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Abstract: In this paper, the dynamic response of continually density-graded aluminum foam sand-
wich tubes under internal explosion load was studied. A 3D mesoscopic finite-element model of
continually density-graded aluminum foam sandwich tubes was established by the 3D-Voronoi
technology. The finite-element results were compared with the existing experimental results, and
the rationality of the model was verified. The influences of the core density distribution, the core
density gradient, and the core thickness on the blast resistance of the sandwich tubes were analyzed.
The results showed that the blast resistance of the sandwich tube with the negative-gradient core
is better than that of the sandwich tube with the uniform core. While the blast resistance of the
sandwich tube with the positive-gradient core or the middle-hard-gradient core is worse than that of
the sandwich tube with the uniform core. For the sandwich tube with the negative-gradient core, the
core density gradient increased, and the blast resistance decreased. Increasing the thickness of the
core can effectively decrease the deformation of the outer tube of the sandwich tube, but the specific
energy absorption of both the whole sandwich tube and its core also decreases.

Keywords: blast resistance; density-graded foam; sandwich tubes; Voronoi technology; dynamic
simulations

1. Introduction

Aluminum foam material has a long and almost constant plateau stress during com-
pression. It can absorb a large amount of energy before being crushed to a stable stage or
before failure, with excellent energy absorption and impact resistance, and has been widely
used in explosion-proof and impact protection fields [1–3]. Compared with the single-foam
material, the foam sandwich structure can show better anti-explosion performance under
the explosion load [4–9].

A cylindrical shell is a common explosion-proof structure, widely used in protec-
tion against explosions. When the explosion load condition is fixed, the thickness of the
sandwich structure panel, the relative density and thickness of the core, and the material
parameters are the main parameters that affect its resistance to an explosion [10–12]. Kara-
giozova et al. [13] pointed out that when a certain quality is maintained, the anti-explosion
performance of the sandwich tube with a relatively low foam core layer is better than that
of the single-layer round tube and the deformation of the outer tube of the foam core sand-
wich tube with a relatively high density is larger than that of the single-layer round tube.
Lu et al. [14] studied the impact resistance of aluminum-foam-filled pipes and traditional
empty pipes through drop-weight impact experiments and numerical simulations. The
results showed that the aluminum-foam-filled tube can avoid the sharp increase in impact
force after compaction and exhibit better energy absorption characteristics.
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The core of the sandwich structure can be designed well, introducing a gradient in
the core further improves the mechanical properties of the sandwich structure, and the
gradient core can exert the energy-absorbing properties of the core material better than the
uniform core [15–19]. Lin et al. [20] studied the anti-explosion performance of different
gradient cores through numerical simulation. The medium- and high-density gradient
foam sandwich panels displayed the best blast resistance. Li et al. [21] conducted internal
explosion load experiments and numerical simulations on foamed aluminum sandwich
tubes. The results showed that the characteristic size of core cells has little effect on its
energy absorption. For a uniform core, the energy absorption per unit mass decreases as
the relative density increases. Zhang et al. [22] predicted the dynamic response of fully
clamped double-layer rectangular foam sandwich panels and single-layer rectangular foam
sandwich panels under explosion loads through analytical and numerical simulations and
proposed the model solution for the large deflection of the double-layer sandwich panel.
They found that when the quality of the material is the same, the impact resistance of
the double-layer sandwich panel is better than that of the single-layer sandwich panel.
Lin et al. [23] conducted low-speed impact experiments on gradient sandwich beams and
carried out numerical simulations. The results showed that both the maximum contact
force and the maximum deflection of the sandwich beam increase with an increase in
the impact energy and the energy absorption rate of the core decreases with increasing
impact energy.

Most commonly used finite-element models of foam materials, usually based on ideal-
ized solid element modeling, cannot describe the dynamic changes in the microstructure of
porous materials [1,24]. Liang et al. [25,26] studied the dynamic response of and energy ab-
sorption by double-layer aluminum foam sandwich panels under explosion loads through
experiments and 2D-Voronoi numerical simulations. The deformation analysis model of
the positive- and negative-gradient sandwich cylinder under the action of an internal ex-
plosion load was established. The results showed that the positive-gradient foam specimen
absorbs the maximum energy and transmits the most impulse to the back plate and the
negative-gradient foam sample absorbs the least energy and transmits the least impulse
to the back plate. Zhang et al. [27] applied 3D-Voronoi technology to generate closed-cell
aluminum foam models. The compression characteristics and deformation mechanism
of gradient aluminum foam under different impact velocities were studied by numerical
simulation. On the basis of the 2D-Voronoi technology to build a hierarchical gradient
aluminum foam sandwich tube and carry out numerical simulation, Liang et al. [28,29]
conducted experimental studies on foamed aluminum sandwich tubes under internal
explosion loads, and the results showed that the maximum deformation of the outer tube
is related to the relative density and gradient of the foam core and the inner tube wall
thickness has a great influence on the energy absorption of the sandwich tube structure.

The objective of this work was to study the dynamic response of sandwich tubes with
continuous-density-gradient aluminum foam cores subjected to an explosion load. The
paper is organized as follows. Section 2 presents the 3D-Voronoi modeling methods for
the sandwich tube with a continuous-density-gradient aluminum foam core. In Section 3,
the influence of the distribution mode of the core gradient, the relative density of the core,
and the core thickness on the dynamic response of the sandwich tube under an internal
explosion load are presented. Section 4 presents concluding remarks.

2. Finite-Element Simulation
2.1. Sandwich Tube Finite-Element Model

The aluminum foam sandwich tube structure consists of three parts: the aluminum
foam core, the inner tube, and the outer tube. Figure 1 is a schematic diagram of the
aluminum foam sandwich tube. The diameter of the outer tube of the structure is d0 and
the thickness is t0. The diameter of the inner tube is di, and the thickness is ti. The aluminum
foam is filled between the inner and outer tubes. The aluminum foam core is of two types,
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uniform aluminum foam core and gradient aluminum foam core, in which the density of
gradient aluminum foam core changes continuously along the thickness direction.
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Figure 1. Schematic diagram of an aluminum foam sandwich tube. (a) Vertical view and (b) side view.

2.1.1. Cylindrical 3D-Voronoi Foam Model

The 3D-Voronoi model is capable of describing the complex mesostructure of multicel-
lular metallic materials. Therefore, it is widely used in the analysis of mechanical properties
of cellular materials. The Voronoi structure is a Thiessen polygonal structure. In the plane,
nucleation points are randomly generated and the vertical bisectors connecting adjacent
points form a 2D-Voronoi structure. In 3D space, nucleation points are randomly generated
and vertical bisectors connecting adjacent points form a 3D-Voronoi structure. To generate
the 3D-Voronoi model, N nucleation points are randomly distributed in a space of volume
V. The distance between adjacent nucleation points at different positions must satisfy:

δij ≥ δmin
ij = (1− k)δ0

ij (1)

where δmin
ij is the minimum distance between any two adjacent nucleation points and k

is the irregularity defined by Zheng et al. [30] and k = 0.2. In this way, a set of gradient
multicellular models with the same average density and a density distribution satisfying a
linear relationship can be constructed. The relative density distribution of this model can
be expressed as:

ρ(x) = ρ0[1 + γ(z/H − 1/2)] (2)

The z direction is the direction of the density gradient, ρ0 is the average relative density
of the model, γ is the core density gradient of the model, and H is the length of the model
density gradient direction. Figure 2 presents a schematic diagram of the nucleation point
and its specific structural features.

Accordingly, two types of polar coordinate 3D-Voronoi foam models are constructed
and the cartesian coordinates converted as follows:

x = r× cosθ
y = r× sinθ

(3)

where r and θ are the radial and angular coordinates, respectively, in the polar coordinates
of the nucleation point. Within a certain ring volume range, N nucleation points are
randomly distributed and the distance between adjacent nucleation points at different
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positions satisfies δij ≥ δmin
ij = (1− k)δ0

ij. The relative density distribution of the first polar
coordinate 3D-Voronoi model can be expressed as follows:

ρ(r) = ρ0

[
1 + γ

(
r− r1

R− r1
− 1

2

)]
(4)
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Figure 2. 3D-Voronoi modeling process. (a) Front view of nucleation point, (b) oblique view of
nucleation point, and (c) foam model.

In the formula, r is the direction of the density gradient, that is, the radial direction
in polar coordinates; R is the outer diameter of the ring; and r1 is the inner diameter of
the ring. R− r1 is the length of the model density gradient direction. According to the
characteristics of the continuous gradient 3D-Voronoi model in the first polar coordinate,
three different finite-element models were established: the positive-gradient core (P-type)
sandwich tube, uniform core (U-type) sandwich tube and negative-gradient core (N-type)
sandwich tube. The P-type sandwich tube refers to a tube with low density near the inner
tube and high density far from the inner tube, and the N-type sandwich tube is the opposite.
The specific structural features are shown in Figure 3.
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Figure 3. The first polar coordinate 3D-Voronoi modeling process. (a) Schematic diagram of P-type
nucleation point, (b) P-type foam model, (c) schematic diagram of N-type nucleation point, and
(d) N-type foam model.

The relative density distribution of the second cylindrical 3D-Voronoi model can be
expressed as

ρ(r) = ρ0

[
1 + γ

(
1
2
−
∣∣∣∣1− 2(r− r1)

R− r1

∣∣∣∣)] (5)

The second type of continuous gradient 3D-Voronoi model in polar coordinates es-
tablishes the middle-hard-gradient core (MH-type) sandwich tube and the middle-soft-
gradient core (MS-type) sandwich tube according to its density characteristics. The MH-
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type sandwich tube has high density in the middle and low density on both sides, and
the MS-type sandwich tube is the opposite. The specific structural features are shown
in Figure 4.
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Figure 5 presents the density characteristics of five continuous gradient 3D-Voronoi
models in polar coordinates when the gradient γ = ±1.

Materials 2022, 15, x FOR PEER REVIEW 5 of 24 
 

 

The relative density distribution of the second cylindrical 3D-Voronoi model can be 

expressed as 

𝜌(𝑟) = 𝜌0 [1 + 𝛾 (
1

2
− |1 −

2(𝑟 − 𝑟1)

𝑅 − 𝑟1
|)] (5) 

The second type of continuous gradient 3D-Voronoi model in polar coordinates es-

tablishes the middle-hard-gradient core (MH-type) sandwich tube and the mid-

dle-soft-gradient core (MS-type) sandwich tube according to its density characteristics. The 

MH-type sandwich tube has high density in the middle and low density on both sides, and 

the MS-type sandwich tube is the opposite. The specific structural features are shown in 

Figure 4. 

    

(a) (b) (c) (d) 

Figure 4. The second polar coordinate 3D-Voronoi modeling process. (a) Schematic diagram of 

MH-type nucleation point, (b) MH-type foam model, (c) schematic diagram of MS-type nucleation 

point, and (d) MS-type foam model. 

Figure 5 presents the density characteristics of five continuous gradient 3D-Voronoi 

models in polar coordinates when the gradient γ = ±1. 

 

Figure 5. Density features of the 3D-Voronoi model. 

2.1.2. Meso Parameter Statistics 

The number of cells in the gradient honeycomb can be estimated by the geometric 

characteristics. Within a finite length ∆𝑟 in the gradient direction of the polar gradient 

50 55 60 65 70 75 80
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

re
la

ti
v
e 

d
en

si
ty

Radius length/mm

 U-0-C30    P-1.0-C30 

 N-1.0-C30     MS-1.0-C30

  MH-1.0-C30

Figure 5. Density features of the 3D-Voronoi model.

2.1.2. Meso Parameter Statistics

The number of cells in the gradient honeycomb can be estimated by the geometric
characteristics. Within a finite length ∆r in the gradient direction of the polar gradient
honeycomb, the total length of the cell wall can be approximated as ρ0ωr∆r/h0, where h0
is the thickness of the cell wall and ω is the radian in the polar coordinate system. The
number of cells in this finite region can be estimated as [30]

∆n =
ρ(r)ωrH∆r/h0

6
(

1 + 2
√

3
)

l2/2
(6)
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From the geometric characteristics of the honeycomb

l =
3
(

1 + 2
√

3
)

h0

8
√

2ρ
(7)

where l is the average cell wall length in this finite region. Therefore, the total number of
gradient honeycomb cells of P-γ type and N-γ type in polar coordinates can be given by
the following formula:

N =
128ωHρ0

3(
3
(

1 + 2
√

3
)

h0

)3

∫ R

0
[1 + γ

(
r− r1

R− r1
− 1

2

)
]
3
r dr (8)

Similarly, the total number of gradient honeycomb cells of MH-T type and MS-T type
in polar coordinates can be given by the formula:

N =
128ωHρ0

3(
3
(

1 + 2
√

3
)

h0

)3

∫ R

0
[1 + γ

(
1
2
−
∣∣∣∣1− 2(r− r1)

R− r1

∣∣∣∣)]3r dr (9)

2.1.3. Finite-Element Model of the Sandwich Tube

The finite-element software LS-DYNA was used to numerically simulate the response
of the aluminum foam sandwich tube structure under the action of an internal explosion
load. The air, explosives, and the inner and outer tubes used 8-node Solid164 solid elements,
and the aluminum foam core adopted S3R and S4R shell elements. Figure 6 displays the
established finite-element model. The contact between the inner tube, the outer tube, and
the foamed aluminum core was AUTOMATIC_SURFACE_TO_SURFACE, and the contact
of the aluminum foam core was AUTOMATIC_SINGLE_SURFACE. The friction coefficient
of all contacts was set as 0.02 [29]. The explosive material was filled into the air by the initial
volume fraction method, and the fluid–structure coupling algorithm was used between
the aluminum foam sandwich tube and the air and the explosive. The arbitrary Lagrange
Eulerian (ALE) method was used here. The method was explicit calculation. Because of the
symmetry of the aluminum foam sandwich tube and the explosion load, an eighth model
was established to reduce the calculation amount and symmetrical boundary conditions
are imposed on the three sections of the aluminum foam sandwich tube. For the air model
as a coupled domain, symmetric boundary conditions were imposed on three symmetry
planes, and the remaining planes are defined as non-reflection boundaries to simulate the
explosion of explosives in wireless air. The aluminum foam sandwich tube was divided
into Lagrange meshes, and the air model was divided into Euler meshes. The total time
was 500 µs and the scale factor for calculating the time step was selected as 0.67.

2.2. Material Properties

The material of the inner and outer circular tubes of the sandwich tube is made out
of 45 steel. Considering the influence of the strain rate effect, the constitutive model adopted
the Johnson–Cook model. Table 1 shows the material parameters of the Johnson–Cook
model [28]. Because the aluminum foam is not sensitive to the strain rate effect, a simple
model can be used; the bilinear elastic–plastic model was adopted as the matrix material:
the density is 2730 kg/m3, the Young’s modulus is 70 GPa, Poisson’s ratio is 0.3, and the
yield strength is 190 MPa [31–34]. The density of air is 1.293 kg/m3, the MAT_NULL
constitutive model was adopted, the pressure cutoff of air is −1.000 × 10−12 [28], the state
equation matching the constitutive model adopted EOS_LINEAR_POLYNOMIAL, and the
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pressure P in the equation of state is defined as a function of the internal energy density e
and the relative volume v:

P = C0 + C1µ + C2µ2 + C3µ3 +
(
C4 + C5µ + C6µ2)e

µ = 1
v − 1

(10)
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Table 1. Material parameters of the Johnson–Cook model [28].

Material Density/kg/m3 Young’s
Modulus/GPa A/MPa B/MPa n c m

Steel 7850 210 507 320 0.28 0.064 1.06

In the formula, C0, C1, C2, C3, C4, C5, and C6 are material constants (take C0 = C1 = C2
= C3 = C6 = 0 and C4 = C5 = 0.4); the initial internal energy density e0 = 2.5 × 105 J/m3; and
the initial relative volume v0 = 1.

The Johnson–Cook (J-C) model was applied to account for the strain-rate effects of the
tubes. The J-C model is given as

σ = [A + Bεn]
[
1 + c ln

( .
ε
∗)

][1− (T∗)m
]

(11)

where ε is the plastic strain of the material,
.
ε∗ is the dimensionless strain rate of the

material, T∗ is the homologous temperature defined as (T−Troom)/(Tmelt−Troom) where
Troom and Tmelt are the room and melting temperature, respectively. A is the quasi-static
yield stress of the metal, B and n are the strain hardening coefficients, c is the strain rate
hardening coefficient, and m is the thermal softening coefficient. The J-C parameters are
listed in Table 1.

The detonation process of explosives is numerically simulated by the JWL equation of
state and expressed as follows:

P = A
(

1− ω

R1V

)
e−R1V + B

(
1− ω

R2V

)
e−R2V +

ωE
V

(12)

In the formula, A, B, R1, R2, and ω are constants; E is the initial specific internal energy
of the explosive, and V is the initial relative volume of the explosive per unit volume.
Table 2 shows the material parameters of the explosive.
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Table 2. Material parameters of explosives [28].

Material Density/
kg/m3

Detonation
Velocity/m/s A/GPa B/GPa R1 R2 ω E/GJ/m3 V

JHL-3 1650 7050 611 10.7 4.4 1.2 0.35 8.9 1.0

In the simulation analysis, a sandwich tube structure with a uniform foamed aluminum
core and four continuous gradient foamed aluminum core was considered. The relative
density of the foamed aluminum core is 10%, and the wall thickness of the inner and outer
tubes is 1.5 mm. To study the influence of the core density distribution, the core density
gradient, and thickness of the foamed aluminum core on its energy absorption effect, and
the detailed parameters of the relevant samples were set as shown in Tables 3 and 4. The
length of all sandwich tube specimens is 80 mm, and the length–diameter ratio of explosives
is 1.5:1.

Table 3. Geometric parameters of aluminum foam sandwich tubes with different gradients.

Specimen
Number

Outer Tube
Diameter

d0/mm

Inner Tube
Diameter

di/mm

Outer Tube
Wall Thickness

t0/mm

Inner Tube
Wall Thickness

ti/mm

Relative
Density

ρ/%

Specimen
Quality

M/g

Core
Density

Gradient

U-γ0-C30 163 100 1.5 1.5 10 1037 0
P-γ1.0-C30 163 100 1.5 1.5 10 1037 1
N-γ1.0-C30 163 100 1.5 1.5 10 1037 1

MH-γ1.0-C30 163 100 1.5 1.5 10 1037 1
MS-γ1.0-C30 163 100 1.5 1.5 10 1037 1
P-γ0.5-C30 163 100 1.5 1.5 10 1037 0.5
N-γ0.5-C30 163 100 1.5 1.5 10 1037 0.5

MH-γ0.5-C30 163 100 1.5 1.5 10 1037 0.5
MS-γ0.5-C30 163 100 1.5 1.5 10 1037 0.5
P-γ1.5-C30 163 100 1.5 1.5 10 1037 1.5
N-γ1.5-C30 163 100 1.5 1.5 10 1037 1.5

MH-γ1.5-C30 163 100 1.5 1.5 10 1037 1.5
MS-γ1.5-C30 163 100 1.5 1.5 10 1037 1.5

Table 4. Geometric parameters of aluminum foam sandwich tubes with different thicknesses.

Specimen
Number

Outer Tube
Diameter

d0/mm

Inner Tube
Diameter

di/mm

Outer Tube
Wall Thickness

t0/mm

Inner Tube
Wall Thickness

ti/mm

Relative
Density

ρ/%

Specimen
Quality

M/g

Core
Density

Gradient

U-γ0-C35 173 100 1.5 1.5 10 1123.2 0
P-γ1.0-C35 173 100 1.5 1.5 10 1123.2 1
N-γ1.0-C35 173 100 1.5 1.5 10 1123.2 1

MH-γ1.0-C35 173 100 1.5 1.5 10 1123.2 1
MS-γ1.0-C35 173 100 1.5 1.5 10 1123.2 1

U-γ0-C25 153 100 1.5 1.5 10 924.7 0
P-γ1.0-C25 153 100 1.5 1.5 10 924.7 1
N-γ1.0-C25 153 100 1.5 1.5 10 924.7 1

MH-γ1.0-C25 153 100 1.5 1.5 10 924.7 1
MS-γ1.0-C25 153 100 1.5 1.5 10 924.7 1

2.3. Finite-Element Model Verification
2.3.1. Mesh Sensitivity Verification

In a numerical simulation, a smaller number of grids will reduce the accuracy of the
simulation and a larger number of grids will consume more computer resources. Therefore,
it is necessary to find a grid size that ensures the accuracy of the simulation and consumes
less computer resources. Figure 7 shows the time–history curves of the deformation of
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the inner and outer tubes of the specimen U-γ0-C30 under different grid sizes. When the
grid size was less than 0.7 mm, a change in the grid size had little effect on the calculation
results. When the grid size was 0.5 mm or 0.6 mm, the difference between the maximum
deformation of the inner and outer tubes was extremely small and the maximum difference
was 0.2%. Considering the computing resources and timeliness, the numerical simulation
used the 0.6 mm grid.
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Figure 7. Deformation of inner and outer tubes with different mesh sizes. (a) Inner tube and
(b) outer tube.

2.3.2. Comparison between Numerical Simulation and Experimental Results

To verify the correctness and rationality of the numerical model, it was compared with
the three sets of experimental results (T1, T3, and T5) in the literature [28]. The sandwich
tubes used in this experimental were produced with steel tubes and aluminum foam cores.
The foam core was cut from 100 mm-thick foam panels by an electro-discharge machine
to minimize the damage to the cell edges. The height of the tube was fixed at 100 mm.
The thickness of tube was 1.5 mm. An aluminized explosive, JHL, was used in the blast
experiments. The cylindrical explosive charge was held at the center of the sandwich tube
using iron wires and detonated at its apex with a detonator. The length to radius ratio of the
charge was equal to that of the internal tube. The sandwich tube was supported by plastic
foams to reduce the influence of the reflected waves from the ground. The purpose of this
setup is to minimize the end effects influence on the specimen. Each test was repeated twice.
Figure 8 compares the numerical simulation and experimental results. Table 5 displays the
geometric parameters of the T1, T3, and T5 specimens. The wall thickness of the inner and
outer tubes is 1.5 mm. Table 5 shows the experimental results and numerical simulation
results of the maximum deformation of the inner and outer tubes of the specimen. The
numerical simulation results of the specimen are in good agreement with the experimental
results, verifying the rationality and feasibility of the finite-element model.

Table 5. Comparison of numerical simulation and experimental results.

Specimen
Number

Inner Tube
Diameter

/mm

Outer Tube
Diame-
ter/mm

Specimen
Length/mm

Relative
Density

Numerical
Simulation

Experimental
Results

Relative
Error

Inner
Tube/mm

Outer
Tube/mm

Inner
Tube/mm

Outer
Tube/mm

Inner
Tube/
mm

Outer
Tube/
mm

T1 67 90 100 11% 9.930 0.564 9.80 0.58 1.33% 2.76%
T3 67 90 100 11% 8.483 0.806 9.35 0.745 9.27% 8.19%
T5 67 90 100 11% 6.867 0.706 6.90 0.75 1.65% 5.87%
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3. Results and Discussion

The maximum deformation of the inner and outer tubes of the sandwich tube’s
structure and energy absorption are important indicators for evaluating the anti-explosion
performance of the sandwich tube structure. The sandwich tube structure should not
only have good energy absorption characteristics but also be lightweight. Therefore, the
maximum deformation of the inner and outer tubes is standardized:

Ds =
δT

mTrT
(13)

where δT is the deformation of the inner tube/outer tube, mT is the mass of the inner
tube/outer tube, and rT is the radius of the inner tube/outer tube.

The specific energy absorption Esa is defined as the energy absorbed per unit mass of
the structure and is given by:

Esa = Ea/M (14)

where Ea is the energy absorbed by the structure and M is the mass of the structure.

3.1. Deformation Process

Figure 9 shows the velocity curves and displacement curves of the inner and outer
tubes of the foamed aluminum tube U-γ0-C30 under the explosion load. The deformation
process of the foamed aluminum sandwich tube can be divided into three stages. In the first
stage, the explosive inside the sandwich tube explodes, the shock wave spreads rapidly
in the air and interacts with the inner tube, and the inner tube is accelerated to a high
speed in an extreme time. At 27.5 µs, the velocity of the inner tube reaches a maximum
value of 430 m/s. The inner tube squeezes the foam core in the process of accelerated
deformation, but due to the extremely short time, the foam core is less compacted. In the
second stage, the deformation rate of the inner tube gradually decreases and the foam core is
further compacted and at the end of the second stage, the outer tube begins to deform. The
following steps occur in the third stage: (i) the foam core layer is compacted, (ii) the speed
and deformation of the outer tube begin to rise rapidly, (iii) the foam core is completely
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compacted, (iv) the speed of the outer tube rises briefly, (v) outer tube deformation reaches
the maximum value, and (vi) outer tube deformation begins decrease. With the passage of
time, the deformation values of the inner and outer tubes tend to stabilize.
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Figure 9. Deformation process of the aluminum foam sandwich tube. (a) Velocity–time curve of inner
and outer tubes, and (b) deformation curve of inner and outer tubes.

3.2. Influence of the Core Density Distribution

Figure 10 shows the deformation patterns of five kinds of aluminum foam sandwich
tubes at different times under internal explosion loads. In the P-type sandwich tube, under
the action of the explosion load, the low-density foam near the inner tube is compacted
first and then the high-density foam is compacted again. Under the action of the explosion
wave, the following stages occur: (i) part of the high-density foam near the inner tube
of the N-type sandwich tube is compacted and extruded to a certain extent, (ii) part of
the low-density foam is compacted, and (iii) the high-density foam and the low-density
foam are compacted at the same time. In the MS-type sandwich tube, the low-density
foam close to the inner tube is compacted, the middle high-density foam is compacted
again, and then a part of the low-density foam close to the outer tube is compacted, and the
low-density foam close to the outer tube and the middle high-density foam are compacted
at the same time. In the MS-type sandwich tube, the high-density foam near the inner
tube is compacted first, part of the middle low-density foam is compacted again, then both
are compacted at the same time, and finally the high-density foam near the outer tube
is compacted.

At 75 µs, the compression of the inner foam core of the N-type sandwich tube was
significantly smaller than that of the U-type and P-type sandwich tubes. The reason is that
the foam of the N-type sandwich tube close to the inner tube has a relatively large relative
density and a strong ability to resist deformation. The compression of the inner foam core
layer of the P-type sandwich tube was significantly larger than that of the U-type sandwich
tube, because the foam of the P-type sandwich tube close to the inner tube is relatively less
dense and has weaker resistance to deformation. Similarly, the compression amount of the
inner aluminum foam core of the MH-type and MS-type sandwich tubes was between that
of P type and N type. At 125 µs, among the five types of sandwich tubes, the deformation
of the outer tube of the N-type sandwich tube was the smallest.

Figures 11–13 show the variation law of the deformation of the inner and outer tubes
of the gradient sandwich tube with time and the total energy absorption and specific energy
absorption of each part of the sandwich tube. When the core density gradients were 1.5,
1.0, and 0.5, there was little difference in the deformation of the inner tubes of the five
sandwich tube models under the same explosion load. When the core density gradients
were 1.5 and 1.0, the deformation of the outer tubes from large to small was as follows:
P-type > MS-type > MH-type > U-type > N-type. When the core density gradient was 0.5,
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the deformation of the outer tube from large to small was as follows: MS-type > P-type >
MH-type > U-type > N-type. However, at this time, the deformation of the outer tubes of
MS-type and P-type was basically the same. Under the three core density gradients, the
deformation of the outer tubes of the N-type sandwich tube was the smallest (smaller than
the deformation of the outer tube of the U-type sandwich tube) and the deformation of the
outer tubes of the other three models was larger than that of the U- type sandwich tube.
From the total energy absorption and specific energy absorption diagrams of each part of
the sandwich tube, it can be seen that the total energy absorption of the five models was
basically the same. The total energy and specific energy absorption of the cores of N-type
and MH-type was much higher than that by the other three types, and the total energy
and specific energy absorption of the inner tube and the outer tube was lower. When the
core density gradient was 0.5, the deformation of the outer tube of the N-type sandwich
tube reached the lowest level, being 16.7% lower than that of the U-type sandwich tube
and 37.8% lower than that of the P-type sandwich tube. Considering the deformation of the
outer tube and the specific energy absorption of the structure, the anti-knock performance
of the N-type sandwich tube was the best.

Materials 2022, 15, x FOR PEER REVIEW 12 of 24 
 

 

3.2. Influence of the Core Density Distribution 

Figure 10 shows the deformation patterns of five kinds of aluminum foam sandwich 

tubes at different times under internal explosion loads. In the P-type sandwich tube, 

under the action of the explosion load, the low-density foam near the inner tube is com-

pacted first and then the high-density foam is compacted again. Under the action of the 

explosion wave, the following stages occur: (i) part of the high-density foam near the 

inner tube of the N-type sandwich tube is compacted and extruded to a certain extent, (ii) 

part of the low-density foam is compacted, and (iii) the high-density foam and the 

low-density foam are compacted at the same time. In the MS-type sandwich tube, the 

low-density foam close to the inner tube is compacted, the middle high-density foam is 

compacted again, and then a part of the low-density foam close to the outer tube is com-

pacted, and the low-density foam close to the outer tube and the middle high-density foam 

are compacted at the same time. In the MS-type sandwich tube, the high-density foam near 

the inner tube is compacted first, part of the middle low-density foam is compacted again, 

then both are compacted at the same time, and finally the high-density foam near the outer 

tube is compacted. 

 

Figure 10. Cloud diagram of the deformation process of the foamed aluminum sandwich tube. 

At 75 s, the compression of the inner foam core of the N-type sandwich tube was 

significantly smaller than that of the U-type and P-type sandwich tubes. The reason is 

that the foam of the N-type sandwich tube close to the inner tube has a relatively large 

relative density and a strong ability to resist deformation. The compression of the inner 

foam core layer of the P-type sandwich tube was significantly larger than that of the 

U-type sandwich tube, because the foam of the P-type sandwich tube close to the inner 

tube is relatively less dense and has weaker resistance to deformation. Similarly, the 

compression amount of the inner aluminum foam core of the MH-type and MS-type 

sandwich tubes was between that of P type and N type. At 125 s, among the five types 

of sandwich tubes, the deformation of the outer tube of the N-type sandwich tube was 

the smallest. 

Figures 11–13 show the variation law of the deformation of the inner and outer tubes 

of the gradient sandwich tube with time and the total energy absorption and specific 

energy absorption of each part of the sandwich tube. When the core density gradients 

were 1.5, 1.0, and 0.5, there was little difference in the deformation of the inner tubes of 

U- 0-C30

P- 1.5-C30

N- 1.5-C30

MH- 1.5-C30

MS- 1.5-C30

Figure 10. Cloud diagram of the deformation process of the foamed aluminum sandwich tube.

3.3. Influence of the Core Density Gradient

Figure 14 shows the outer tube deformation of and specific energy absorption of
the P-type sandwich tube under different core density gradients. With an increase in
the core density gradient, the deformation of the outer tube of the P-type sandwich tube
increased and the specific energy absorption of the inner tube and the outer tube increased,
but the specific energy absorption of the core decreased. Considering the deformation
of the outer tube and the specific energy absorption of the structure, the anti-explosion
performance of the P-type sandwich tube was poor. Figure 15 shows the outer tube
deformation of and the specific energy absorption of the N-type sandwich tube under
different core density gradients. When the core density gradient of the N-type sandwich
tube was 0.5, the deformation of the outer tube was the smallest, and as the gradient
increased, the deformation of the outer tube increased and the specific energy absorption
of the core increased slightly. Considering the deformation of the outer tube and the
specific energy absorption of the structure, when the core density gradient was 0.5, the
anti-knock performance of the N-type sandwich tube reached the optimum value. At this
time, compared with the U-type sandwich tube, the deformation of the standardized outer
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tube was reduced by 16.7% and the specific energy absorption of the core was increased
by 2.88%. Figure 16 shows the deformation of the outer tube and the specific energy
absorption of the MH-type sandwich tube under different core density gradients. As the
core density gradient increased, the deformation of the outer tube of the MH-type sandwich
tube increased and the specific energy absorption of the core also increased. When the core
density gradient was 1.5, the deformation of the normalized outer tube increased by 5.72%
compared with that of the U-type sandwich tube, but the specific energy absorption of
the core increased by 4.33%. Therefore, for the MH-type sandwich tube, the maximum
deformation of the outer tube and the energy absorption are two contradictory evaluation
indicators of anti-knock capability. Figure 17 shows the deformation of the outer tube
and the specific energy absorption of the MS-type sandwich tube under different core
density gradients. With an increase in the gradient, the deformation of the outer tube of the
MS-type sandwich tube increased and the specific energy absorption of the core decreased.
By and large, the anti-explosion performance of the MS-type sandwich tube was poor.
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Figure 11. Anti−explosion performance of a foamed aluminum sandwich tube when the core density
gradient is 1.5. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) total
energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube.

Figure 18 shows the influence of different core density gradients on the deformation
of the outer tube. Figure 19 shows the specific energy absorption of the foam core under
different core density gradients. Under the three core density gradients, the deformation
of the outer tube of the N-type sandwich tube and the specific energy absorption of the
core were better than those of the U-type sandwich tube. When the core density gradient
was 0.5, the anti-knock performance of the N-type sandwich tube reached the optimum
value. Under the three core density gradients, the maximum deformation of and the
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energy absorption of the outer tube of the MH-type sandwich tube were two contradictory
evaluation indicators of anti-knock capability. When the core density gradient was 1.5, the
anti-knock performance of the MH-type sandwich tube reached the optimum value.
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Figure 12. Anti−explosion performance of a foamed aluminum sandwich tube when the core density
gradient is 1.0. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) total
energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube.
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Figure 13. Cont.



Materials 2022, 15, 6966 15 of 23Materials 2022, 15, x FOR PEER REVIEW 15 of 24 
 

 

  
(c) (d) 

Figure 13. Anti−explosion performance of a foamed aluminum sandwich tube when the core den-

sity gradient is 0.5. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) 

total energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube. 

3.3. Influence of the Core Density Gradient 

Figure 14 shows the outer tube deformation of and specific energy absorption of the 

P-type sandwich tube under different core density gradients. With an increase in the core 

density gradient, the deformation of the outer tube of the P-type sandwich tube increased 

and the specific energy absorption of the inner tube and the outer tube increased, but the 

specific energy absorption of the core decreased. Considering the deformation of the 

outer tube and the specific energy absorption of the structure, the anti-explosion per-

formance of the P-type sandwich tube was poor. Figure 15 shows the outer tube defor-

mation of and the specific energy absorption of the N-type sandwich tube under different 

core density gradients. When the core density gradient of the N-type sandwich tube was 

0.5, the deformation of the outer tube was the smallest, and as the gradient increased, the 

deformation of the outer tube increased and the specific energy absorption of the core 

increased slightly. Considering the deformation of the outer tube and the specific energy 

absorption of the structure, when the core density gradient was 0.5, the anti-knock per-

formance of the N-type sandwich tube reached the optimum value. At this time, com-

pared with the U-type sandwich tube, the deformation of the standardized outer tube 

was reduced by 16.7% and the specific energy absorption of the core was increased by 

2.88%. Figure 16 shows the deformation of the outer tube and the specific energy ab-

sorption of the MH-type sandwich tube under different core density gradients. As the 

core density gradient increased, the deformation of the outer tube of the MH-type 

sandwich tube increased and the specific energy absorption of the core also increased. 

When the core density gradient was 1.5, the deformation of the normalized outer tube 

increased by 5.72% compared with that of the U-type sandwich tube, but the specific 

energy absorption of the core increased by 4.33%. Therefore, for the MH-type sandwich 

tube, the maximum deformation of the outer tube and the energy absorption are two 

contradictory evaluation indicators of anti-knock capability. Figure 17 shows the defor-

mation of the outer tube and the specific energy absorption of the MS-type sandwich tube 

under different core density gradients. With an increase in the gradient, the deformation 

of the outer tube of the MS-type sandwich tube increased and the specific energy ab-

sorption of the core decreased. By and large, the anti-explosion performance of the 

MS-type sandwich tube was poor. 

U-γ0-C30 P-γ0.5-C30 N-γ0.5-C30 MH-γ0.5-C30 MS-γ0.5-C30
0

3

6

9

12

15

18
 Inner face-sheet

 Foam core

 Outer face-sheet

E
n
er

g
y

 a
b
so

rp
ti

o
n

/K
J

Specimen

U-γ0-C30 P-γ0.5-C30 N-γ0.5-C30 MH-γ0.5-C30 MS-γ0.5-C30
0

10

20

30

40

50

60
 Inner face-sheet

 Foam core

 Outer face-sheet

S
p

e
c
if

ic
 e

n
e
rg

y
 a

b
so

rp
ti

o
n

/J
/g

Specimen

Figure 13. Anti−explosion performance of a foamed aluminum sandwich tube when the core density
gradient is 0.5. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) total
energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube.
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Figure 14. Anti−explosion performance of a P-type aluminum foam sandwich tube. (a) Deformation
curve of the outer tube, and (b) specific energy absorption of sandwich tube.
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Figure 15. Anti−explosion performance of an N-type aluminum foam sandwich tube. (a) Deforma-
tion curve of the outer tube and (b) specific energy absorption of sandwich tube.
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Figure 16. Anti−explosion performance of an MH-type aluminum foam sandwich tube. (a) Defor-
mation curve of the outer tube and (b) specific energy absorbed of sandwich tube.
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Figure 17. Anti−explosion performance of an MH-type aluminum foam sandwich tube. (a) Defor-
mation curve of the outer tube and (b) specific energy absorbed by the sandwich tube.

3.4. Influence of the Core Thickness

When the inner tube size was fixed and the core density gradient was 1.0, as the
core thickness of the foam increased from 25 mm to 35 mm, the mass of the sandwich
tube structure increased from 924.7 g to 1123.2 g, an increase of 21.47%. The anti-knock
performance had a great impact. Figure 20 shows the deformation diagrams of the five
kinds of aluminum foam sandwich tubes with different core thicknesses under the internal
explosion load. The specimens with thinner foam cores underwent a higher degree of
crushing, and those with thicker cores were not completely crushed.
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Figure 18. The influence of different core density gradients on the deformation of the outer tube.
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Figure 19. Specific energy absorption of foam core under different core density gradients.

Figures 21 and 22 show the deformation curves of the inner and outer tubes of the
sandwich tube and the total energy absorption and specific energy absorption of the
sandwich tube structure when the core thicknesses were 35 mm and 25 mm. When the core
thickness was 30 mm, the deformation curves of the inner and outer tubes of the sandwich
tube and the total energy absorption and specific energy absorption of the sandwich tube
structure are shown in Figure 14. With an increase in the core thickness, the deformation of
the inner tube of the five kinds of aluminum foam sandwich tubes gradually increased but
the deformation of the outer tube significantly decreased. Because the N-type sandwich
tube has the best anti-explosion performance, here is an example of the N-type sandwich
tube. When the core thickness increased from 25 mm to 30 mm, the deformation of the
inner tube increased by 2.58% but the deformation of the outer tube decreased by 55.65%.
When the core thickness increased from 30 mm to 35 mm, the deformation of the inner tube
increased by 7.12% but the deformation of the outer tube decreased by 73.02% (a significant
decrease). Figure 23 shows the deformation of the outer tubes of sandwich tubes with
different core thicknesses.
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Figure 20. Deformation diagrams of sandwich tubes with different core thicknesses.
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Figure 21. Anti−explosion performance of a foamed aluminum sandwich tube when the core thickness
is 35 mm. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) total
energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube.
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Figure 22. Anti−explosion performance of a foamed aluminum sandwich tube when the core thickness
is 25 mm. (a) Deformation curve of the inner tube, (b) deformation curve of the outer tube, (c) total
energy absorption of the sandwich tube, and (d) specific energy absorption of the sandwich tube.
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Figure 23. Deformation of the outer tubes of sandwich tubes with different core thicknesses.

Figures 24–26 show the total energy absorption, the total specific energy absorp-
tion, and the core specific energy absorption of tubes of different core thicknesses. With
an increase in the core thickness, the total energy absorption of each structure of the
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sandwich tube increases but the specific energy absorption decreases, because with the
increase in the core thickness, the mass of the specimen also increases. When the core
thickness increased from 25 mm to 30 mm, the total energy absorption of the sandwich
tube increased by 1.96%, the total specific energy absorption decreased by 9.11%, and the
core-specific energy absorption decreased by 13.15%. When the core thickness increased
from 30 mm to 35 mm, the total energy absorption of the sandwich tube increased by 2.50%,
the total specific energy absorption decreased by 5.41%, and the core-specific energy ab-
sorption decreased by 14.01%. In conclusion, increasing the thickness of the core can
effectively reduce the deformation of the outer tube and improve the total energy absorp-
tion, but it will reduce the total specific energy absorption and the specific energy absorbed
by the core.

Materials 2022, 15, x FOR PEER REVIEW 21 of 24 
 

 

increase in the core thickness, the total energy absorption of each structure of the sand-

wich tube increases but the specific energy absorption decreases, because with the in-

crease in the core thickness, the mass of the specimen also increases. When the core 

thickness increased from 25 mm to 30 mm, the total energy absorption of the sandwich 

tube increased by 1.96%, the total specific energy absorption decreased by 9.11%, and the 

core-specific energy absorption decreased by 13.15%. When the core thickness increased 

from 30 mm to 35 mm, the total energy absorption of the sandwich tube increased by 

2.50%, the total specific energy absorption decreased by 5.41%, and the core-specific energy 

absorption decreased by 14.01%. In conclusion, increasing the thickness of the core can effec-

tively reduce the deformation of the outer tube and improve the total energy absorption, but 

it will reduce the total specific energy absorption and the specific energy absorbed by the 

core. 

 

Figure 24. Total energy absorption of sandwich tubes with different core thicknesses. 

 

Figure 25. Total specific energy absorption of sandwich tubes with different core thicknesses. 

25 30 35
22.8

23.2

23.6

24.0

24.4

24.8

E
n

er
g

y
 a

b
so

rp
ti

o
n

/K
J

Core thickness

 U

 P

 N

 MH

 MS

25 30 35

21.6

22.4

23.2

24.0

24.8

25.6

S
p

ec
if

ic
 e

n
er

g
y

 a
b

so
rp

ti
o

n
/J

/g

Core thickness

 U

 P

 N

 MH

 MS

Figure 24. Total energy absorption of sandwich tubes with different core thicknesses.
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Figure 25. Total specific energy absorption of sandwich tubes with different core thicknesses.
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Figure 26. Core specific energy absorption of sandwich tubes with different core thicknesses.

4. Conclusions

Based on 3D-Voronoi technology, a finite-element model of a continuous gradient
aluminum foam sandwich tube under polar coordinates was established. The simulation
results were compared with the existing experimental results, and the rationality of the
model was verified. On this basis, the dynamic response of the core tube under an internal
explosion load was studied, and the influence of the core density distribution, the core
density gradient, and the thickness of the core on the mechanical properties of the aluminum
foam sandwich tube was analyzed. The main conclusions are as follows:

(1) When the core density gradient is the same, the deformation of the outer tube of the
N-type sandwich tube and the specific energy absorption of the core are better than
those of the U-type sandwich tube. The deformation of the outer tubes of P-type and
MS-type and the specific energy absorption of the core are worse than those of the
U-type sandwich tube. The deformation of the MH-type outer tube is worse than that
of the U-type sandwich tube, but its core displays better specific energy absorption
than that of the U-type sandwich tube.

(2) For N-type sandwich tubes, with decrease in the core density gradient, the defor-
mation of the outer tube decreases but the specific energy absorption by the core
is basically unchanged. For MH-type sandwich tubes, with an increase in the core
density gradient, the deformation of the outer tube decreases and the specific energy
absorption of the core increases. For P type and MS-type sandwich tube, with an in-
crease in the core density gradient, the deformation of the outer tube increases and the
specific energy absorption of the core decreases. Among the five gradient sandwich
tubes, the N-type sandwich tube displays the best resistance to an explosion.

(3) Under the same explosive load, although increasing the core thickness will reduce the
total specific energy absorption by the sandwich tube, it will effectively reduce the
deformation of the outer tube and increase the total energy absorption. The degree of
improvement of the deformation of the outer tube is far greater than the reduction in
the specific energy absorption. Considering the deformation of the outer tube and the
specific energy absorption of the core, the resistance of the N-type sandwich tube to
an explosion is still the best for the three core thicknesses.
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