EIS) was performed in the electrochemical experiment,
and the frequency range was 10 mHz~100 KHz. A diagram of the test system is shown
in Figure 3. The OCP test was performed before all EIS experiments, and the EIS test was
performed according to the open-circuit potential obtained from the OCP test.
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Figure 3. Schematic diagram of coated electrode and electrochemical test system.

3. Results and Analysis
3.1. Microstructure

The cross-section microscopic morphology of the coating at different spraying temper-
atures is shown in Figure 4. The coating mainly included gray-yellow and white areas, and
the gray-yellow area was obviously more than the white area. Based on the deformation
ability of the particles and the composition ratio of the coating material, the gray-yellow
area was the Al element and the white area was the Zn element. According to Figure 4a,
when the spraying temperature was 400 ◦C, there were nearly spherical Zn particles in the
coating, and the particle deformation degree was small. When the spraying temperature
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was 500 ◦C, the particle deformation was sufficient and the bonding was tight with few
defects, as shown in Figure 4c. As seen in Figure 4d, when the spraying temperature was
550 ◦C, the number of defects increased compared with those at 500 ◦C, and the particle
deformation degree weakened. The reason for this phenomenon may be that at this tem-
perature, the particle velocity exceeded the critical velocity and eroded the coating [22].
ImageJ was used to calculate the porosity of the coating section. The porosity of the coat-
ing was the highest at 400 ◦C, which was 1.41%. The porosity of the coating at 450 ◦C,
500 ◦C and 550 ◦C was 0.88%, 0.71% and 0.75%, respectively, which was consistent with
the microscopic observation results.
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The microscopic morphology of the coating cross-section at different spraying dis-
tances is shown in Figure 5. The coating also consisted of a large amount of Al in the
gray-yellow region and a small amount of Zn in the white region. When the spraying
distance was 18–30 mm, the number of defects in the coating section decreased first, and
then increased. This was due to the superposition effect of the resistance wave and carrier
gas on the particle acceleration [22]. When the spraying distance was 27 mm, the coating
defects were fewer, there were almost no round particles, and the particle deformation
degree was more severe. The results showed that the porosity of the coating was 0.79%,
0.71%, 0.67%, 0.63%, 0.57% and 0.73%, respectively, with the increase in spraying distance.
When the spraying distance was 18 mm, the porosity of the coating was the highest, which
was mainly because the spraying distance was too small, the particle acceleration effect
was not obvious, and the resistance wave of the substrate surface had a great influence on
the particles. However, when the spraying distance was 27 mm, the porosity of the coating
was the lowest when the spraying distance was appropriate.

The cross-section microscopic morphology of the coating at different spraying speeds
of the powder-feeding motor is shown in Figure 6. The coating also consisted mostly of Al
in the gray-yellow areas and a small amount of Zn in the white areas. With the increase in
the feeding motor speed, the number of coating cracks decreased first, and then increased.
When the motor speed was 1.5 r/min, there were fewer coating defects and the bonding
was the closest. The calculation results of the porosity of the coating section showed that
the porosity was 0.70%, 0.64%, 0.57%, 0.68% and 0.69%, respectively, with the increase
in the feeding motor speed. The results showed that a motor speed that is too high or
too low leads to an increase in the number of coating defects. The main reason was that
when the speed of the powder motor was small, the number of particles in the airflow
was small, and the tamping effect of particles on the coating was not obvious, resulting in
poor coating performance. When the speed of the powder-feeding motor was too large,
the carrier gas had a limited effect on particle acceleration, which led to the decrease in
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particle kinetic energy, the enhancement of particle interaction, and the deterioration of
coating performance.
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3.2. Coating Thickness and Roughness Test

Surface roughness could reflect the deformation of cold-spraying particles to a certain
extent [23]. The surface roughness of the coating is shown in Figure 7. When the spraying
temperature was 500 ◦C, the surface undulation of the coating was the smallest, and when
the spraying temperature was 400 ◦C, the surface of the coating was relatively rough.
The average coating thickness at different spraying temperatures is shown in Figure 8.
According to Figure 8, the coating thickness decreased with the increase in temperature,
and the coating thickness changed little between 400 ◦C and 500 ◦C. When the spraying
temperature was 550 ◦C, the coating thickness was small. This phenomenon occurred
mainly because the particle velocity increased with the increase in temperature. Erosion
occurred when the particle velocity exceeded the critical velocity, resulting in a relatively
thin coating thickness [22,24,25].
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The surface roughness of the coating at different spraying distances is shown in
Figure 9. As can be seen from Figure 9, the coating surface formed when the spraying
distance was 18 mm was the most delicate, while the coating surface was relatively rough
when the spraying distance was 30 mm. The average coating thickness at different spraying
distances is shown in Figure 10. It can be seen that the coating thickness was the thinnest
when the spraying distance was 18 mm, which means that under certain process parameters,
when the coating is deposited to a certain thickness, it becomes more difficult for the
subsequent particles to be deposited. That is, the deposition rate and erosion rate of the
coating reached the equilibrium stage [26]. However, subsequent particles will continue
to forge the deposited coating, producing an effect of polishing the coating surface, so the
resulting coating is thin with low roughness. When the spraying distance was 20 mm, the
maximum thickness was 0.614 mm, and at 30 mm, the thickness was 0.456 mm. When the
spraying distance was 20–30 mm, the acceleration effect of the carrier gas on the particles
and the comprehensive effect of the resistance wave on the surface of the substrate gradually
decreased the kinetic energy of the particles, so the thickness decreased gradually.
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The surface roughness of the coatings at different feeding motor speeds is shown in
Figure 11. As can be seen from the figure, the coating surface formed when the speed
of the powder-feeding motor was 1.0 r/min, which was the most delicate. However, the
coating formed when the speed was 1.5 r/min was the coarsest. Figure 12 shows the
average thickness of the coating at different feeding motor speeds. It can be seen from the
figure that in a certain range, the speed of the powder-feeding motor had little influence
on the coating thickness, and the coating thickness was about 0.6 mm. The minimum
thickness of the coating was 0.564 mm, but the maximum thickness of the coating was
0.618 mm at 1.2 r/min. When the speed of the powder-feeding motor was 1.0 r/min, the
coating thickness was small. Because the slower the speed of the powder-feeding motor,
the smaller the powder content in the spray gun per unit time, the worse the subsequent
particle compaction effect, the longer the time taken to reach the activation cycle, and the
smaller the coating thickness [27,28].
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3.3. Microhardness

Figure 13 shows the microhardness test results of Al–Zn composite coating samples
at different spraying temperatures. As can be seen from the figure, the microhardness of
the coating increased from 56 HV to 63 HV with the increase in the spraying temperature.
As can be seen from Figure 4 of the coating section, when the spraying temperature was
400 ◦C and 450 ◦C, the density of the coating was low, the particles were not tightly bonded,
and there were defects and insufficiently deformed spherical Zn particles in the coating,
so the microhardness was low. When the spraying temperature was 500 ◦C, the particle
acceleration effect was obvious, and the coating density was increased, so the average
microhardness of the coating was higher at this temperature.
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Figure 14 shows the microhardness test results of the coating at different spraying
distances. As can be seen from the figure, the microhardness of the coating increased first
and then decreased with the increase in the spraying distance. The maximum microhard-
ness of the coating was 67 HV when the spraying distance was 27 mm, and the minimum
was 59 HV when the spraying distance was 18 mm. The reason for the difference in the
coating’s hardness is that the change of distance leads to changes in the shockwave on the
surface of the substrate, and then this affects the particle velocity, leading to the different
hardening effects of the coating [28]. It might also be because the particle acceleration
effect was not obvious when the spraying distance was small, but the particle “scattering
phenomenon” was more serious when the spraying distance was greater [29]. Therefore,
when the spraying distance was 18 mm, the particle acceleration effect was not obvious,
and when the spraying distance was 30 mm, the particle “scattering phenomenon” was
more prominent. When the spraying distance was 27 mm, the particle deformation was
sufficient, the coating was compact, and the work hardening effect was obvious.
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Figure 15 shows the microhardness test results of the coating at different feeding motor
speeds. As can be seen from the figure, with the increase in the speed of the powder-feeding
motor, the microhardness of the coating on the whole showed a trend of first increasing
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and then decreasing. The maximum microhardness of the coating was 67 HV when the
motor speed was 1.5 r/min, and 60 HV when the motor speed was 1.0 r/min. When the
feeding motor speed was 2 r/min, the microhardness of the coating decreased. The reason
for this phenomenon was that when the feeding motor speed was too slow, the particles
had a poor tamping effect on the coating, and the work hardening was not obvious. When
the speed of the powder-feeding motor was too fast, the particles far from the axis of the
spray gun increased. The particles farther away from the axis had lower velocities. This
hardness difference occurs because the work hardening of the coating was reduced, as
shown in Equation (1) [30].
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When the feeding motor speed was 1.5 r/min, the particles could be fully accelerated,
the interaction between particles was small, the subsequent particle tamping effect was
obvious and the work-hardening effect was the most obvious, so the microhardness of the
coating was the highest.

v
vm

= (
δ

y
)
−1/7

(1)

3.4. Electrochemical Performance Test

In order to study the corrosion behavior of the coating, the impedance spectrum of the
coating was tested. The Nyquist of the coating at different spraying temperatures is shown
in Figure 16a. The Nyquist diagram of each coating sample presented two semicircular
shapes. It can be seen from the figure that the capacitance–reactance arc radius of the
coating with a spraying temperature of 500 ◦C was the largest, so it had better barrier
function [21]. The experimental EIS results were fitted by the equivalent circuit diagram
shown in Figure 16b. Since the electrode system used in the experiment was not ideal, the
capacitor element was replaced with a constant phase angle element (CPE) in the fitting
process [16]. In the fitted circuit, Rs, R1 and R2 were the solution resistance, the charge
transfer resistance and the additional resistance of the corrosion part, respectively. The
constant phase element CPE1 was in parallel with R1, corresponding to a high-frequency
semicircle. R2 was in parallel with the constant phase angle original CPE2. Take the sum of
R1 and R2 to represent the corrosion resistance Re of the coating, that is, Re = R1 + R2 [31].
The Rs and Re of coatings sprayed at different spraying temperatures are shown in Table 4.
It can be seen that the Re value of the 500 ◦C coating was the largest, so the anticorrosion
performance of the coating was the best when the spraying temperature was 500 ◦C.
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Figure 16. Electrochemical test results of the coating at different spraying temperatures: (a) Nyquist
diagram, (b) equivalent circuit model diagram.

Table 4. EIS fitting results of Al–Zn composite coating at different spraying temperatures in 3.5 wt %
NaCl solution at the initial immersion stage.

400 ◦C 450 ◦C 500 ◦C 550 ◦C

Rs (Ω) 14.4 14.1 17.5 15.7
Re (Ω) 18,923 27,662 113,807 33,092

The Nyquist of the coating at different spraying distances is shown in Figure 17a. The
Nyquist diagram of each coating sample presented two semicircular shapes. As can be
seen from the figure, when the spraying distance was 27 mm, the capacitive arc radius of
the coating was the largest, which had a better barrier function. This was because when the
spraying distance was 27 mm, the particles were fully accelerated by the nozzle gas and
were less affected by the shockwave on the substrate surface [32], and could impact the
substrate at a high speed. Therefore, the anticorrosion performance was optimal. The EIS
results were fitted using the equivalent circuit diagram shown in Figure 17b. the resistance
Rs and Re of the coating solution at different spraying distances are shown in Table 5. It
can be seen that the Re value of the coating was the largest at 27 mm, so the anticorrosion
performance of the coating was the best.
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Figure 17. Electrochemical test results of the coating at different spraying distances: (a) Nyquist
diagram, (b) equivalent circuit model diagram.

Table 5. EIS fitting results of Al–Zn composite coating at different spraying distances at the initial
immersion stage in 3.5 wt % NaCl solution.

18 mm 20 mm 22 mm 25 mm 27 mm 30 mm

Rs (Ω) 13.2 17.5 16.3 12.0 12.4 16.3
Re (Ω) 30,177 113,807 63,820 168,360 196,320 61,621

The Nyquist of the coating at different feeding motor speeds is shown in Figure 18a.
It can be seen from the figure that the capacitive arc radius of the coating was the largest
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when the speed of the powder-feeding motor was 1.5 r/min, which had a better barrier
function. The experimental EIS results were still fitted using the equivalent circuit diagram
shown in Figure 18b. The resistance Rs and Re of the coating solution at different speeds of
the powder-feeding motor are shown in Table 6. It can be seen that when the speed of the
powder-feeding motor was 1.5 r/min, the Re value of the coating was the largest, which
is 196,320 Ω. Therefore, when the speed of the powder-feeding motor was 1.5 r/min, the
anti-corrosion performance of the coating was the best.
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Figure 18. Electrochemical test results of the coating at different feeding motor speeds: (a) Nyquist
diagram, (b) equivalent circuit model diagram.

Table 6. EIS fitting fruit of Al–Zn composite coating soaked in 3.5 wt % NaCl solution at the initial
stage at different feeding motor speeds.

1.0 r/min 1.2 r/min 1.5 r/min 1.7 r/min 2.0 r/min

Rs (Ω) 15.0 18.7 12.4 17.3 25.6
Re (Ω) 43,996 75,702 196,320 89,694 79,047

4. Conclusions

In this study, an Al–Zn composite coating was prepared on the surface of E235 steel
using cold-spraying technology. The Al–Zn coating with different process parameters
was taken as the main research object, aiming to optimize the parameters to improve the
corrosion performance of the coating. The main conclusions were as follows.

With the increase in the spraying temperature, spraying distance and feeding motor
speed, the coating pores first decreased and then increased. The hardness and corrosion
resistance of the coating increased first and then decreased. When the spraying temperature
was 500 ◦C, the spraying distance was 27 mm and the feeding motor speed was 1.5/min,
the coating structure was the densest and the corrosion resistance was the best.

When the spraying temperature was 500 ◦C, the spraying distance was 27 mm and the
feeding motor speed was 1.5 r/min, the performance of the Al–Zn composite coating was
the best. The hardness could be up to 67 HV. The results of the EIS test showed that the
polarization resistance of the coating was at its maximum at this time, which could provide
long-term effective protection for E235 steel.
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