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Abstract: This study describes the internal structure of materials used to produce medical stents.
A two-level elastoviscoplastic mathematical model, which sets the parameters and describes the
processes at the grain level, was developed and numerically implemented. A separate study was
conducted to identify the most dangerous deformation modes in the balloon-expandable stent
placement using the finite-element method in COMSOL Multiphysics. As a result, the challenging
strain state type required for setting the kinematic loading on a representative macrovolume in
the two-level model was obtained. A yield surface for different deformation paths in the principal
deformation space for stainless steel AISI 316L was obtained and the effect of grain size on the
deformation behavior of this material was explored using the developed model.
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1. Introduction

Coronary stents, made of metal alloys and biopolymers, are used to expand blocked
blood vessels and maintain sufficient blood flow in the human body, [1]. The use of coro-
nary stents ensures the mechanical strength and integrity of structures [2]. The choice of
stent material is highly dependent on its physical and mechanical characteristics, biocom-
patibility, rate of stent degradation in the body, etc. For example, to make self-expanding
stents, nickel-titanium alloys are used because they have excellent flexibility, strength, bio-
compatibility, superelastic behavior, and shape memory effect [3–6]. However, alternative
titanium and niobium alloys were used in some instances [7–9] due to concerns about the
diffusion of nickel compounds from the stent surface and the inflammatory response of
body cells to nickel ions. Nickel-free alloys have recently become more favorable in the
medical industry. Cobalt-chrome (Co-Cr) alloys with other alloying elements (W, Mo, etc.)
are among the most common material groups for biomedical purposes [10–13]. They have
greater corrosion and wear-resistance compared with Al-Mg or Ti alloys. However, it is
worth noting that the properties of biomedical material devices not only depend on the
chemical composition of materials, but also on the microstructure morphology obtained in
the mechanical, thermal, and thermomechanical treatment processes.

Balloon-expandable stents, unlike the self-expanding stents, experience large plastic
deformations resulting in their self-hardening [14,15]. Such stents are usually made from
stainless steel or cobalt-chrome-based alloys [16,17]. Some authors [17–21] suggest using
pure iron, magnesium, and zinc alloys, as well as poly-L-lactic acid biopolymer for stents,
as these materials are able to degrade and resorb in the body after implantation. The focus
of this paper is on balloon-expandable stents, as they are more commercially available.
Stents are classified according to their structure, as helical, slotted tube, or modular [22–24].
A helical stent is a wire coil that forms a stent frame. Slotted tube stents are produced from
small tubes with an etched core, using laser-etching techniques. The frame of modular
stents is formed by a system of hoops. The geometry of cell structures in modular stents
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is the main design factor, defined by the number and layout of hoop connectors. It is
desirable to reduce the number of connectors in a stent to increase its maximum flexure and
reduce challenges caused by transportation. It has recently become apparent that longer,
thinner, and more flexible stents can be less stable along their longitudinal axis. These
stents can be compressed or deformed along a device, producing a so-called accordion
effect or longitudinal deformation of the stent [25,26].

Grain boundaries play a significant role in the plastic-deformation and fracture pro-
cesses of polycrystalline materials. The grain (or intergrain) boundary is the interface
between two crystals with different crystallographic orientations. The intergrain boundary
layer has a pronounced defect structure, with a characteristic thickness of approximately
two or three interatomic distances in pure metals [27]. High stresses and deformations
are often localized near such boundaries, significantly disturbing crystal lattices in grain-
boundary regions [28]. On the one hand, such strain localization is explained by the
influence of dislocation pile-ups, formed from successive deceleration of single dislocations
at the barriers (including grain boundaries) during plastic deformation. On the other hand,
grain boundaries with a defect structure and increased dislocation density, compared with
the interior of the grains, generate lattice distortions in the boundary regions. Thus, inter-
grain boundaries have a direct impact on the mechanism of grain-boundary sliding (GBS),
as well as accommodation mechanisms, preventing material discontinuity in the case of a
single GBS mechanism [29]. In addition, grain boundaries restrain dislocation movements
and impose limitations on plastic deformation of a grain surrounded by differently oriented
adjacent grains [30]. Researchers still have different views on lattice dislocations passing
through the grain boundary [31,32]. Many studies describing the initiation and accumula-
tion of damage in metals [33–35] have used a model of a planar dislocation pile-up at the
grain boundary as a fracture mechanism. Indeed, long-range stress fields of grain-boundary
and lattice dislocations in the pile-ups of a grain can break the interatomic bonds with a
subsequent fracture in the adjacent grains.

The fact that the grain boundaries are linked to GBS, and accommodation mechanisms
defines the parameters of our model that characterizes the influence of the boundaries on
the material’s deformation character. The impact of intergrain boundaries is apparent in
the Hall–Petch law [36], which relates the yield strength of the material to an average grain
size in a polycrystal. Namely, as the volume fraction of the grain-boundary region increases
in the material [37] with a grain-size decrease, it raises the deformation resistance and yield
strength (or material hardening).

In models of inelastic deformation of polycrystals, hardening laws are usually formu-
lated as evolution equations for critical shear stresses of the dislocation motion [38–41]. The
critical stresses are often increased due to different kinds of barriers, which include grain
boundaries. Thus, when describing grain-boundary hardening, it is important to consider
scenarios of slip transmission for dislocations across the boundary with a subsequent
continuation of plastic deformation in the adjacent grains. As a result of this absorption
of lattice dislocations, misfit dislocations are formed in the grain boundaries, with their
Burgers vector equal to a difference between the Burgers vectors of dislocations entering
the boundary and emerging from it. Grain-boundary hardening depends on the sizes and
orientations of grains, as well as their relative location. Therefore, to describe this behavior,
the patterns and orientation distributions of the real grain structure in metals need to be
understood.

A literature review on the grain structure used for the modeling of metals demon-
strated that the grain sizes in a polycrystal follow the lognormal distribution law, which is
consistent with experimental data [42–46]. It is noted in [43,44] that a significant change
in the grain structure and parameters of the lognormal distribution law occurs during the
heat treatment of materials. For instance, an increase in the annealing temperature and
time leads to grain growth in the polycrystal. In 316L stainless steels, an average grain size
usually varies from 6 to 80 µm [10,47,48], with a standard deviation of 0.35 [46].
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The features of the grain structure in coronary stents were studied with images of a
316L stainless steel stent strut obtained with scanning electron microscopy [49,50] (Figure 1).
These images indicate a rather small length of the stent strut in two directions. Based on
the previously obtained average grain size in the 316L steel, it can be concluded that the
structure in width and thickness consists of approximately 1–13 grains.
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Figure 1. Images of 316L stainless steel stent strut with width of (a) 75 [50] and (b) 80 [49].

Texture formation is another problem for grain-structure modeling of such components.
As noted in [49,50], a texture mainly occurs due to the extrusion of the initial tubular
samples; however, final annealing significantly reduces textures in the stent material. Thus,
many elastoplastic and elastoviscoplastic models of the metals use a uniform distribution
of grain orientations [48,49]. This type of distribution was also used in this work.

Fractures are the most common problem related to the use of stents, as well as the
arterial damage from direct contact between the arteries and stent. Various sources report
that stent rupture occurs in 1–18% of cases, which is quite a serious challenge for their wide
applications [50–52]. In most cases, the stents are made of metals and alloys, the mechanical
strength of which is determined by their structure. One of the main reasons for stent
damage is the pronounced anisotropy of properties caused by the small thickness of the
stent tube, some 10–20 grains through in thickness. Similar cases are widely known in the
mechanics of solids as statistical size effects (SSE), which in most cases has a negative impact
on mechanical characteristics of struts exposed to large plastic deformation. Current design
is focused on stents with thinner struts, which requires an account for SSE [10]. Obtaining
morphological properties of a material is often a complex problem, as it is necessary to
carry out several studies of the structure, up to its complete destruction. The influence
of grain size and characteristic orientation map are hypothesized to be the key aspects to
consider in the model. The statistical nature of the model is one of the requirements, as
such parameters can differ even under the same manufacturing conditions and chemical
compositions of a material. To control the properties of products, it was necessary to
develop an accurate mathematical model describing the internal structure of the material.
Thus, an explicit consideration of the material morphology that takes the features of its
structure into account is the most important aspect of stent modeling.

2. Materials and Methods

The properties and behavior of a material at the sample level (macrolevel) significantly
depend on the evolution of its meso- and microstructure and should be properly considered
in a model of the inelastic deformation processes of polycrystals [53]. So, the physical ap-
proach based on the direct consideration of the mechanisms and processes at the meso- and
microlevel has recently become popular [29]. To describe the evolution of the underpinning
mechanisms, researchers have introduced parameters reflecting the state and evolution of
meso- and microstructure and formulate evolution equations for them [38,54,55].
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In this paper, a two-level (macro-meso) elastoviscoplastic model of inelastic defor-
mation of a polycrystalline aggregate was developed. A macrolevel element is the rep-
resentative volume of a polycrystal consisting of many mesolevel elements, i.e., grains
(crystallites). Apparently, a representative volume is the minimum volume of a material
with enough elements responsible for the considered process mechanisms for the statistical
description of its state [56].

It is worth noting that the additivity hypothesis of the elastic and inelastic components
of the strain-rate measure at the meso- and macrolevel is accepted in most elastoviscoplastic
models [29,53]:

ζ = ξe + ξin, (1)

Z = Ze + Zin, (2)

where ζ is the strain-rate measure at the mesolevel and ξe and ξin are the elastic and inelastic
components of the measure at the mesolevel, respectively. Z is the strain-rate measure at
the macrolevel and Ze and Zin are the elastic and inelastic components of the measure at
the macrolevel, respectively. To transfer the effect of the macrolevel to the mesolevel, the
extended Voigt hypothesis is used:

ζ = Z. (3)

Hooke’s law in the rate form serves as the constitutive relation at the mesolevel:

.
σ = п : (ζ− ζin), (4)

where
.
σ is the material derivative of the Cauchy stress tensor, п is the tensor of the crys-

tallite’s elastic properties, and ζ = ∇̂vT is the mesoscale strain-rate measure, coinciding
with the transposed velocity gradient. All values in Equation (4) were determined in the
crystallographic coordinate system (CCS) of the crystallite.

The main mechanism of inelastic deformation in the material is the intragrain dis-
location slip along the most closely packed planes and directions. The combination of
the plane and direction forms the slip system (SS), which is characterized by the Burgers
vector b in the slip direction and the slip plane’s normal n. Assuming a uniform dislo-
cation distribution in grains, the inelastic component of the strain rate measure can be
calculated [29,53]:

ζin =
K

∑
k = 1

.
γ
(k)n(k)b(k), (5)

where K is the total number of the slip systems and
.
γ0 is the shear rate for the k-th

slip system.
To establish the shear rates in the slip systems, the following power law can be applied:

.
γ
(k)

=
.
γ0

∣∣∣∣∣τ(k)τ
(k)
c

∣∣∣∣∣
1
m

H(τ(k) − τ(k)c ), (6)

where τ(k)c is the critical shear stress for the k-th slip system,
.
γ0 is the characteristic shear rate

in the case when the acting tangential stress is equal to the critical stress in the slip system,
and m is the constant of the rate sensitivity of the material. τ(k) is the acting tangential
stress for the k-th slip system, defined as

τ(k) = σ : n(k)b(k). (7)

The transition between the scale levels is performed by employing an averaging
procedure for the mesolevel element’s characteristics. The constitutive relation at the
macrolevel is Hooke’s law in the rate form:

.
Σ = Π : (Z− Zin), (8)
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where
.
Σ is the material derivative of the Cauchy stress tensor at the macrolevel, and Π

is the macroscale tensor of the crystallite elastic properties. All the values in Equation (8)
were determined in the laboratory coordinate system (LCS).

Thus, the systems of equations at the meso- and macrolevel have the form (N is the
grain number):

Mesolevel: 

.
σ = п : (ζ− ζin),

ζin =
K
∑

k = 1

.
γ
(k)n(k)b(k),

.
γ
(k)

=
.
γ0

∣∣∣∣τ(k)τ
(k)
c

∣∣∣∣ 1
m

H(τ(k) − τ(k)c ),

τ(k) = σ : n(k)b(k),
.
τ
(k)
c = f (

.
γ
(k),γ(k), . . .).

Macrolevel: 

.
Σ = Π : (Z− Zin),
Π =

〈
п(i)
〉

,

Zin = 〈ξin
(i)

〉
,

i = 1, . . . , N.

The evolution of the critical shear stresses for each SS is realized due to mechanisms
of the intragrain and grain-boundary hardening:

.
τ
(k)
c = f (k) + f (k)GBH. (9)

The intragrain hardening mechanism considers the dislocation interactions at different
slip systems. The relation for the critical stress rate has a classical form [57,58]:

f (k) =
24
∑

l = 1
h(kl) .

γ
(l), k = 1, . . . , 24,

h(kl) =
[
qlat + (1− qlat)δ

kl
]

h(l),

h(l) = h0

∣∣∣∣1− τ
(l)
c
τsat

∣∣∣∣a,

(10)

where qlat is the latent-hardening parameter, δkl is the Kronecker delta, h(kl) is the hardening-
modulus matrix, τsat is the reference stress, at which plastic flow initiates,

.
γ
(l) is the shear

rate for the l-th slip system, and h0 and a are the hardening-law parameters.
The rate of increase in the critical shear stresses due to the grain-boundary hardening

mechanism is defined as follows [39,41]:

f (k)GBS = η
.
γ
(k)
γ(k)

P

∑
i = 1

Si
V
ξ
(k)
i , (11)

where η is the hardening-law parameter, V is the grain volume, Si is the contact area
between the current and adjacent grain, ξ(k)i is the misorientation measure for these grains,
.
γ
(k) and γ(k) are the shear rate and the accumulated shear for the k-th SS, respectively,

and P is the number of regions approximating the grain boundaries. The misorientation
measure ξ(k)i has the form:

ξ
(k)
i = min

l = 1,24

{∣∣∣bl − bk
∣∣∣·Ni

}
, (12)

where bk and bl are the dislocation Burgers vectors passing from the slip systems of the
current and adjacent grains, respectively, Ni is the normal to the boundary region.
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3. Results and Discussion

The behavior of the balloon-expandable stent (Palmaz-Schatz specification [59]) was
analyzed using the COMSOL Multiphysics computing package. It should be noted that the
purpose of the current study was not to directly simulate a specific design, but rather assess
the most dangerous deformation modes significantly affecting the placement of biomedical
stents. The FEM method was used to obtain the most unsafe areas of plastic-deformation
localization, and to conduct research of these areas with the model, explicitly including the
main mechanisms of plastic deformation.

Often, balloon-expandable stents unevenly deform during stent placement. As a result,
these deformations can lead to stent damage up to full rupture. The radius of the stent
before expansion is 0.75 mm (Figure 2). The simulation used a Cartesian coordinate system
with a reference point in the middle of the stent. Inside the stent, a pressure of 1.6 MPa was
set along the x-axis. Outside the stent, the boundary conditions were free. Thus, the stent
expanded up to a radius of 2 mm evenly along its entire length. The stent length changed
from 10 to 6.7 mm when expanding along the x-axis.
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The elastoplastic flow model was used to describe stent deployment; the values of
the model parameters for stainless steel are given in Table 1. To build a mesh, three-
dimensional simplex elements were used. The minimum and maximum mesh sizes were
empirically selected to achieve convergence of the numerical procedure; they were 3× 10−5

and 6× 10−4 m, respectively.

Table 1. Parameters of elastoplastic model for stainless steel.

Material Parameters Notation Value

Poisson’s ratio ν 0.27
Young’s modulus E 197 GPa

Density ρ 7000 kg m−3

Initial shear stresses σgs 101 MPa

In the modeling of the stress-strain state of a stent, it was hard to specify the defor-
mation conditions, for which individual parts of the structure could accumulate plastic
deformations and collapse at relatively low stresses. Based on the analysis of the stent
model, built in the COMSOL Multiphysics software package, the relationship between the
values of the principal deformations were determined and the principal deformation direc-
tions of the structure parts vulnerable to fracture were found. Considering the coaxiality of
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the principal stresses and deformation vectors in the elastic region, the value characterizing
the strain state type was obtained:

µε = 2
ε2 − ε3

ε1 − ε3
− 1, (13)

where µε is the Lode parameter for the deformed state and ε1, ε2, and ε3 are the principal
deformations. The principal strains directions are {0.945, −0.292, 0.147}, {0.194, 0.862, 0.468},
and {−0.263, −0.414, 0.872}.

Figures 3 and 4 show distributions of von Mises stress in the stent before and after ex-
pansion, respectively. The maximum von Mises stress value is 407 MPa. The result defined
the zones of maximum intensity of plastic deformations and identified the eigenvalues
εi and the principal direction vectors ki of the deformation tensor in pressure. This was
necessary to determine the deformed state of the structure and the deformation directions
in the principal stress space to use the developed model (1)–(12).
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To describe the behavior of the structural material in the plastic deformation process,
an elastoviscoplastic two-level model was employed with explicit consideration of the
main physical mechanisms and processes at the macro- and mesolevel. The macrolevel
polycrystalline aggregate consisted of 350 grains, with uniformly distributed orientations.
The grain-size distribution followed the lognormal law; its parameters are discussed in
more detail in [44–46]. Numerical experiments were carried out for the three-dimensional
case, for an anisotropic material with face-centered cubic lattice. The elastic and plastic
parameters of model were taken from [47] and corresponded to 316L stainless steel (at
room temperature). To obtain the values of hardening parameters and in Equations (10)
and (11), a procedure for identifying these parameters based on the experimental data on
the tensile strength of steel plates [60] was implemented. The yield strength and initial
critical stresses of the steel were determined using the Hall-Petch law by setting an average
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grain size in the polycrystal [61]. The values of the model parameters are given in Table 2
(unless specified otherwise).
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Grain count N 350
Elastic constant Ciiii, i, j = 1, 3 163 GPa
Elastic constant Ciijj, i, j = 1, 3 110 GPa
Elastic constant Cijij, i, j = 1, 3 101 GPa

To identify hardening parameters, a numerical experiment of the uniaxial tensile test
of the polycrystals was carried out using the hardening laws (10) and (11). A representative
volume experienced uniaxial tensile deformation along the x1-axis at the following rate:

.
ε =

.
ε0k1k1 −

.
ε0

2
k2k2 −

.
ε0

2
k3k3, (14)

where ki are the orthogonal unit vectors along the corresponding xi-axes.
The dependence of the Cauchy stress tensor intensity, σu, on the small strain tensor

intensity, εu, calculated with numerical simulations (Figure 5) demonstrates a reasonable
correspondence with experimental data [60]. It was evident that stress growth occurred
nonlinearly, due to mechanisms of intragrain and grain-boundary hardening in the material.
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In order to assess the influence of grain size on the deformation behavior of the
material, the dependence of the yield strength σ0,2 on the parameters µ and σ of a lognormal
distribution law LogN(µ,σ2) was suggested (Figure 6). The relationship of the lognormal-
law parameters with average grain size is determined as:

d = eµ+0.5σ2
. (15)
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Figure 6. Dependence of yield strength on parameters of lognormal law of grain-size distribution
in polycrystal.

The range of the law parameters was chosen in such a way so that the grain size in
the material changed from 3 to 150 µm. The grain-size distributions in a polycrystal with
350 grains for some parameter values are shown in Figure 7. Thus, an increase in the
parameters µ and σ of the lognormal distribution law leads to a significant reduction in the
yield strength due to the grain-size growth. It should be noted that the direct effect of the
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grain size on the material behavior occurred even after reaching the yield strength due to
grain boundary hardening.
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Using the Lode parameter (13) calculated in the simulation in COMSOL Multiphysics,
a relationship between the quantities, ε1, ε2, and ε3, corresponding to the plane in the
principal deformation space, E1E2E3, was obtained (Figure 8) for the stent part vulnerable
to fracture. The material response differed for various deformation directions along this
plane. Figure 9 shows a polar diagram for the yield strength depending on the deformation
direction in the most dangerous area of the design, shown in Figures 3 and 4.
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Each point of the diagram has two polar coordinates:

1. Angle ϕ between the deformation direction and the projection of the X-axis of princi-
pal deformation E1 on a given plane;

2. The radius vector drawn from the origin to the considered point, which is equal to the
yield strength of the material.

The minimum yield strength, with a value of about 258 MPa, was obtained for the
unit vectors, {0.998, 0, −0.062}, {−0.586, 0.537, 0.607}, {−0.998, 0, 0.062}, and {0.586, −0.537,
−0.607}, setting the deformation direction in the principal deformation space (other defor-
mation directions give a larger yield strength value). These vectors defined the relationship
between the principal deformations and formulated the kinematic loading conditions, at
which plastic deformation occurred at the lowest stress in the material. Thus, the most dan-
gerous deformation directions for structure parts with the highest stresses (Figures 3 and 4)
in the process of stent expansion were defined.
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4. Conclusions

The influence of the 316L stainless steel stent microstructure on the mechanical strength
and durability in the process of design deployment was studied in this paper. Modeling
the process of stent expansion under linearly distributed loading using the COMSOL
Multiphysics software package found non-uniform stress-strain fields with the most dan-
gerous zones of design in terms of highest plastic deformation and stresses. To describe
the mechanisms and processes at the grain level in the plastic deformation process in
these zones, a two-level elastoviscoplastic model was built, allowing to directly control the
internal structure of the material, such as grain orientation and grain size in a polycrystal.
The numerical simulation based on the developed model showed a good correlation with
experimental data. It was found that an increase in the parameters µ and σ of the lognormal
distribution law led to the grain-size growth in the polycrystal and, consequently, caused
a significant drop in the yield strength. The most dangerous deformation direction for
the structure part with the highest stresses and plastic deformation in the process of stent
expansion were obtained along the unit vectors {0.998, 0, −0.062}, {−0.586, 0.537, 0.607},
{−0.998, 0, 0.062}, and {0.586, −0.537, −0.607} in the principal deformation space. The yield
strength for these deformation directions had a minimum value of about 258 MPa.
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