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Highlights:

• Recent advances in the research on cassava (Manihot esculenta) biopolymers and fibers, and their
potential industrial applications, were discussed.

• Properties of starch, fibers, polymers, and composites derived from cassava were discussed.
• Efforts to enhance the properties of cassava composites were brought into focus.
• Detailed reports on macro and nano-sized cassava fibers and starch, and their fabrication as blend

polymers, biocomposites, and hybrid composites, were reviewed.

Abstract: The rapid use of petroleum resources coupled with increased awareness of global environ-
mental problems associated with the use of petroleum-based plastics is a major driving force in the
acceptance of natural fibers and biopolymers as green materials. Because of their environmentally
friendly and sustainable nature, natural fibers and biopolymers have gained significant attention
from scientists and industries. Cassava (Manihot esculenta) is a plant that has various purposes for use.
It is the primary source of food in many countries and is also used in the production of biocomposites,
biopolymers, and biofibers. Starch from cassava can be plasticized, reinforced with fibers, or blended
with other polymers to strengthen their properties. Besides that, it is currently used as a raw material
for bioethanol and renewable energy production. This comprehensive review paper explains the
latest developments in bioethanol compounds from cassava and gives a detailed report on macro
and nano-sized cassava fibers and starch, and their fabrication as blend polymers, biocomposites,
and hybrid composites. The review also highlights the potential utilization of cassava fibers and
biopolymers for industrial applications such as food, bioenergy, packaging, automotive, and others.
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1. Introduction: Natural Fiber and Starch Biopolymer

In recent decades, agro-industrial waste such as husk and cob, arrowroot bagasse,
apple pomace, palm sugar, sugar beet pulp, wheat bagasse, sugar cane bagasse, coffee
husk/pulp, rice bran/straw, and mango bagasse, as well as cassava, has increased signif-
icantly in line with the increase in the world’s population [1–3]. Agricultural industrial
wastes have gained huge attention due to environmental and health concerns, despite
their low energy consumption and low-cost manufacturing, low density, high specific
strength and modulus, relatively good performance, renewable nature, biodegradability,
wide availability, renewability, and abundance in nature [4]. These agricultural industrial
wastes can be converted into biofiber and biopolymer and can be utilized for short shelf-life
applications such as bioplastics packaging, trays, containers, disposal packaging, and
food coating, as well as long-life applications such as plastic mulch, pharmaceutical uses,
medicine, automotive, etc.

Starch biopolymer is considered one of the most promising materials for replacing
petroleum-based polymers, especially for food packaging, disposal packaging, and mulch
film. This is due to its wide availability, renewability, biodegradability, and low-cost manu-
facturing compared to petrochemicals processes [5]. The use of biodegradable biopolymer
starch has also been projected to minimize municipal waste and landfill operation costs, as
starch biopolymers are fully biodegraded within two weeks [6–8]. Thermoplastic starch
(TPS) can be obtained through the structural disruption occurring inside the starch granule
when it is processed under the presence of shear, heat, and plasticizer. This would allow
homogeneous melting of the thermoplastic starch to develop under these circumstances.
Nevertheless, TPS has some drawbacks or weaknesses in terms of high water solubility,
high moisture absorption and water barrier, and low flexibility. This is because of the
abundance of hydroxyl groups in its structure. Hence, to overcome these limitation issues,
much research has been conducted by scientists and engineers to enhance its properties, in-
cluding graft copolymerization [9], chemical modification [10], incorporating fillers such as
multi-walled carbon nanotubes [11], fibers [12,13], nanocellulose [6–8,14–17], cellulose [18],
clay [19], nanoclay [20] and lignin [21], and blending with other synthetic polymers [22,23].
Reinforcing TPS with natural fibers is one of the most promising methods, as it is cost-
effective, totally biodegradable, and enhances the mechanical properties of the composite
materials [24–26]. The most common types of starch utilized for fabricating biopolymer
include corn, wheat, rice, potato, sago, and cassava [27].

The properties and performance of natural fibers depend on several factors, such
as their chemical composition, their geographical location, species, altitudes, growing
conditions and harvesting times, preparations, extraction, processing, storage procedures,
and treatments of natural fibers [28,29]. Natural plant fibers are generally referred to as
lignocellulosic fibers, since most of them are cellulose fibrils incorporated in the lignin and
hemicellulose matrix. The chemical composition of the plants varies from one plant to
another [30]. In tropical regions, e.g., Malaysia, the Philippines, Indonesia, Nigeria, Thai-
land, Brazil, Indonesia, and the Democratic Republic of the Congo, cassava, scientifically
known as Manihot esculenta Cranz, is the fourth most extensively produced starch product
in the world after maize, potatoes, and wheat [31]. Thailand is the world’s largest cassava
producer and exporter after Nigeria, which takes 50–75% of cassava starch’s global market
share [32]. Cassava consists of approximately 60–70% starch content (dry basis) in gran-
ules form [32], lignocellulose (cellulose, hemicellulose, and lignin), and other secondary
components (Table 1).
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Table 1. Pulp content of cassava.

Composition
Content g/100 g Dry Pulp

Rattanachomsri
et al. [33]

Suwanasri
et al. [34]

Kosugi
et al. [35]

Sriroth
et al. [36]

Virunanon
et al. [37]

Starch 60.1 ± 0.1 60.6 68.9 ± 4.0 65.4 ± 4.1 75.1
Crude fiber n/d 28.1 27.8 ± 0.2 13.2 ± 2.2 n/d

Lignin 2.8 ± 0.06 n/d n/d n/d 1.2
Cellulose 15.6 n/d n/d n/d 4.1
Protein n/d 1.8 1.6 ± 0.03 2.1 ± 0.25 n/d

Hemicellulose 4.6 n/d n/d n/d 4.2
Fat n/d n/d 0.1 ± 0.01 0.2 ± 0.06 n/d

Data are shown as the mean ± 1SD. n/d = no data.

2. Natural Fiber and Natural Fiber Reinforced Composites (NFCs)

Natural fibers can be classified into three categories that are plants, animals, or miner-
als [38,39]. The widest utilization of natural fibers for reinforcement purposes is natural
plant fibers [27,40,41]. Plant fibers are classified according to natural form or fiber-derived
sections of the plant [42,43]. Figure 1 shows the different classes of plant fibers, (I) wood and
(II) non-wood fibers (i.e., grass/reed, leaf, fruit, seed, wood stalk, and bast). The utilization
of non-wood fibers for reinforcement with polymers has gained tremendous attention
among researchers. Using these non-wood fibers helps conserve the natural forests, and
excessive deforestation is worth discussing with the rising environmental issues. Tropical
countries such as Malaysia, Thailand, Indonesia, and the Philippines have vast and unused
natural fiber potential as an alternative to synthetic fibers. Cassava, cocoa pod husk, kenaf,
sugar palm fibers, sago, pineapple leaf, oil palm fruit bunches and trunks, and coconut
trunk fibers are various types of natural fibers that should be utilized and commercialized.
Natural fibers are much more sustainable than synthetic ones. In production, cultivation,
and manufacturing, they do not harm our environment [44,45]. Moreover, they are not haz-
ardous to the health of the people who work with them. Moreover, even after processing,
they are much more environmentally friendly than man-made fibers. Since synthetic fabrics
like polyester release microplastics into the water during the washing process, synthetics
harm not only nature and wildlife, but also humans with regard to the water cycle. Table 2
shows the advantages and disadvantages of natural fibers.
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Table 2. Advantages and disadvantages of natural fibers.

Advantages Disadvantages

Low specific weight, higher specific strength Lower impact strength
Renewable, low-energy consumption, low

carbon emissions Sensitive to weather and environment

Facile manufacturing process Poor moisture resistance, fibers easily swell
Low-cost manufacturing Restricted maximum processing temperature
Good electrical insulator Lower durability

Good thermal and acoustic insulating
properties Poor thermal resistance

Biodegradable Hydrophilic nature, low wetting with
hydrophobic polymers

The rapid growth of the industrial revolution and global warming are pushing factories
to manufacture products derived from natural resources [46–48]. Hence, a variety of crops
are being produced extensively by cultivation, and preferences depend on the needs and
values of societies. The crops are used for their natural polymers, such as starch or its
fibers. Some of the plants with extensive cultivation are kenaf, sugar palm, pineapple,
roselle, palm oil, etc. [49–52]. These fibers are produced to be reinforced with polymers in
order to strengthen the mechanical and water barrier properties of the polymer composites.
Research in polymer science and technology is responsible for manufacturing natural fibers
and other highly usable agro-wastes globally.

The fabrication of natural fiber-reinforced polymer composites was expected to pro-
duce lighter composites with low cost production [53]. Natural fiber composites pro-
vide many advantages, such as biodegradability, availability, low density, and recyclabil-
ity [54,55]. Bast fibers such as roselle, ramie, mulberry, okra, nettle, milkweed, linden,
kudzu, kenaf, jute, hemp, flax, and sisal are the most common natural plants used in
industrial applications such as packaging, construction, military, aerospace, medical, and
automotive applications [56]. Natural fibers have been used extensively in biopolymer
applications. This is because the bioplastics derived from natural sources have several hin-
drances, lower mechanical properties, as well as water resistivity, compared to fossil-source
plastics [57]. Hence, it is of paramount importance to increase research efforts in this area
considering the usage of natural materials obtained locally [58].

Natural fiber composites (NFCs) have been recently highlighted in various indus-
trial applications and they are quietly replacing the utilization of conventional materials
based on several factors [59]. The implementation of new materials in the industrial sector
is usually hindered by constraints and limitations such as cost, compatibility with the
product design, machinability, inherent relationship within the materials, and their avail-
ability, recyclability, and final product performance. This makes compromises between
these constraints, advantages, and disadvantages in selecting materials an intricate matter,
where proper decisions have to be made using modern techniques like optimization meth-
ods, informative decisions, and expert systems utilizing pairwise comparisons [60,61]. In
comparison with conventional composites, NFCs have greater specific strength, fatigue,
stiffness, non-toxicity, lower life-cycle cost, adaptability to hazardous environments, re-
cyclability, greater impact absorption capacities, and better resistance to corrosion [62].
Such advantages of NFCs result from the advantages of their constituents (fillers and
polymers), particularly that natural fibers themselves are better than traditional glass fibers
in terms of good thermal and acoustical insulation characteristics, low cost, energy retrieval,
availability, degradability, CO2 sequestration enhancements, reduced dermal and breathing
discomfort, as well as lower tool wear in machining operations [62–65]. Natural fibers are
obtained by processing waste from agriculture, industry, or consumers [2,7,8,15,30,66–70].
Moreover, some materials engineers are trying to manufacture safer and environmentally
friendly plastics. To overcome the problem of non-biodegradable plastics and the disposal
of agricultural waste, it is essential to manufacture environmentally friendly materials
to offset the use of durable plastics [16,71–74]. The production of eco-friendly products
from natural sources has minimized the dependency on traditional plastics, thus leading to
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solutions for environmental pollution issues. Recently, the utilization of natural fibers and
agricultural by-products to develop biodegradable plastics, such as such as maize, sugar
palms, potato tubers, kenaf, and cassava, has become increasingly of interest [75].

The characteristics and efficiency of NFC products depend upon the properties and
compatibility of their individual components. Besides that, they also rely on the interfacial
reinforcement of the natural fibers and polymer. This reinforcement extends the possibili-
ties of manufacturing various innovative materials with completely new qualities [76–81].
However, there is output uncertainty associated with variation in the properties of natural
fibers [82,83]. This requires careful study for selecting the highest-performance manufac-
turing for such types of composites under controlled conditions to achieve more reliable
and better designed data.

3. Cassava (Manihot esculenta)
3.1. History of Cassava

Cassava is a tuberous, woody, and perennial plant; Manihot esculenta is in the family
of the Euphorbiaceae (spurge family), and cassava plant and its roots are also known as
yuca, manioc, and mandioca [84,85]. The term cassava originated from the word Cazabi or
Casavi, which means bread in the Arawak language (the tongues of the first Indigenous
communities living in the Great Antilles) [86]. This plant is available throughout the
year because of its easy harvest process and being a periodical plant. These advantages
make cassava a very reliable food crop. Cassava crop is rich in riboflavin, thiamine, and
carbohydrates; however, it contains no protein [87]. The regions where cassava plants are
grown in the world are Africa with 72%, Asia with 18%, and South America and North
America with 10% [88]. Cassava yields are most important due to their many uses in
industries such as bioethanol, starch, alcohol, and biofuels, as well as being used in the
animal feed industry [89–91]. The Portuguese began cultivating cassava along the coast of
West Africa, then introduced cassava to central Africa, eastern Africa, Ceylon, Madagascar,
Malaya, India, and Indonesia. The cassava was introduced to Asia by the Spanish after
their occupation of the Philippines was completed, and then spread throughout Asia by
the nineteenth century [92–94]. Nigeria, Thailand, and Indonesia are now the leading
producers of cassava in the world, with the production of 54.83, 30.02, and 23.44 million
metric tons (MMT), respectively, in 2017 [95]. Cassava yields from other countries are as
shown in Figure 2.
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3.2. Cassava Plant Parts

Cassava (Manihot esculenta) can be found abundantly in various nations across Asia,
Africa, and Latin America. The United Nations Food and Agriculture Organization (FAO)
reported that cassava is placed fourth among developing countries’ food crops, after
maize, rice, and wheat. Cassava roots have high starch content, and cassava is a very
productive crop from the aspect of food calories generated per unit land area per day
of 250,000 cal/hectare/day, as compared to maize, wheat, and rice, which are 200,000,
110,000, and 156,000, respectively. It is likewise utilized as a feedstock for various industrial
applications [97]. The cassava plant is divided into three parts, such as leaves, stems and
tubers, as appears in Figure 3.
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Figure 3. Cassava plant parts (Manihot esculenta Crantz). Leaf. This part contains starch and protein,
the main building blocks for the cells’ growth and development. Hence, the yields are highly
influenced by how stable the leaves are. According to Latif and Müller [98], the major diseases
affecting the cassava plant (Manihot esculenta Cranz) in Africa are Cassava Brown Streak Disease
(CBSD), Cassava Mosaic Disease (CMD), Cassava Bacterial Blight (CBB), and Cassava Green Mite
(CGM). Stem. This cassava plant part functions as transport organ by transporting the produced
food from leaves to different plant parts for their growth and development. Cassava reproduces
via stem cutting; hence, the stem represents a new tool to expand the production of food and fuel
materials [99]. Root. Cassava plants are composed of three root types: thick roots, fine white roots,
as well as tuberous roots. The thicker roots act as anchors of the plant which grow underground,
whereas the tuberous roots collect carbohydrates. Conversely, the fine white roots absorb nutrients
and water [100].
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Research interests in plant fibers are gradually increasing due to the benefits they
offer, such as low cost, light weight, renewability, biodegradability, being environmentally
friendly, recyclability, easy separation, and carbon dioxide sequestration ability [101].
Annual cassava root production around the world is estimated to be more than 250 million
tons [102]. The biochemical compositions of cassava-based residues are presented in Table 3.

Table 3. Biochemical compositions of cassava-based residues.

Substrate Starch (%) Sugars (%) Cellulose
(%)

Hemicellulose
(%) References

Bagasse

65.6 _ 8.1 2.8 [103]
60.1 _ 15.63 4.58 [33]
56 _ _ _ [104]

79.45 _ _ _ [105]
48 _ 23 9 [106]

32.6 18 _ _ [107]
49.66 _ 21.47 12.97 [108]
57.8 88.4 _ _ [109]
64 _ _ 2.11 [110]

Stem

8.41 _ 21.43 11.62 [111]
_ _ 56.4 20.2 [112]
_ _ 35.2 24.3 [113]
_ _ 38.8 7.2 [114]

Peel
41.85 48.22 _ _ [115]
15.82 _ 35.86 9.27 [116]

67 _ _ _ [117]

Leaf 28.7 29 _ _ [107]

Rhizome _ _ 27.82 39.67 [118]

3.3. Cassava as Multipurpose Plant

Many researchers have recorded a significant number of uses for cassava. Modified
cassava that is specially formulated for individual applications continues to find new uses
every day. Cassava is traditionally processed in various ways to reduce its toxicity, improve
its palatability, and convert the perishable fresh roots into more stable products [119].
Cassava is a versatile plant that offers various benefits, especially in food applications—
cassava tuber is processed into chips and pellets that are edible [119]. Also, the roots and
leaves are both used for animal feed [120]. In addition to that, cassava is very rich with
starch, one of the sources of biodegradable polymers [121]. Cassava waste is a potential
feedstock for integrated biorefineries for bioproducts co-production, e.g., glucose syrup
(GS), succinic acid (SA), and bioethanol, as well as in combined heat and power (CHP) [122].
Treatments of the obtained glucose syrup from hydrolyzed cassava starch and cellulose
with different enzymes yields a high fructose syrup [110].

3.4. Bio-Products from Cassava

Owing to the decline of fossil fuel resources and uncertainty in the Organisation of
Petroleum Exporting Countries (OPEC), researchers are focusing on exploring sustainable
and renewable energy sources [123–125]. The waste generated by the agro-industries con-
stitutes a large share in the bioenergy production industry [126], including its consumption
in ethanol and biofuel production, which is now a focal point of many researchers over the
past decade, because of limited fossil oil reserves [127]. The production of biofuels from
cassava starch began in the 1970s, and utilization of cassava residues such as peel, bagasse,
stem, root, and leaf are currently being extensively studied by researchers to reveal their
potential in biofuel production [95].
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4. Cassava Starch

Starch is one of the most abundantly available and cheap agricultural products that is
utterly biodegradable in many environments [3]. Starch is primarily derived from cereals
such as wheat, maize, rice, as well as tubers such as cabbage and cassava. It is contained
in seeds or roots and is the plant’s primary energy source [128]. Moreover, starch is also
a polymer, which is a key factor for its various applications in many industries. The
fabrication of thermoplastic starch includes extrusion and/or molding of temperature
and pressure steps. Decomposition in the composting environment of the pure starch
polymer occurred very quickly (a process that lasts about a month); however, it aged quite
slowly and has no moisture resistance [129]. Production of cassava starch is very simple
and facile by utilizing wet milling of fresh cassava. The following steps in Figure 4 show
the stages of the production of cassava starch. Among the main factors when harvesting
and choosing cassava starch’s root extract are the age and root quality. Cassava roots
are highly perishable and the enzymatic cycle of rotting increases in a day or two; hence,
immediate treatment after the harvesting is necessary. Treatments include peeling, rinsing,
and converting cassava roots into fine particles. Next, a sifting step takes place to remove
starch from the grated pulp, while the fibers remain intact. These fibers are then washed
three to four times on a screen with distilled water. The extracted starch is left to sediment,
and then all fibers are removed and the starch is rewashed with distilled water to get rid of
any residue from the fibers. After that, the starch is oven fried for six hours at a constant
temperature of 45 ◦C to reduce its moisture. The final drying process is performed under
direct sunlight for four hours, and it is crushed using a dry blender prior to storage in an
airtight container to prevent accumulation of moisture and contamination [119,130].
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Key Features of Cassava Starch

Cassava is an annual crop that is widely grown for its ability to produce both starch
and alcohol. According to chemical analysis, cassava starch itself comprises 92.5 ± 0.9%
(dry basis) carbohydrates, of which 83.5 ± 2.5% are starches. The remaining percent-
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ages are as follows: 10.2 ± 0.1% for moisture, 3.45 ± 0.04% for ashes, 0.48 ± 0.02% for
lipids, 3.7 ± 0.7% for proteins, and 1.9 ± 0.2% for acid detergent fiber. Cassava starch
thus has higher carbohydrate content compared to other lignocellulosic-derived natural
starch. Regarding the amount of minerals present, cassava starch has dry basis contents of
43.8 ± 0.3% sodium, 49.8 ± 0.4% potassium, 61.6 ± 0.7% calcium, 43.4 ± 0.2% magnesium,
and 26.0 ± 0.4% iron. Starch granules and irregular, distorted, truncated particles with low
sphericity, which might primarily be connected to protein aggregates and fiber components,
are morphological characteristics of cassava starch.

5. Cassava Fiber
5.1. Macro-Size Cassava Fiber

From the compositional analysis of cassava by a wt% dry basis, the crude fiber was 3.5
from unpeeled cassava (starch and peels), 2.0 from cassava starch, and 10.6 from cassava
peel [117]. Also, the fiber of cassava that remained from another study was 23.30 wt%, dry
basis [108]. The chemical compositions of cassava tubers are shown in Table 4.

Table 4. Physico-chemical compositions of cassava tubers (100 g basis) [1,131].

Composition Fresh Weight Dry Weight

Calories 135 335
Moisture (%) 65.5 15.7
Proteins (g) 1.00 1.4
Lipids (g) 0.2 0.5
Starch (g) 32.4 80.6
Fibers (g) 1.1 1.2
Ash (g) 0.9 1.8

Calcium (mg) 26 96
Phosphorus (mg) 32 81

Iron (mg) 0.9 7.9
Sodium (mg) 2 -

Potassium (mg) 394 -
Vitamin B2 (mg) 0.04 0.06
Vitamin C (mg) 34 0

Niacin (mg) 0.6 0.8
Cyanide (%) - 1.6

The fibrous residue from cassava bagasse contains around 50% starch on a dry weight
basis [132], and its compositions are shown in Table 5. These analyses were performed on
bagasse samples collected from different processing units and times in Parana state, Brazil.

Table 5. Physico-chemical compositions of cassava bagasse (g/100 g dry weight) [1].

Composition Soccol
et al. [133]

Cereda
et al. [134]

Pandy
et al. [1]

Stertz
et al. [135]

Vandenberghe
et al. [136]

Moisture 5.02 9.52 5.02–11.2 10.70 11.20
Protein 1.57 0.32 0.32–1.61 1.60 1.61
Lipids 1.06 0.83 0.53–1.06 0.53 0.54
Fibers 50.55 14.88 14.88–50.55 22.20 21.10
Ash 1.10 0.66 0.66–1.50 1.50 1.44

Carbohydrates 40.50 63.85 40.50–63.85 63.40 63.00

5.2. Nano-Size Cassava Fiber (Preparation and Characterization of Nanocellulose from Cassava)

The broad plastics applications around the world and their inability to degrade re-
sulted in white pollution that affected the world’s ecosystem [137]. Biodegradable agro-
industry waste, including bagasse of sugar cane, malt, and cassava, as well as starches,
can be used in the production or reinforcement of films in packaging products manufac-
turing [6,138]. Cassava bagasse can be employed in various higher-value applications,
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e.g., biodegradable packaging, as well as organic acid, nanoparticles, ethanol, biofuel,
nanofibers, and a-amylase lactic acid productions, etc. [139]. Cassava bagasse also contains
residual starch, fibers, 37% hemicellulose, and 38% cellulose and lignin [140]. Cassava peel
and bagasse are being produced in huge quantities by the cassava starch industry. The
peel that contributes 15% of the weight from cassava root is very rarely used and is wasted,
whereas the bagasse is usually used in animal feed applications. The cellulose available in
cassava peel is approximately 40–55% of the dried peel [141,142]; thus, it can be a source
of cellulose.

Cassava peel (CP) was used to extract and prepare the cellulose and cellulose nanofiber
(CNF), as conducted by Travalini et al. [143], via alkali treatment and bleaching process,
as well as by mechanical disruption processes: homogenization and ultrasonication, for
cellulose and cellulose nanofiber, respectively. The results collected were contrasted with
the normal acid hydrolysis approach, and it was found that the CNF had average diameters
of 8.2 nm and 6.7 nm, respectively, after homogenization and ultrasonication, as shown in
Figure 5. In order to analyze the resulting cellulose and CNF from both processes, Fourier
Transform Infrared (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM),
Transmission Electron Microscopy (TEM), and Thermogravimetric Analysis (TGA) were
used. The results showed that both procedures were successful in preparation of cellulose
and CNF. Despite having similar chemical properties, CNF exhibited different physical
properties than others.
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6. Development of Biopolymer from Cassava Starch
6.1. Natural Fiber-Reinforced Cassava Starch Biopolymer

A study conducted by Ramirez et al. [144] on the reinforcement of green coconut fiber
with cassava starch showed that the tensile properties were increased, and Young’s modulus
was decreased with the decreasing of the diameter of the fiber, while the percentage
elongation remained constant. The biocomposites were prepared using a compression
molding technique with fiber concentration of 0, 5, 10, and 15%. The lignin content was
found to be 35%. In addition, the moisture tension of biocomposites influenced the strength
and elongation percentage. From a recent study, it was found that the cassava starch
composites exhibited higher water absorption.

Cassava starch has received growing attention as a biobased polymer, which is due to
its renewability, cheap costs, availability, and being fully biodegradable in nature. Further-
more, cassava starch is an extremely viable candidate for sustainable materials production.
Table 6 displays recent work on various natural fiber-reinforced cassava starch-based com-
posites. For instance, Kaisangsri et al. [145] detailed the development of foam trays derived
from cassava starch blended with natural polymers of fiber plus chitosan. Prior to incorpo-
rating chitosan solution into the batter at 0, 2, 4, and 6% (w/v) at 1:1 ratio, the kraft fiber
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was blended with 0, 10, 20, 30, and 40% (w/w of starch) of cassava starch solution. The hot
mold baking process was then applied to prepare the cassava starch-based foam for 5 min
in an oven at a controlled temperature of 250 ◦C. The findings have shown that the cassava
starch foam formed with 30% kraft fiber and 4% chitosan exhibited identical properties
to polystyrene foam. There was a small rise in color like L*, a* and b* value of the foam
tray. The starch-based foam fabricated displayed improved density, tensile strength, and
elongation of 0.14 g/cm3, 944.40 kPa, and 2.43%, respectively. In addition, other properties
such as water solubility index (WSI) and water absorption index (WAI) were observed to
be higher than polystyrene foam.

Lomelí-Ramírez et al. [146] reported that any new materials development requires
complete characterization data to discover their potential applications. In that direction, the
cassava starch biocomposites preparation was reported as having earlier incorporated up
to 30 wt.% of green coconut fibers from Brazil using thermal molding. The characteristics
of the treated and untreated matrices with their composites, both physical and tensile, were
also identified. XRD, FTIR, and thermal stability analysis were used to carry out structural
studies. FTIR study showed that any fiber or glycerol levels in the matrix were not chemi-
cally influenced, nor had they altered the starch. The composites’ increased crystallinity
with fiber content was observed in XRD study, while thermal study in TGA/DTA exhibited
improved thermal stability when the amount of fiber incorporation was raised. In contrast,
increased storage modulus, lower damping with increasing fiber content, and higher glass
transition temperature were observed in DMTA study. The increased interfacial linkage
between the matrix and the fiber could lead to these effects. Also, Vallejos et al. [147]
evaluated the potential of the fibrous material obtained via ethanol-water fractionation of
bagasse as thermoplastic starches reinforcement to boost their mechanical characteristics.
The compounds were processed using matrices of corn and cassava starches, plasticized
with 30 wt.% glycerin and mixtures of 0, 5, 10, and 15 wt.% bagasse fiber at 150 ◦C in a
rheometer. This step was following ASTM D638 method where the combinations were
pressed on a hot plate press at 155 ◦C. The images of the composites were taken from XRD
and SEM. Moisture absorption test had been done for 24 h at a temperature range of 20 ◦C
to 23 ◦C with humidity of 53% RH, followed the standard of ASTM E104. Moreover, tensile
tests and dynamic-mechanical analyses (DMA) were also carried out. Increased tensile
strength by 44% and 47% in comparison with corn and cassava starches, respectively, were
observed in fibers reinforced with 10 wt.% bagasse fiber. The reinforcement of 15 wt.%
bagasse fiber raised the elastic modulus of starch matrices more than fourfold. The storage
modulus obtained at 30 ◦C (E30 ◦C′) increased with the bagasse fiber content, following
the tensile elastic modulus trend. The results proved that these fibers are potential raw
materials for biodegradable composite materials’ development.

The potential of cellulose nanocrystals (CNCs) extracted from kenaf fibers was high-
lighted by Zainuddin et al. [148] for a reinforcing fillers application in starch-based bio-
composites. CNCs with diameter of 12 nm were collected from hydrolyzation method of
kenaf fibers with 65 wt.% sulfuric acids. On the other hand, cassava starch biocomposites
were prepared via solution casting method with 0 wt.% to 10 wt.% of kenaf CNC fillers and
glycerol/sorbitol (ratio of 50:50) as plasticizer. In order to characterize the sample, various
techniques had been proposed and carried out, including tensile tests for mechanical prop-
erties, various microscopy analysis for morphology, as well as physical properties. From
the obtained SEM images, CNCs appeared in white with shiny dots which was attributed
to the good dispersion of nanofillers within the starchy matrix. The biocomposite films
had relatively better mechanical strength than the unfilled starch films. Moreover, both
pure matrix and 6 wt.% CNC biocomposites exhibited thin, transparent, and flexible prop-
erties, proving that the transparency of the film was not influenced by the CNCs loading.
Furthermore, CNCs loading led to a decreasing water sensitivity.

A fibrous residue rich in non-extracted starch (bagasse) was found in the industrial
manufacturing of cassava starch-based composites, similar to cardboard [149]. The pro-
duction method used was identical to the small-scale artisan recycled papers; 90% cassava
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bagasse mixed with 10% of kraft paper (as long fibers source) were employed to man-
ufacture these composites with improved mechanical properties. The process yielded
composites with similar characteristics to the recycled paper molded fiber packaging used
in egg boxes. Cassava bagasse, however, has more benefits over recycled paper because it
originated from sustainable and known sources, as shown via water direct contact test by
full immersion of both impregnated and non-impregnated materials in water and tensile
strength. Slight water resistance was observed in the cassava bagasse-kraft paper compos-
ites. Meanwhile, the mass of water absorbed by the starch acetate-impregnated materials
was approximately half that of the non-impregnated materials. However, in terms of
tensile strength, the impregnation did not significantly influence the materials’ strength.
Therefore, starch acetate is an excellent additive for waterproof materials applications, such
as disposable trays.

Souza et al. [150] studied the influence of Penicillium commune and Eurotium amstelodami
on the antimicrobial potential, barrier properties, and mechanical strength of cassava starch
composite films incorporating cinnamon essential oil. From the study, they confirmed
that the development of active packaging occurred with the incorporation of cinnamon in
cassava starch films compared to the control film without antimicrobial agents. ANOVA
(p > 0.05) test results indicated that the cinnamon essential oil loading affected the properties
of the films with effective antimicrobial protection against P. commune and E. amstelodami,
both common used fungi in bread production.

Solution casting method was used by Pierre et al. [151] in the preparation of composite
films using indigenous glycerol-plasticized cassava starch and 2D or 3D synthetic fillers,
e.g., Na-beidellite type 2:1 phyllosilicate and Beta zeolite. The composites’ filler contents
effect and types of mechanical and barrier properties were given special attention. The
lyophilized Beta zeolite-reinforced films demonstrated higher water vapor permeability
(WVP) and water solubility (WS) values compared to pure starch. In contrast, the Na-
beidellite or the non-lyophilized Beta zeolite composites showed improvement in WVP.
For both filler types, a drastic rise in the mechanical properties, particularly in Young’s
modulus, was observed.

Table 6. Reported works on natural fiber-reinforced cassava starch-based composites.

Polymer Matrix Fiber Reference

Cassava starch Green coconut fibers [144]

Cassava starch Coconut fibers [145]

Cassava starch Cassava bagasse [147]

Cassava starch Cellulose cassava bagasse nanofibrils (CBN) [152]

Cassava starch Cassava bagasse-kraft paper [149]

Cassava starch Cellulose nanocrystals from kenaf fibers [150]

Native cassava starch Cinnamon essential oil/clove essential oil/sucrose ester of
fatty acids/sugar [151]

Cassava starch Kapok fiber [153]

Cassava starch Jute fiber [153]

Cassava starch Kaolinite-rich clay [154]

Cassava starch The exploitation of chitosan as a compatible malt [155]

Cassava starch Malt bagasse [156]
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Table 6. Cont.

Polymer Matrix Fiber Reference

Cassava starch Blended with zein, gluten, soy protein, kraft fiber, and palm [157]

Cassava flour (CF)/wheat flour (WF)

Cassava stillage residue (CSR)

[158]
[159]

Poly(vinyl chloride) (PVC) [160]

Final egg albumen: Cassava starch: sunflower oil [161]

Cassava stillage residue (CSR) Self-reinforced [141]

Cassava Starch Cassava peel/cassava bagasse [156]

Cassava Starch The remaining fibrous residue of cassava starch extraction [162]

Cassava starch Cassava nanofiber [143]

Cassava starch Cassava/sugar palm fiber [71]

Cassava starch Cassava bagasse cellulose nanofibrils [163]

Cassava starch Microcrystalline Cellulose Avicel PH101 [164]

Cassava starch Rice husk fiber [165]

Cassava starch Rice husk fiber nanocrystalline cellulose [165]

Cassava starch Cassava root [166]

Cassava starch Cassava bagasse [166]

Cassava starch Cassava bagasse lignocellulose nanofibers
(LCNF)/nanoclay (Nclay) [143]

Cassava starch Cassava bagasse/kraft paper [149]

Cassava starch Waxy starch nanocrystal [167]

Cassava starch Cassava bagasse [31]

Cassava starch Zinc oxide nanofiller [168]

Cassava starch Acetobacter xylinum bacterial cellulose (BC) [169]

Cassava starch Recycled newspaper pulp fiber [170]

Cassava starch Kenaf cellulose nanocrystals (CNCs) [148]

Cassava starch Montmorillonite [171]

Cassava starch Bamboo nanofibers [171]

Cassava starch Bacterial cellulose [172]

Cassava starch ZnO/bacterial cellulose [173]

Cassava starch Carnauba wax/cashew tree gum-based films [174]

Cassava starch Concentrated natural rubber latex/cotton fiber [175]

Cassava starch Cellulose pulp fibers modified with deposition of silica
(SiO2) nanoparticles [176]

Cassava starch Cellulose fiber [177]

Cassava starch Cassava bagasse (CB) [178]

Cassava starch Cassava peel (CP) [178]

Cassava starch Coconut nanocellulose [179]

Cassava starch Licuri nanocellulose [179]

Cassava starch Corn stover nanocellulose [179]

Cassava starch Pulp of eucalyptus commercial nanocellulose [179]

Cassava starch Cassava peel [180]
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Table 6. Cont.

Polymer Matrix Fiber Reference

Cassava starch Kenaf cellulose nanocrystals [181]

Cassava starch Oregano essential oil/sugarcane bagasse [182]

Cassava starch Nanoclay [183]

Cassava starch Zein oil [184]

Cassava starch Gluten oil [184]

Cassava starch Soy protein oil [184]

Cassava starch Kraft fiber oil [184]

Cassava starch Palm oil [184]

Cassava starch Kenaf nanocrystalline cellulose [148]

Cassava starch Brazilian coconut fiber [144]

Cassava starch Eucalyptus cellulose nanocrystals [185]

Cassava starch Nanoclay [186]

Cassava starch Cassava roots bagasse [187]

Cassava starch Cellulose fiber/nanoclay [188]

Cassava starch Sugarcane bagasse fibers/montmorillonite [189]

Cassava starch Sisal cellulose nanofibers [190]

Cassava starch Banana fibers [191]

Cassava starch Pineapple shell fiber [192]

Cassava starch Soybean hulls fiber [193]

Cassava starch Soybean hulls microcrystalline cellulose [193]

Cassava starch Polylactic acid [194]

Cassava starch Ramie fibers CNF/nano PCC tapioca starch [195]

Cassava starch Zeolite [151]

Cassava starch Beidellite [151]

Cassava starch Starch nanocrystals (SNCs) [196]

Cassava starch Nanofiber straw/ZnO [197]

Cassava starch Pectin particles [198]

Cassava starch Cotton fibers [198]

Cassava starch Ramie cellulose microfibrils [199]

Cassava starch Coconut fiber nanocellulose [200]

Cassava starch Bamboo fiber, lime juice, epoxidized waste cooking oil [201]

Cassava starch Cassava nanofibril [138]

Cassava starch Carboxymethylcellulose/lactic acid bacteria [202]

Cassava starch ZnO nanorods/PVA electrospun mats/rosemary extract [203]

Cassava starch Polyaniline [204]

Cassava starch Nanosilica (SiO2) [205]

Cassava starch Montmorillonite [206]

Cassava starch Silica [207]

Cassava starch Sisal fiber [208]

Cassava starch Cassava bagasse [209]
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Table 6. Cont.

Polymer Matrix Fiber Reference

Cassava starch Coconut residue fiber [210]

Cassava starch Cassava cellulose nanocrystals [211]

Cassava starch Grape stalks [212]

Cassava starch Carboxymethylcellulose/turmeric oil [213]

Cassava starch Sisal fiber/carnauba wax [214]

Cassava starch Coconut fibers [215]

Cassava starch Kaolinite [216]

Recently, investigators such as Wahyuningtiyas and Suryanto [183] have studied the
influence of reinforcement of nanoclay within cassava starch, where glycerol had been used
as a plasticizer. The properties of cassava starch-based bioplastic such as biodegradability,
moisture absorption, tensile test, and crystallinity test of XRD were identified. The results
displayed that the incorporation of nanoclay into cassava bioplastic increased the tensile
strength and elongation properties of the bioplastic from 5.2 MPa to 6.3 MPa, and 11.9 to
13.5%, respectively. The biocomposites also showed an improvement in water absorption.
Besides that, this research also showed that nanoclay-reinforced bioplastic was completely
degraded within the sixth day. Wahyuningtiyas and Suryanto [183] concluded that cassava
starch reinforced with nanoclay demonstrated good potential to be utilized as a bioplastic
from renewable resources.

Besides that, Pierre et al. [151] determined the effect of Beta zeolite and Na-beidellite
as filler content on the tensile and barrier properties of the cassava starch composites film,
which was fabricated via casting method with glycerol as the plasticizer. Further analysis
showed that the water solubility and water vapor permeability of lyophilized Beta zeolite-
reinforced cassava starch films were higher than the neat cassava starch. Interestingly,
Na-beidellite and non-lyophilized Beta zeolite-reinforced composite film indicated an
improvement in the water vapor permeability as well as their tensile strength. The next
section of the results was concerned with the increase of Na-beidellite and non-lyophilized
Beta zeolite contents, and elongation at break of the composites, while a decreasing trend
was recorded in tensile strength from 2.3 to 2 MPa, and from 2.0 to 1.5 MPa, respectively,
as well as their Young’s modulus, which was 35 to 20 MPa and 20 to 15 MPa, respectively.
This can be seen in Figure 6a–c due to the incompatible polymeric composite, which also
led to poor interfacial adhesion between the reinforced phase and the matrix [151].

For better environmental consideration and sustainability, Amni et al. [197] worked on
the reinforcement of cassava starch with nanofiber straw/ZnO. Distilled water was used as
the solvent to fabricate the bioplastic film. The loading effect of fillers load, nanofiber straw,
ZnO, or both, on the mechanical strength, water absorption, and the decomposition rate
of the bioplastic films also were examined. In summary, the results provided important
insights, in which the highest tensile strength of 3.2 MPa was obtained at 9% ZnO, while
the highest elongation recorded was 34% at 1% nanofiber straw. Other than that, the
highest water absorption was 27.23%, obtained at 1% of nanofiber straw. Based on Amni
et al. [197], the bioplastic films were buried in the ground for 20 to 30 days. Also, Arrieta-
Almario et al. [204] carried out a number of investigations into polyaniline-reinforced
cassava starch composite materials. Glycerol, glutaraldehyde, and polyethylene glycol
were used as plasticizers in this work. Further analysis showed that a dark biopolymer film
with good mechanical strength was fabricated. This was owing to the hydrogen bonding
between the polymer structures established between the OH-group originated from cassava
starch with the NH-group from polyaniline. In addition, the reinforcement of conducting
polymer polyaniline to the starch had improved their electrochemical properties. Thus, this
composite material is suitable to be applied for electrochemical sensors and accumulators.



Materials 2022, 15, 6992 16 of 41
Materials 2022, 15, 6992  17  of  44 
 

 

 

Figure 6. (a) Elongation at break (ɛ), (b) tensile strength (σ), and (c) Young’s modulus (E) of neat 

cassava starch film (at 0 wt.%) and 1, 2, and 4 wt.% of CSB‐CSBL‐CSBNL mineral composite films 

[151]. 

For better environmental consideration and sustainability, Amni et al. [197] worked 

on  the  reinforcement of cassava  starch with nanofiber  straw/ZnO. Distilled water was 

used as the solvent to fabricate the bioplastic film. The loading effect of fillers load, nano‐

fiber straw, ZnO, or both, on the mechanical strength, water absorption, and the decom‐

position rate of the bioplastic films also were examined. In summary, the results provided 

important insights, in which the highest tensile strength of 3.2 MPa was obtained at 9% 

ZnO, while the highest elongation recorded was 34% at 1% nanofiber straw. Other than 

that, the highest water absorption was 27.23%, obtained at 1% of nanofiber straw. Based 

on Amni et al. [197], the bioplastic films were buried in the ground for 20 to 30 days. Also, 

Arrieta‐Almario et al. [204] carried out a number of investigations into polyaniline‐rein‐

forced cassava  starch composite materials. Glycerol, glutaraldehyde, and polyethylene 

glycol were used as plasticizers in this work. Further analysis showed that a dark biopol‐

ymer film with good mechanical strength was fabricated. This was owing to the hydrogen 

bonding between the polymer structures established between the OH‐group originated 

from cassava starch with the NH‐group from polyaniline. In addition, the reinforcement 

of conducting polymer polyaniline to the starch had improved their electrochemical prop‐

erties. Thus, this composite material is suitable to be applied for electrochemical sensors 

and accumulators. 

Liu, Fan, Pang, et al. [205] studied the effect of tensile action towards the structure 

and properties of thermoplastic nanosilica (SiO2)‐reinforced cassava starch. The properties 

of the composite were studied during the retrogradation stages. From DSC analysis, the 

Figure 6. (a) Elongation at break (ε), (b) tensile strength (σ), and (c) Young’s modulus (E) of neat cas-
sava starch film (at 0 wt.%) and 1, 2, and 4 wt.% of CSB-CSBL-CSBNL mineral composite films [151].

Liu, Fan, Pang, et al. [205] studied the effect of tensile action towards the structure
and properties of thermoplastic nanosilica (SiO2)-reinforced cassava starch. The properties
of the composite were studied during the retrogradation stages. From DSC analysis, the
retrogradation enthalpy of the composite with stress was higher than the composite without
the tensile action during the retrodegradation phase. Other than that, the decomposition
temperature and activation energy of thermal degradation of TPS/SiO2 composite with
tensile action were much higher than the neat composite. Another important finding was
that the stress-strain curves represented the mechanical properties of the reinforced cassava
starch composite that was enhanced as the retrogradation time increased. The composite
exhibited the Maltese cross-pattern as analyzed from the polarized light microscopy. Ac-
cording to Huang, Han, et al. [206], cassava starch reinforced with montmorillonite was
manufactured and its barrier properties were investigated. The montmorillonite was modi-
fied with ultrasonic, magnetization conditions, and organic modifiers, as the intercalation
reaction was used to improve its barrier performance. Thus, the findings showed that,
owing to the incorporation of montmorillonite, the transmittance of the composite film
decreased to 600 nm in the visible region and also greatly prevented UV-light transmission.
As stated in the work, the temperature of the composite film decomposition ranged from
200 ◦C to 500 ◦C, while its weight loss rate was around 80%. Further analysis indicated
that the oxygen resistance capacity of the composite film was nearly zero, while the oxygen
permeability of organic montmorillonite-reinforced cassava starch film (0.067 cm3/m2d)
was lower than the composite film without magnetization (0.097 cm3/m2d). In addition,
Figure 7 demonstrates that the tensile strength of the non-magnetized composite film
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increased from 5 MPa to 6.5 MPa, which was contributed by the higher montmorillonite
loading content. Hence, it was observed that the introduction of Fe to the magnetized
composite films did not demonstrate any enhancement in its mechanical strength.
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6.2. Thermoplastic Cassava Starch Biopolymer Blend-Reinforced Natural Fibers

Polymer blends containing varied amounts of starch blended with other types of
polymers were extensively studied as possible replacements for plastics, mainly in the
area of packaging, as listed in Table 7. Starch by itself is unsuitable because of various
disadvantages, including (I) brittleness in the absence of suitable plasticizers, (II) poor
water resistance due to the hydrophilic nature of starch, (III) weak and soft nature of starch
biopolymer in the presence of plasticizer, and (IV) weakening mechanical properties upon
exposure to high humidity environmental conditions. Therefore, starch biopolymer needs
to be blended and reinforced with other polymers and fibers in order to overcome these
disadvantages. Nevertheless, several studies have been reported about the thermoplastic
starch biopolymer blend-reinforced natural fibers, especially with cassava starch biopoly-
mer. For example, Chotiprayon et al. [217] studied the effect of reinforcement of coir fiber
in cassava starch/poly(lactic acid) blend on the mechanical strength. The TPS/PLA/CF
biocomposites exhibited good mechanical properties due to stronger hydrogen bonding
occurring between the cassava starch with PLA and/or the coir fibers, as well as higher
PLA crystallinity. From the recorded data, the tensile strength of TPS/PLA (31.3 MPa)
was higher than the TPS/PLA/CF composite (with a range of 26.6 MPa to 30.7 MPa).
While Young’s modulus and elongation at break for the polymer composites ranged from
344.0 MPa to 424.7 MPa, and 2.1% to 2.4%, respectively, these were much lower than those
of the TPS/PLA blend with 303.9 MPa and 4.1%, respectively. However, the increasing
coir fiber loading within the biocomposites contributed to decreased melt flow ability and
shear-thinning effect, and increased shear viscosity.
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Table 7. Reported work on cassava starch-reinforced natural fibers polymer composites.

Polymer Blend Fiber Reference

Native cassava starch, agar (AG), cassava starch (CAS),
and arabinoxylan (AX) Beta zeolite nanocrystal or Na-beidellite [218]

Cassava flour (CF)/wheat flour (WF) Cassava stillage residue (CSR) [158,159]

Sodium cellulose sulfate (NaCS)/cassava starch [219]

Cassava starch/polylactic acid (PLA) Cassava bagasse [220]

Cassava starch/low-density polyethylene Cotton fibers [221]

Cassava starch/polyvinyl alcohol (PVA) Bamboo nanofibrils [222]

Cassava starch/poly(lactic acid) Coir fiber [217]

Cassava starch/polyvinyl alcohol Sugarcane bagasse fiber [223]

Cassava starch/poly(butylene succinate) Maleated poly(butylene succinate) [224]

Cassava starch/polyvinyl alcohol Bacterial cellulose fiber [225]

Cassava/corn starch Passion fruit peel [226]

Cassava starch/low-density polyethylene Cotton fibers [161]

Starch/poly(vinyl alcohol) Bamboo cellulose nanofiber [227]

Cassava/poly(vinyl alcohol) (PVA) Oil palm empty fruit bunches (OPEFBs)
nanocellulose [228]

Cassava solid waste/bagasse starch (BS)
Bamboo cellulose microfiber
(MFC)/epoxidized waste cooking
oil (EWCO)

[229]

Cassava/banana starch Banana fiber [230]

Cassava Starch/Polybutylene Adipate
Terephthalate (PBAT) - [231]

Cassava starch/carboxylated styrene-butadiene rubber Cellulose fiber [232]

Cassava starch/polylactic acid - [233]

Cassava starch/Chitosan Kraft fiber [148]

Abral et al. [225] studied the effect of cellulose fibers content in polyvinyl alcohol
(PVA)-reinforced cassava starch composites on their thermal and moisture resistance, and
mechanical strength. The PVA/S composites were fabricated via ultrasonic probe treatment
where the starch was mixed with the PVA gel and short bacterial cellulose fibers. In
the report, it was stated that the sonicated biocomposites possessed low thermal and
moisture resistance and low transparency. On the other hand, the sonicated blend film
exhibited lower tensile strength (5.5 MPa) than that of the non-sonicated PVA/S film
(10.6 MPa). However, the increased fiber loading had improved the tensile strength of
the sonicated PVA/S. It was recorded that the mechanical strength of PVA/S-10U (about
17 MPa) was higher than the non-sonicated one, PVA/S-10N (15 MPa), both with 10 g
fibers addition. This was contributed by the strong hydrogen bond between the fiber
and the matrix. Next, Lisdayana et al. [228] reported the effect of oil palm empty fruit
nanocellulose-reinforced modified cassava, corn, and sago starch/PVA biocomposite films.
Prior to the reinforcement, the oil palm empty fruit bunches were ground mechanically
using an ultrafine grinder in order to extract the nanocellulose. Next, the evaporation
casting method was used to fabricate the biocomposite films. What can be clearly seen in
this report was the continual increase of nanocellulose-reinforced TPS/PVA blend tensile
strength related to the increasing of nanocellulose content (0, 1, and 3% nanocellulose
addition). For cassava starch, the nanocomposite film exhibited increasing tensile strength
from 0.5 MPa to 3 MPa; however, the biocomposite films of corn and sago starch had a
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higher tensile strength of 5 MPa and 4.5 MPa, respectively, at 3% nanocellulose loading.
This was due to the difference of amylose content in the starch.

Silviana and Subagio [229] studied the characterization of cassava bagasse starch-
reinforced bamboo cellulose microfiber (MFC). In this work, epoxidized waste cooking
oil (EWCO) and glycerol were utilized as plasticizer while lime juice was used as the
cross linker. The author determined the mechanical, thermal, structural, as well as the
crystallinity properties of the biocomposite. The composite with the composition of MFC
1%-w/w, EWCO of 0.125%-v/v, glycerol of 0.25%-v/v, and lime juice of 0.125%-v/v, ex-
hibited the highest tensile strength of 25.8 MPa. For thermal analysis, the weight loss
and temperature of degradation of the modified cassava starch were approximately 22%
and 290 ◦C, respectively. The reinforcement had enhanced the mechanical, thermal, as
well as structural properties of the polymer. Likewise, Subramanya and Prabhakara [230]
fabricated banana fiber-reinforced cassava starch biocomposites via alkali treatment and
hot compression technique. The authors studied the effect of fiber lengths and fiber volume
fractions on the tensile and impact strength of the biocomposite. The results displayed that
the mechanical properties of the biocomposites were enhanced with the fiber length and
glycerol content; the tensile strength, tensile modulus, and impact strength of the 20 mm
banana fiber/cassava starch composites with 15% of glycerol were higher when compared
to those of the neat matrix composites, rising from 2.82 MPa to 10.12 MPa, from 49 MPa to
356 MPa, and from 4.03 KJ/m2 to 8.31 KJ/m2, respectively. This was due to the composites’
fibrillation, which comprised the breaking down of fiber bundles into smaller bundles,
hence increasing the effective surface area of the biocomposites for matrix adhesion.

Yi et al. [231] investigated the consequences of cassava starch loading on the surface
morphology, crystallinity, changes in the functional group, and thermal properties of the
PBAT/cassava starch/nano-ZnO composites films. The increasing of thermoplastic cassava
starch loading improved the water absorption and lessened the water vapor resistance,
mean water contact angle, as well as the light transmittance. Besides that, the addition
of nano-ZnO decreased the water contact angle of the biocomposites; however, it did
improve the composite film with 10% starch and 1% of ZnO at 95.5◦. Other than that, the
elongation at break and the tensile strength of the film were reduced as the starch content
was increased. Moreover, the higher nano-ZnO loading enhanced the mechanical properties
of the composites; the 10% TPS-reinforced PBAT composite films with the addition of 1%
nano-ZnO had higher tensile strength (26 MPa) and elongation at break (530%) than the
pristine composite films.

The structure and surface of a composite film fabricated from extrusion of cassava
starch with PLA and biodegraded by compost conditions were assessed by del Rosario
Salazar-Sánchez et al. [233]. It was observed that the carbonyl index increased as the PLA
content increased. Besides that, the higher carbonyl index in the composites could be
contributed by the inclusion of anhydrous malic acid in PLA/TPS mixtures. The TPS/PLA
biocomposite films were constructed through three main phases of biodegradation: break-
down, fragmentation, and the formation of minerals. Within week four, the film was
observed to have biodegraded by 65%.

6.3. Cassava Starch Hybrid Polymer Composites

Hybrid composite is referred to as the product which was combined into a single
matrix by two or more different fibers, in order to achieve better mechanical, thermal,
and barrier properties than individual fibers [50–52,234]. The properties of the hybrid
composite are mostly dependent on the loading and orientation of the fibers, types of
polymer matrix and fibers, and the degree of intermingling of the two or more fibers.
Besides that, the mechanical properties of the hybrid composite are dependent on the
failure strain of each fiber as well as the interaction between the polymer and fibers, in
which the optimum hybrid performance is achieved when the mechanical strain of both
fibers is highly compatible [235]. Nevertheless, numerous studies on the hybridization of
composites, in particular cassava polymer and fibers, have been published, as displayed in



Materials 2022, 15, 6992 20 of 41

Table 8. For instance, Edhirej, Sapuan, Jawaid, and Zahari [71] worked on sugar palm fiber
(SPF)-reinforced cassava starch/cassava bagasse. The biocomposite films were fabricated
via casting method and plasticized with fructose. In their work, the amount of SPF loadings
was varied by 2, 4, 6, and 8% w/w of dry starch, mixed with the CS/CB biocomposites. In
addition, the authors claimed that the reinforcement of SPF had relatively enhanced the
physical and mechanical properties, as well as reducing the water uptake, water content
and water solubility, and the density of the composite films. According to SEM images, the
filler was completely incorporated within the starch matrices. Hence, the film with higher
SPF content, 8% w/w SPF/CS/CB, exhibited better heterogeneous film surface. Moreover,
XRD analysis proved hybrid film modified with SPF had improved crystallinity up to 47%
compared to 32% for the pristine starch film.

Table 8. Reported work on cassava starch hybrid polymer composites.

Polymer Polymer Matrix Reference

Cassava starch Cassava peel/cassava bagasse [156]

Cassava starch Cassava/sugar palm fiber [71]

Cassava starch Cassava bagasse lignocellulose nanofibers
(LCNF)/nanoclay (Nclay) [143]

Cassava starch Cassava bagasse/kraft paper [149]

Cassava starch ZnO/bacterial cellulose [173]

Cassava starch Carnauba wax/cashew tree gum-based films [174]

Cassava starch Concentrated natural rubber latex/cotton fiber [175]

Cassava starch Cellulose pulp fibers modified with deposition of silica
(SiO2) nanoparticles [176]

Cassava starch Oregano essential oil/sugarcane bagasse [182]

Cassava starch Cellulose fiber/nanoclay [188]

Cassava starch Sugarcane Bagasse Fibers/montmorillonite [189]

Cassava starch Ramie fibers CNF/nano PCC tapioca starch [195]

Cassava starch Nanofiber straw/ZnO [197]

Cassava starch Bamboo fiber, lime juice, epoxidized waste cooking oil [201]

Cassava starch Carboxymethylcellulose/lactic acid bacteria [202]

Cassava starch ZnO nanorods/PVA electrospun mats/rosemary extract [203]

Cassava starch Carboxymethylcellulose/turmeric oil [213]

Cassava starch Sisal fiber/carnauba wax [214]

Travalini et al. [143] studied the cassava bagasse-based nanofibers-reinforced cassava
starch composite films. Initially, lignocellulose nanofibers (LCNF) were extracted from
cassava bagasse via enzyme treatment prior to the colloidal mill, which were then utilized
as a reinforcing agent in the cassava composite films. The authors focused on the effect of
nanofibers loading (0.65 and 1.3% w/w loading) in starch-based biocomposite films on their
mechanical, structural, as well as thermal stability, compared to the neat commercialized
nanoclay. The results showed that cassava starch-based films were transparent and flexible.
The better nanoparticles distribution within the film indicated that the nanofibers were well-
incorporated within the cassava starch matrix, potentially applicable for packaging uses.
On the other hand, the films’ opacity and water uptake values were dramatically decreased
(0.65% for LCNF reinforced film and 1.3% for the nanoclay), whereas a lower concentration
of LCNF resulted in the lowest WVP value. Next, the tensile stress of the nanocellulose
reinforced starch-based films (6.6 MPa for 1.3% loading) was improved relative to the
pristine CS (4.8 MPa). Likewise, Basuki et al. [173] worked on the effect of adding ZnO
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into bacterial cellulose reinforced with cassava starch biofoam on its crystallinity and water
uptake capacity. The highly hydrophilic biofoam was synthesized via the baking process
with various ZnO content (0, 3, 6, and 9%) in the bacterial cellulose-reinforced starch
biofoam. Results showed that the ZnO addition had reduced the water absorption of the
composite films up to 33% relative to the 0% ZnO content starch film, as shown in Figure 8.
Moreover, the composite with 9% ZnO concentration exhibited the lowest water absorption
amount of 0.164 (gH2O/g). XRD analysis indicated the improvement in the crystallinity,
diffraction position, and intensity of the biofoam due to the increasing ZnO concentration.
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A study on the effect of the reinforcement of cellulose fibers and/or nanoclay on
mechanical, structural, and water vapor resistance properties of the potato and cassava
starches composite films was performed [188]. The biocomposite films were fabricated with
starch, glycerol, cellulose fiber, and/or nanoclay, each with the content of 4%, 30%, 20%, and
5%, respectively. The physical, water vapor resistance, tensile strength, and morphological
properties of the potato and starch-based films were measured. El Halal et al. [188] had
discovered that fiber-reinforced potato starch exhibited more resistant films with enhanced
solubility compared to cassava starch-based composite films. Table 9 below shows the
tensile strength and elongation at break of cassava and potato starch films with different
amounts of reinforcing agents. Nevertheless, the inclusion of nanoclay and cellulose in
cassava starch increased the tensile strength from 4.7 MPa to 11.7 MPa and reduced the
elongation from 4.62% to 1.62% relative to the neat starch film. Besides that, as cellulose
and nanoclay were concurrently applied to the starch film, the water vapor permeability
for the films were reduced.

Table 9. Tensile strength and elongation at break of cassava and potato starch films with different
amount of reinforcing agents [188].

Parameters Starch Control Cellulose Nanoclay Cellulose-
Nanoclay

Tensile
strength (MPa)

Potato 12.03 12.85 14.59 17.75

Cassava 4.68 6.87 5.78 11.72

Elongation (%)
Potato 13.81 2.12 3.50 0.94

Cassava 4.62 2.09 4.47 1.32
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In addition, Syafri et al. [195] fabricated cassava starch modified with cellulose
nanofibers (CNF) ramie hybrid composites. Prior to the reinforcement process, the CNF-
ramie was produced via chemical-ultrasonication method, whereas the CNF-ramie rein-
forced starch was fabricated using the casting solution with glycerol as a plasticizer. From
the findings, the CS/4%-CNF/6%-PCC hybrid film exhibited the highest tensile strength
with 12.84 MPa, as well as 30.76% crystallinity. Hence, it proved that the inclusion of
CNF-ramie and PPC had enhanced the crystallinity, water vapor uptake, thermal stability,
and mechanical properties of the hybrid nanocomposites. Li et al. [202] discovered the
reinforcement of lactic acid bacteria to cassava starch/carboxymethylcellulose (CMC) bio-
composite films to enhance the shelf life of bananas. Their research described how two
species of lactic acid bacteria (LAB) (Lactobacillus plantarum and Pedocococcus pentosaceus)
from pickled water, with extremely high exopolysaccharide (EPS) yield, were selected.
The authors fabricated LAB, sodium CMC, and glycerol as plasticizers in cassava starch
biocomposite films. A varied amount of LAB concentrations (0.5, 1, 1.5, and 2%) were
introduced to the starch to evaluate the effect on antioxidant performance and water vapor
permeability of the films. Table 10 displays the tensile strength and elongation at break of
CS/CMC/LPL and CS/CMC/PPE composite films with various probiotics loading. The
antioxidant function of the composite films was considerably increased after the inclusion
of probiotics, and the CS/CMC/LPL-2% sample recorded the highest antioxidant activ-
ity of 48.12%. L. plantarum demonstrated a consistent CS/CMC (CS/CMC/LPL) matrix
distribution, which was a thicker structure and effectively prevented water molecules’
penetration and provided ultraviolet protection. Thus, it inhibited the degradation of lipid
oxidation in food packaging. The usage of composite film reinforced with 2% LAB in food
packaging qualitatively increased the shelf life of the banana.

Table 10. Tensile strength and elongation at break of CS/CMC composite films with various probiotics
loading [202].

Samples Tensile Strength (MPa) Elongation at Break (%)

CS/CMC 13.29 65.72

CS/CMC/LPL-0.5% 15.69 51.40

CS/CMC/LPL-1% 15.42 50.22

CS/CMC/LPL-1.5% 14.84 47.24

CS/CMC/LPL-2% 12.73 45.81

CS/CMC/PPE-0.5% 13.10 47.69

CS/CMC/PPE -1% 13.04 44.30

CS/CMC/PPE-1.5% 11.21 42.26

CS/CMC/PPE-2% 11.06 38.00

7. Cassava Fiber-Reinforced Polymer Composites

Natural fibers, or lignocellulosic fibers, are being used in polymers and composites
increasingly as reinforcement materials. Compared to inorganic fillers such as glass fibers
and other synthetic fibers, lignocellulosic fibers are more significant due to their advantages
such as high specific strength and modulus, low cost and density, wide availability, low
energy consumption during the manufacturing process, biodegradability, their abundance,
and renewable nature. Agricultural waste or agro-industrial by-products can be considered
important for obtaining natural fibers. Polymer composites with cassava lignocellulosic
fiber as reinforcement filler have been examined. Table 11 displays the reported work
on cassava fiber-reinforced polymer composites. There has been a lot of work on the
preparation and characterization of cassava fibers reinforced with various types of polymer
composites. For instance, the thermo-mechanical properties of egg albumen–cassava
starch composite films containing sunflower-oil droplets that were influenced by moisture
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content were studied by Wongsasulak et al. [160]. The moisture content effect on the
structural and thermo-mechanical properties of the composite films was analyzed using
SEM, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA).
The cold gelation method was used to fabricate the composite films and they were dried in
a moisture-controlled incubator (83.5%RH) for eight days at 25 ◦C. The composites were
stored at varying relative humidity at a room temperature of 21 ◦C for over seven days to
yield composite films with a moisture content of 4%, 7%, 11%, 17%, and 46% (dry weight
basis). In DMA thermograms, the magnitude of G” and G’ were raised with temperature
in high-moisture samples, decreased, and were gradually increased again for medium-
moisture samples, and decreased in low-moisture samples, respectively. Two distinct
peaks (at 49–53 ◦C and 79.8 to 132.4 ◦C) were observed in DSC thermograms that were
attributed to protein denaturation and phase changes. The changes in the microstructure
of the composite matrix were exhibited in SEM images as a result of different heating
temperature and moisture content. This study proved that moisture content is crucial in
the determination of microstructure and thermo-mechanical properties of egg albumen–
cassava starch composite films incorporated with sunflower oil.

Previous research by Lomelí-Ramírez et al. [146] established biocomposite films of
green coconut fiber-reinforced cassava starch via thermal molding technique. Observa-
tions from the composites’ characterization on mechanical strengths like structural and
tensile strength were collected via FTIR, TGA, and crystallinity test, and DMTA studies,
respectively. The results displayed the effect of increased coir fiber addition, from 0 wt.%
to 30 wt.%, to the starch. For instance, the FTIR analysis revealed that there was slight
decomposition of components in the TPS matrix during the thermal molding process, as the
presence of carbonyl compounds had been detected by a distinct signal at 1715 cm−1. Nev-
ertheless, from the crystallinity test of XRD, the increasing amount of fiber content within
the TPS matrix contributed to relatively improved composite crystallinity values, from 39%
to 62%. Improvement in thermal stability had been exhibited by the composite films as
the degradation temperature was reduced by the higher coir fiber contents, which led to
increasing fiber incorporation within the film. Moreover, the thermo-mechanical studies
had shown the improvement of tensile strength and storage modulus, from 2027 MPa to
3215 MPa, as well as higher glass transition temperature. Thus, it proved lower damping
within the composite structure.

As noted by Vallejos et al. [147], bagasse fiber-reinforced thermoplastic cassava starch
exhibited higher tensile strength as well as thermal stability. The author had worked on
the effect of bagasse fiber reinforcement with cassava and corn starch in order to enhance
the biocomposites’ mechanical strength. The fiber was extracted from bagasse via ethanol-
water fractionation; 30 wt.% of glycerin was used as a plasticizer in the study. The varied
amounts of bagasse fiber, 0, 5, 10, and 15 wt.%, were introduced to the TPS, which were then
mixed in a rheometer at constant temperature of 150 ◦C. Table 12 displays the dynamic-
mechanical properties of cassava and corn thermoplastic starch and their composites.
Under the temperature of 155 ◦C, the mixtures had been pressed using a hot plate press
method. Mechanical, structural, crystallinity, and moisture absorption properties of the
biocomposites were tested. The results have shown that the higher fiber loading enhanced
the tensile strength of the TPS. However, the addition of more than 10 wt.% bagasse
fiber did not affect its mechanical strength, which owed to the agglomeration of fibers
in the matrix. Furthermore, increasing tensile strength had been indicated for 10 wt.%
fiber loading, being 44% and 47% higher than that of the neat corn and cassava starches,
respectively, while the addition of 15 wt.% bagasse fiber had enhanced more than fourfold
the starch’s elastic modulus.
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Table 11. Reported work on cassava fiber-reinforced polymer composites.

Fiber Polymer Matrix Reference

Cassava skin Polyvinyl alcohol (PVA) [146]

Cassava bagasse

Polyvinyl-alcohol (PVA) incorporated
with clove essential oil (CEO) or
oregano essential oils (OEO)
and cassava

[147]

Cassava stillage residue (CSR) Poly(vinyl chloride) (PVC) [160]

Cassava pulp Polylactic acid and
thermoplastic starch

Cassava skin Polyvinyl alcohol (PVA) [146]

Cassava stillage residue (CSR) Poly(vinyl chloride) (PVC) [160]

Cassava and ahipa peels and
bagasse Corn starch [236]

Cassava nanofibers Poly(lactic acid) [237]

Cassava bagasse Cassava starch [147]

Cellulose cassava bagasse
nanofibrils (CBN) Cassava starch [152]

Cassava stillage residue (CSR)

Cassava flour (CF)/wheat flour (WF) [158,159]

Poly(vinyl chloride) (PVC) [160]

Final egg albumen, cassava starch,
sunflower oil [161]

Cassava peel/cassava bagasse Cassava Starch [156]

The remaining fibrous residue of
cassava starch extraction Cassava Starch [162]

Cassava nanofiber Cassava starch [143]

Cassava/sugar palm fiber Cassava starch [71]

Cassava bagasse
cellulose nanofibrils Cassava starch [163]

Cassava bagasse
lignocellulose nanofibers
(LCNF)/nanoclay (Nclay)

Cassava starch [143]

Cassava bagasse/kraft paper Cassava starch [149]

Cassava bagasse Cassava starch [31]

Cassava bagasse (CB) Cassava starch [178]

Cassava peel (CP) Cassava starch [178]

Cassava peel Cassava starch [180]

Cassava roots bagasse Cassava starch [187]

Cassava nanofibril Cassava starch [138]

Cassava bagasse Cassava starch [209]

Cassava cellulose nanocrystals Cassava starch [211]

Wongsasulak et al. [160] studied the characterization of egg-albumen-cassava starch
biocomposites with sunflower oil droplets. The effect of moisture content on the structural
and thermo-mechanical properties of the composites was analyzed using SEM, differential
scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). Cold gelatin was
utilized for the biocomposites’ preparation, and they were left in an incubator with constant
83.5% relative humidity and temperature of 25 ◦C for a whole week. Next, the biocompos-
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ites were stored at a different relative humidity (with moisture contents of 4, 7, 11, 17, and
46%) at ambient temperature. The results from SEM structural characterizations showed
that the composite matrix microstructure was modified with different heating temperatures
and also moisture contents. In addition, DSC thermograms revealed two distinguishable
peaks at temperature ranges from 49 ◦C to 53 ◦C and from 80 ◦C to 132 ◦C, which were
contributed by the phase transitions and protein denaturation, respectively. Thus, from the
achieved results, the author claimed that moisture content affected the thermo-mechanical
properties and microstructure characteristics of the sunflower oil modified egg-albumen-
cassava starch biocomposite films. In addition, Nguyen et al. [237] explained the effect of
the addition of compatibilizer, glycidyl methacrylate (GMA)-modified PLA (PLA-g-GMA),
to PLA/CNF biocomposites. Initially, the CNFs were harvested from cassava pulp and
mixed with PLA via the melt mixing method. Through the mechanical test, the results
displayed the enhancement in impact strength, tensile modulus, and elongation at break for
the PLA/PLA-g-GMA/CNF composite films with an increasing amount of fiber loading.
Here, PLA-g-GMA acted as the plasticizer of the composite. The distinct values of the
mechanical properties were obtained from biocomposites with 0.1 wt.% CNF and PLA-
g-GMA. The 0.1 wt.% CNF/PLA-g-GMA/PLA exhibited higher tensile modulus, impact
strength, and elongation at break values than the pristine PLA, with 59 MPa, 22 kJ/m3,
and 10%, respectively, compared to 56 MPa, 16 kJ/m3, and 8%, respectively. Hence, the
mechanical strength improvement of the composites was due to their higher crystallization
contributed by the plasticizer.

Table 12. Dynamic-mechanical properties of cassava and corn thermoplastic starch and their compos-
ites [147].

TPS Bagasse Fiber (wt.%) E(30 ◦C) (MPa)

Cassava

0 21.5

5 39.6

10 95.9

15 128.5

Corn

0 18.2

5 59.1

10 73.0

15 97.4

In another work by Huang et al. [138], the modified CNF played the reinforcer and
compatibilizer roles for thermoplastic cassava starch. Prior to mixing, malic acid and
KH-550 silane coupling agent were introduced to the CNF, which then altered the hydroxyl
groups. The modified CNF addition was used in order to enhance the mechanical, water
barrier, and hydrophobic properties of the CNF/TPS biocomposite films. The author
claimed that the inclusion of malic acid and silane KH-550 had led to higher thermal stability
and dispersibility of the CNFs. Hence, the reinforcement of modified CNFs enhanced the
mechanical strength, hydrophobicity, and water vapor permeability (WVP) of the modified
CNF/TPS composite films (25 MPa, 6% of water absorption, and 2.5 g.cm/(cm2.s.Pa) WVP)
compared to the neat CNF/TPS (7 MPa, 7% of water absorption, and 2.9 g.cm/(cm2.s.Pa) of
WVP), by 1034%, 129.4%, and 35.95%, respectively. Furthermore, Versino and García [187]
determined the effect of cassava bagasse particle size on the mechanical and structural
properties of cassava bagasse-reinforced cassava starch composite film. The films were
fabricated via casting molding the gelatinized starch suspensions with 1.5% w/w bagasse,
while glycerol was used as the composite’s plasticizer. Different fibrous residue fractions,
with particle sizes ranging from 500 to 250 µm, 250 to 53 µm, and below 53 µm, were
introduced and compared to 500 µm-sized bagasse particles-reinforced composite film. In
addition, cassava bagasse’s chemical composition and distribution of particle size aided
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in explaining the changes in morphology, barrier properties, and mechanical strength of
the starch-based films. SEM images displayed that the filler was structurally integrated
into the matrix. Thus, the tensile mechanical resistance and elastic modulus of the bagasse-
reinforced cassava starch, 14.7 MPa and 1247 MPa, respectively, were higher compared to
the neat film with 1.3 MPa and 505 MPa, respectively. The fabricated biocomposite films
are suitable for flexible packaging applications with a slow degradation process.

8. Potential Applications

Natural fiber-reinforced polymer composites, or biocomposites, have been a center of
interest for the research community for the past few decades [27]. These biocomposites are
proposed to replace synthetic-based fibers because of their excellent attributes, including
low cost, light weight, biodegradability, high specific properties, less abrasiveness to
equipment, being environmentally-friendly, and their sustainability as well as renewability,
hence producing a positive environmental impact [238–243]. Amongst the natural fibers
produced, cassava is one of the most important natural fibers, and has been generally
recognized as a possible reinforcement in polymer composites by the composite industry.
Compared with synthetic fibers, cassava fiber has lower thermal resistance, similar to other
natural fibers.

Therefore, according to the benefit of cassava fiber-reinforced polymer composites,
as mentioned, cassava fiber-reinforced polymer composites have huge potential to be
used in a wide range of various applications. Figure 9 displays the potential options for
cassava fiber-reinforced polymer composite uses in various sectors, including construction
and housing, safety, household items, textiles, pulp and paper, decoration, electronics,
packaging, wood panels, as well as automotive applications.
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8.1. Automotive

Raw materials such as cellulose fibers (cassava, abaca, jute, hemp, sisal, kenaf, cot-
ton), softwood, or hardwood fibers, are widely used in the automotive industry. Natural
fibers offer a fascinating range of applications due to their promising properties. A very
large amount of research has been performed to improve their mechanical, physical, ther-
mal, and water barrier properties for boosting their applications [27,244]. Some of their
drawbacks, including low mechanical strength due to incompatibility between the fiber
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with the matrix, as well as the hydrophilic nature of natural fibers, can be improved via
specific pre-treatment, specifically chemical treatment such as alkali treatment, bleaching,
acetylation, benzoylation, and others, which have been comprehensively discussed in
other studies [30,50–52,245]. The new products made from composite materials are usually
manufactured via extrusion or injection molding techniques. The automotive industry
is interested in new materials to fulfill the new regulations that cars should be partially
decomposable or recyclable [246].

Advanced technology using natural fiber-reinforced polymer composites in inte-
rior parts of automobiles is being manufactured. Most fabrication works are focused
on polypropylene (PP)-based composites manufactured by commingled mats of PP and
natural fibers, by thermoforming extruded sheets, or by compression molding. Natural
fibers, except at extremely low temperatures, do not provide as much impact resistance
as glass fiber. This is due to the properties of natural fibers themselves, which are con-
fined to operating temperatures above 180 ◦C. Besides that, some natural fibers may emit
unpleasant odors if care is not taken when the natural fibers are handled.

Natural fibers have lower specific gravities of 1.25–1.50 g/cm3 compared to glass fiber,
which is 2.6 g/cm3. That helps give natural fibers a higher strength-to-weight ratio for
reinforcing plastic polymers. In polyurethane composites, natural fibers are often used.
The first commercial example is the inner-door panel for the 1999 Mercedes-Benz S-Class,
assembled in Germany with a 35% semi-rigid Baypreg F PUR elastomer and a 65% flax,
hemp, and sisal combination. The 2-mm door panel was created by Nafpur Tec process
from Bayer’s Hennecke Machinery Unit, in which a robot put the natural fiber-based mat
into an opened mold and a second robot poured PUR on it prior to closing. The procedure
also was utilized to manufacture a European 2000-concept car sunroof cover.

Currently, major car manufacturers are producing “vegan cars” with a wide range
of creative, premium alternatives to leather [247]. Vegan leather is usually made from
polyurethane. It can also be fabricated from renewable and sustainable materials such
as cassava, apple peels, pineapple leaves, or other agro-waste, as well as recycled plastic.
According to Hanson [247], the Model 3 Tesla is completely vegan. In addition, Audi also
includes this material in their manufacturing, even though other luxury car manufacturers
like Mercedes and BMW offer exclusive products: Artico and Sensatec, respectively. All
manufacturers are increasingly trying to attract eco-conscious drivers, such as with Lexus’
NuLuxe, Land Rover’s SueDecloth, and Softex from Toyota. Most of them are mindful of
the interconnected attraction of vegan and eco-conscious drivers, and they prefer to include
these materials in their new electric designs. With a carbon-fiber frame and natural fibers
in the interior, the BMW i3 is the only existing such electric vehicle by BMW.

8.2. Packaging

Plastic bags, commonly made of petroleum-based materials, are lightweight, versatile,
reliable, and inexpensive, and they have become an important asset of our everyday
life. This robust polymer has been used in every facet of our lives today; it is used to
manufacture goods used every day including food packets, handsets, speakers, debit cards,
vehicles, and even toothbrushes. These synthetic chemicals not only harm human health
but also wreck the environment. Annually, about 8.3 billion metric tons of plastics are
used for packaging-related applications such as shopping bags, electronic packaging, food
packaging, waste bags, agricultural mulch films, etc. Of the annually produced plastics,
those which end up becoming plastic waste amount to 6.3 billion metric tons. Merely 9%
of it is recycled. The largest portion of them, 79%, accumulate in soils in the existing litter
environment. Plus, most of the plastic waste can be found in the sea, which is the final sink.
If patterns continue, 12 billion metric tons of plastic will be stored in the landfills by 2050.
This would be 35,000 times more than the Empire State Building [248].

In order to mitigate the global crisis of non-biodegradable and non-compostable
plastic bags, cassava biopolymer has been introduced. These bags are made from starch
harvested from cassava plants, which are biodegradable and environmentally friendly. Its
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nature plays an important role in biodiversity conservation, saving aquatic species and
the avoidance of ecological disasters. The plastic bags made from cassava do not harm
the environment. These environmentally friendly bags consume less time to compost
compared to petroleum-based plastic bags. In addition, the cassava bags are water soluble
and do not contaminate the environment under high temperatures.

Currently, much research on utilizing cassava starch and fibers for packaging ap-
plications is being performed. For environmental waste management, the utilization of
cassava starch films as a potential alternative packaging is essential in order to replace
petroleum-based plastics. Recently, authors [31,71,178,180,249] have studied cassava-based
films that were fabricated via solution casting methods, for food packaging.

The effects on physical, thermal, mechanical, and structural properties of cassava
starch-based films was examined for various plasticizer types including fructose, urea,
tri-ethylene glycol, and triethanolamine, and for different concentrations of dry starch,
0.30, 0.45, and 0.60 g/g [249]. Regardless of the plasticizer type, the moisture content,
water solubility, and water absorption of the films improved with the plasticizer loading.
Other than that, regardless of the plasticizer type, the glass transition temperatures of
the films also reduced with higher loading of plasticizer. Reduced tensile strength yet
greater elongation at break of the film samples was recorded, which is attributed to the
increasing plasticizer concentration. The mechanical analysis displayed that the highest
tensile strength (4.7 MPa) and Young’s modulus (69 MPa) had been recorded from the film
plasticized with 30% fructose. The findings revealed that 30% fructose-reinforced SPS films
showed improved mechanical properties and could improve food packaging. Furthermore,
many attempts are being made to develop the functional properties of cassava-based films
as an important material for food packaging.

There are three biodegradable cassava bag manufacturing steps: (1) granules pro-
duction, where the starch extracted from cassava flour is blended with such plasticizing
agents as glycerol and sorbitol. Next, an antimicrobial agent is applied to the starch, such as
essential oils or silver nanoparticles, to counteract the assault from bacteria [250,251]. This
starch blend is inserted in a granulator chamber, which results in the processing of granules
at a given temperature and pressure. (2) Film production, where granules obtained in the
previous step are placed into an extruder machine and the thickness of the films is adjusted
based on the manufacturer’s requirements. This starch-based film is expanded by rollers.
The film will then be refreshed and cooled, and rolled for use in the manufacture of cassava
bags. The final step is (3) bag processing, which includes the preparation, with the aid of
the film generated in the second step, of cassava-derived biopolymer bags. Various kinds of
cassava bags, such as the T-shirt bag (Figure 10a), grip-hole bag (Figure 10b), and garbage
bag (Figure 10c), are produced in this final step.
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8.3. Food Coating

The edible coating is a fine film of edible substance that can be consumed as part of the
food product. Edible coatings are good shields against harmful biological, physical, and
chemical modifications to protect the product. They help it avoid moisture depletion and
selectively permit respiratory gases such as CO2 or O2. Because of its strong mechanical
properties, starch is one of the edible materials used as a film cover; it is isotropic, odorless,
tasteless, colorless, and flexible. Bee wax was the very first comestible layer in the 12th
century for oranges and lemons. Fats have been used in England to extend the shelf life of
meat products, known as larding. These coatings were already used in the 20th century
to avoid water loss and add a gloss layer to fruits and vegetables. Some of the essential
properties of edible coatings are (I) they do not ferment, coagulate, differentiate, develop
an off-flavor, or spoil during storage; (II) they spread evenly, dry fast, and are easy to
remove from the machinery; (III) they should not crack, corrode, or peel during storage
and processing; (IV) they should not be kept in a package and react to food; (V) they allow
adequate gas exchange to avoid any occurrence of the flavors or spoil during storage; and
(VI) the coating ought to be a moisture barrier in order to avoid soggyness [252,253]. There
are numerous advantages of using edible coatings, such as they improve appearance and
structural properties, as well as reducing water loss, gas diffusion, and mold growth [254].
Cassava starch suspension was prepared with constant stirring at 60 ºC prior to a cooling
process at ambient temperature. After that, the food to be coated was dipped in the solution
and allowed to dry at room temperature [255]. The concept behind this technology is
to create an altered atmosphere around the fruit surface that could maintain features of
fruit quality. The ability of water-soluble polysaccharides in coated fruit and vegetables to
decrease O2 and increase CO2 in the internal environment thus decreases the respiration
rates. In a similar way, with controlled and customized atmosphere storage, the shelf-life
of fresh items can be improved. There are several coating edible material methods such
as dipping, dripping, fluidized bed coating, panning, and spraying. Gracia et al. [256]
conducted a study on the effect of cassava starch coatings, with or without potassium
sorbate, on the quality of processed strawberries. The findings revealed, with or without
potassium sorbate, that the water vapor resistance test of cassava starch edible coatings had
not affected the superficial color of the strawberries and demonstrated strong acceptability.
In addition, the coatings also contributed to the decreased of rate of respiration and
improved the susceptibility of samples to water vapor. Furthermore, Castricini et al.
conducted investigations on the impact of cassava starch and carboxymethyl starch coating
on the sensory properties of papaya when processed [256]. The result shows the edible
coating of cassava rapidly increasing its shelf life by reducing the rate of respiration. It also
decreases the loss of weight of food by eliminating juice leakage, and increases the quality
of food by applying gloss to the food [257–262].

8.4. Renewable Energy (Bioethanol)

The rise in energy use and climate change have led to huge strides in the world‘s search
for renewable energy sources. Moreover, bioethanol is a promising renewable fuel and is
already mixed with gasoline in many countries. In 2017, it was estimated that bio-ethanol
global production was 27.05 billion gallons, with the United States having contributed
about 58%, which was 15.8 billion gallons [263]. The world’s economy is significantly
dependent on fossil energy resources, where combustion contributes to approximately 98%
of carbon emissions [264,265]. Bioethanol fuel is produced mainly through the fermentation
of biomass sugar components, including cassava starch, cane juice, and other carbon
sources [266,267]. One of the advantages of cassava is that it can be converted into value-
added components, such as methane (biogas) and ethanol, which in most countries will
be more than enough for people’s needs [268]. Next, cassava has the ability to grow
on degraded lands and marginal soils and has high drought-tolerance, and it has the
third-highest carbohydrate yield per one hectare after sugar beet and sugarcane [269].
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Cassava has been widely used to produce bioethanol using cassava peel waste as
feedstock for microbiological and enzymatic hydrolysis. This waste is rich in cellulose,
which is about 43.626% [270]. Cassava starch-based bioethanol produced from fermenta-
tion, enzymatic hydrolysis, and ex situ nanofiltration have been studied. Cassava starch
was liquefied and converted into sugars by gluco-amylase and alpha-amylase, respectively,
prior to fermentation for bioethanol production. Response surface methodology (RSM)
methodology was used to optimize the fluidization and sugar conditions on sugar con-
centrations [266]. Bioethanol is also produced from hybrid cassava peel and pulp via acid
and microbial hydrolysis. The results were obtained from converting cassava peels to
easily detect a more useful way to manage cassava waste in the environment [264]. The
results were investigated and showed that cassava peels’ starch could be readily degraded,
and bioethanol can be produced by Aspergillus Niger (AN). The bioethanol produced
was similar to ethanol [271]. It was also done to produce bioethanol using cassava dough
liquid waste as the enzyme stimulant in Gari processing. In West Africa, Gari is a delicate,
nourishing powder made from the root of the cassava tuber, which in the manufacturing
process is converted into edible dry granules [272]. An integrated system of continuous
bioethanol production resulted in fuel-grade bioethanol with purity up to 99.8% (w/w), a
technically and economically feasible venture to invest in [273]. Another study revealed
that cassava and sweet potato peels were used as feedstock for bioethanol production
with maximum yield via Pleurotus ostreatus and Gloeophyllum sepiarium hydrolysis and
Saccharomyces cerevisiae and Zymomonas mobilis fermentation [274]. Highly concentrated
bioethanol was produced by repeated hydrolysis and intermittent yeast inoculation from
cassava stem. High-concentration bioethanol production (about 40 g/L) approaches were
explored by investigating the effects of intermittent inoculation yeast on ethanol fermenta-
tion, hydrolysate concentration, and acid hydrolysis conditions [275]. Many studies have
shown that bioethanol can be extracted from the cassava plant parts, which are cassava
starch, roots, peels, pulp, dough, and stalks. The ease of accessibility to these sources
is due to the fact that cassava is able to be grown on marginal land or degraded grass-
lands [275], and to its low price, and it is considered one of the best sources for obtaining
bioethanol [276,277].

9. Conclusions

Sustainable and biodegradable materials are the hope for the next generation. The
devastating environmental problems caused by plastics could be reduced significantly by
widely utilizing the reinforcement of biopolymers and natural fibers in composite mate-
rials. Development of these renewable composites will improve the atmosphere, reduce
the recycling of plastic waste, and decrease petroleum-based materials’ carbon footprint.
As potential substitutions for non-biodegradable plastic products, more and more bio-
resources are being used for a more sustainable future. Besides that, abundant supply
and low-cost features of these green materials have earned them much publicity in recent
decades. Nevertheless, the disadvantages related to the use of natural fiber-reinforced
biopolymers in composites need to be resolved by further research work. Cassava fiber has
excellent tensile strength combined with superior flexural strength, as verified by a number
of mechanical tests and research work that enable it to be used in several applications,
such as automotive components, auto-industrial, light weight construction, and packaging.
Various tree components have been widely used for the production of various local items.
Cassava is indeed a promising candidate for strengthening biodegradable polymer com-
posites. Use of cassava in green composites will generally help: (1) minimize the negative
environmental effect of synthetic polymers and fibers; (2) decrease the demand for reliance
on petroleum products; and (3) grow cassava as a sustainable industrial crop. This will
boost rural people’s socio-economic empowerment by raising tax revenues and generating
jobs. However, the huge opportunity to use cassava polymer and fiber for various possible
industrial applications in the composite industry has not been exploited widely. Nonethe-
less, in terms of research and testing, more advanced characterizations of cassava fibers and
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their biocomposites should be carried out. Determining the barrier properties, feasibility,
and moisture absorption of cassava biocomposites are essential for successful packaging
applications. This is a new area of research and innovation that addresses certain issues that
obstruct future industrial applications of cassava fibers, biopolymers, and its composites.
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