
Citation: Al-Hashem, M.N.; Amin,

M.N.; Ahmad, W.; Khan, K.; Ahmad,

A.; Ehsan, S.; Al-Ahmad, Q.M.S.;

Qadir, M.G. Data-Driven Techniques

for Evaluating the Mechanical

Strength and Raw Material Effects of

Steel Fiber-Reinforced Concrete.

Materials 2022, 15, 6928. https://

doi.org/10.3390/ma15196928

Academic Editor: Krzysztof

Schabowicz

Received: 14 September 2022

Accepted: 1 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Data-Driven Techniques for Evaluating the Mechanical Strength
and Raw Material Effects of Steel Fiber-Reinforced Concrete
Mohammed Najeeb Al-Hashem 1, Muhammad Nasir Amin 1,* , Waqas Ahmad 2 , Kaffayatullah Khan 1 ,
Ayaz Ahmad 3, Saqib Ehsan 4, Qasem M. S. Al-Ahmad 1 and Muhammad Ghulam Qadir 5

1 Department of Civil and Environmental Engineering, College of Engineering, King Faisal University,
Al-Ahsa 31982, Saudi Arabia

2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan
3 MaREI Centre, Ryan Institute and School of Engineering, College of Science and Engineering,

National University of Ireland Galway, H91 TK33 Galway, Ireland
4 Department of Civil Engineering, NFC Institute of Engineering and Fertilizer Research,

Faisalabad 38090, Pakistan
5 Department of Environmental Sciences, Abbottabad Campus, COMSATS University Islamabad,

Abbottabad 22060, Pakistan
* Correspondence: mgadir@kfu.edu.sa; Tel.: +966-13-589-5431; Fax: +966-13-581-7068

Abstract: Estimating concrete properties using soft computing techniques has been shown to be a
time and cost-efficient method in the construction industry. Thus, for the prediction of steel fiber-
reinforced concrete (SFRC) strength under compressive and flexural loads, the current research
employed advanced and effective soft computing techniques. In the current study, a single machine
learning method known as multiple-layer perceptron neural network (MLPNN) and ensembled
machine learning models known as MLPNN-adaptive boosting and MLPNN-bagging are used for
this purpose. Water; cement; fine aggregate (FA); coarse aggregate (CA); super-plasticizer (SP); silica
fume; and steel fiber volume percent (Vf SF), length (mm), and diameter were the factors considered
(mm). This study also employed statistical analysis such as determination coefficient (R2), root mean
square error (RMSE), and mean absolute error (MAE) to assess the performance of the algorithms. It
was determined that the MLPNN-AdaBoost method is suitable for forecasting SFRC compressive and
flexural strengths. The MLPNN technique’s higher R2, i.e., 0.94 and 0.95 for flexural and compressive
strength, respectively, and lower error values result in more precision than other methods with lower
R2 values. SHAP analysis demonstrated that the volume of cement and steel fibers have the greatest
feature values for SFRC’s compressive and flexural strengths, respectively.

Keywords: concrete; steel fibers; steel fiber-reinforced concrete; compressive strength; flexural strength

1. Introduction

The simple production method for concrete and the abundant availability of its ingre-
dients and several applications make it the most widely used construction material around
the globe. The nature of concrete is conventionally brittle, having low strain capacity, tough-
ness, and energy absorption capability. Accordingly, researchers are searching for ways to
minimize the brittleness of typical concrete by enhancing its tensile strength. The dispersed
incorporation of short-discrete fibers in conventional cementitious concrete is emerging as
an effective method of enhancing concretes’ capacity for energy absorption [1–4]. Multiple
researchers have explored the addition of steel/synthetic/natural fibers to concrete as
reinforcement for improving characteristics like fatigue resistance, toughness, ductility, and
resist propagation of cracks in concrete [5–16]. Steel fibers are incorporated into concrete
to enhance its post-cracking phenomenon and toughness [17–20]. SFRC have multiple
applications in different sections of the construction industry like building, pavements,
rehabilitation, and repair. The enhanced mechanical properties of SFRC, as reported by
some of the researchers, for different applications are summarized in Table 1.
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Table 1. Reported applications and properties of SFRC.

Study Findings
Conducted Studies

Purkiss [21] Patil and Sangle [22] Noaman, et al. [23] Boulekbache, et al. [24] Gholamhoseini, et al. [25]

Studied Properties of
SFRC

Residual Flexural
Strength

Residual Compressive
Strength

Compressive Strength
Flexural Strength

Compressive Strength
Flexural Strength

Compressive Strength
Flexural Strength

Compressive Strength
Flexural Strength

Reported Outcomes 78–91% loss@800 ◦C
57–74% loss@800 ◦C

45.7 MPa
5.3 MPa

47 MPa
3.0–3.9 MPa

27–28.5 MPa
3.5–5.5 MPa

33.8–36.2 MPa
3.9–4.3 MPa

Considered
Applications Refractory Material Beams - Structural Beams Slabs

Currently, the practice adopted for evaluating the mechanical properties of SFRC is the
performance of the entire experimental program. A considerable amount of time and cost
is involved in determining an accurate connection between properties of material and mix
design through experimentation [26]. The variable SFRC parameters are the aggregates,
cement, water, admixture/super-plasticizer, additive material and fiber (i.e., steel fibers)
contents, and the admixture type. Despite the considerable experimental research in the
literature, it is hard to forecast the characteristics of SFRC with different mixtures with the
help of computational approaches. Hence, the current work is focused on estimating SFRC
mechanical characteristics by employing a soft computational approach.

The employment of soft computational techniques may assist in resolving multiple
complex problems in various fields of engineering [27–29]. ML techniques may be ap-
plied to forecast the ultimate outcome after incorporating a database as input parameters.
Two ML approaches, a single model-based standalone method and ensemble Bagging
and AdaBoost models, are employed in this research for the estimation of SFRC prop-
erties. Per the reported studies, ensemble modelling techniques are more effective than
an individual model as shown in Table 2. Chaabene et al. [30] reported a detailed as-
sessment of applying ML techniques for predicting the mechanical properties of concrete.
Furthermore, multiple types of research have been conducted to estimate the mechanical
properties of different concrete types like self-healing concrete [31], high-performance
concrete (HPC) [32–36], phase change materials-integrated concrete [37], and recycled
aggregate concrete (RAC) [38–41]. Han et al. [33] employed machine learning techniques
for estimation of HPC compressive strength. The input parameters included age, water,
cement, coarse aggregates, sand, fly-ash, and GGBFS, and five variable combinations were
considered. The accurate compressive strength of HPC was obtained by the developed
model. In this study, the SFRC compressive strength is predicted by applying soft computa-
tional approaches. The current research will provide a base for conserving cost and time of
future researchers.

Table 2. ML techniques used in the previous studies.

Ref. Material Type Properties
Predicted ML Techniques Employed No. of Input

Parameters
Data

Points
Best ML Technique

Recommended

[42] Concrete-Filled
Steel Tubes

Ultimate axial
capacity Gene expression programming 6 227 -

[43] Recycled aggregate
concrete

Split-tensile
strength

Gene expression programming, artificial neural
network, and bagging regressor 9 166 Bagging regressor

[44] Rice husk ash
concrete

Compressive
strength Gene expression programming and random forest 6 192 Gene expression

programming

[45] Geopolymer
concrete

Compressive
strength Decision tree, bagging regressor, and AdaBoost 9 154 Bagging regressor

[46] Fly ash-based
concrete

Compressive
strength

Gene expression programming, artificial neural
network, decision tree, and bagging regressor 7 98 Bagging regressor

[47] Fly ash-based
concrete

Compressive
strength

Gene expression programming, decision tree, and
bagging regressor 8 270 Bagging regressor
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ML techniques have demonstrated possible prediction results with least difference
in trials for various concrete types. For said purpose, experimental methods, including
casting and testing procedures, consume considerable cost, effort, and time. Therefore,
the current need is to develop data modeling-based algorithms in line with closely linked
in-dependent parameter identification and the instant decrement in input matrix dimen-
sions. The application of soft computational approaches is gaining more importance for
predicting concrete materials’ behavior in civil engineering. ML is an alternative technique
for predicting SFRC’s compressive and flexural strengths to conserve experimental cost
and time. The current study involves applying an individual ML model and multiple
ensembled ML techniques to predict SFRC compressive and flexural strengths. In addition,
the influence of raw materials on mechanical properties remains largely unexplored in
contemporary study and is still very limited. The integration of SHapley Additive exPla-
nations (SHAP) with ML algorithms is also performed in this paper, addressing a current
research need. SHAP analysis is intended to provide in-depth knowledge of SFRC mix
design in terms of its mechanical strength factors via complicated nonlinear behavior and
the description of input factors’ contributions by assigning a weighting factor to each
input component. MLPNN is taken as an individual ML model, while MLPNN-AdaBoost
and MLPNN-Bagging are taken as ensembled machine learning algorithms. In addition,
statistical analysis is performed for the evaluation of all the considered models, and all said
ML algorithms are compared as well. Afterwards, based on numerous statistical factors’
performance, a superior model is proposed for predicting SFRC properties. As a whole,
a correlation for valuable structure properties is established in this research by applying
interpretable machine learning techniques through feature importance.

2. Soft Computing Techniques
2.1. Multilayer Perceptron Neural Network (MLPNN)

The ANN model is among the most effective ML models. Its potential to resolve
nonlinear issues has made it widely applied in hydrological and environmental engineering
areas. Among multiple ANN models, the multilayer perceptron ANN (MLPNN) is the one
that is used most frequently. The MLPNN model’s architecture comprises three layers: an
input one followed by one or more hidden ones, and the output one. The three conventional
functions of activation are; logsig, tansig, and purelin. Activations, weights, and bias
functions are among the most important parts in both the output and hidden layers. The
training of the model governs the parameters or weights of the model. The hidden layers
employ the function of tansig activation; however, purelin is used for the output layer. The
best structure is extracted by fivefold cross-validation. The top ANN model came out with
three layers that are hidden (i.e., 9, 3, and 2) having optimal numbers of neurons against
every hidden layer [48]. A typical/conventional neural network is shown in Figure 1. The
composition of these networks is at three stages in a way that the input is transmitted
by forward-pass, weight is multiplied by it, and the prediction of model output is made.
The predicted results are then compared with the considered inputs. The input factors are
considered for the model prediction outcomes. Based upon the objectives and performance,
various loss functions are employed. The partial derivatives for cost function, linked with
individual factors back in operation, are generated by backward propagation. Gradient
descent is used for back loss propagation and model weight updating during this method.
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Figure 1. Architecture of a typical neural network [49].

2.2. MLPNN Bagging and MLPNN AdaBoost Techniques

The accuracy of prediction and recognition of ML can be improved by using ensemble
approaches. These approaches usually help resolve problems by aggregating and inte-
grating various algorithms having weaker predictions. A smart learner can be made by
intelligently developing different sub-models (i.e., A, B, . . . N) along with the alteration of
data for training and the merging of average and votes of combination measures, to obtain
the correct result of projecting sub-models, for making an ideal model. The most frequently
adopted ensembled modelling approach is Bagging, which implies the resampling boot-
strap technique for calculating benefits and gathering the data. During this method, the
first set of training with fractional algorithms is substituted for the actual algorithm. Some
samples of data may seem in different algorithms, whereas few of them do not even appear
in any model product. The average from all component models’ output is taken to calculate
the final outcome model.

The Bagging approach, like boosting, creates a cumulative model that constructs
multiple more precise components compared with non-ensemble models. Furthermore,
the weighted averages are used in the Boosting process based on sub-models to determine
their inclusion in the final model. Based upon MLPNN-like individual learners, the current
work predicts the flexural and compressive strengths of SFRC using Bagging and Adaptive
Boosting (AdaBoost) approaches.

3. Dataset

The literature-based dataset that was used comprises 150 mix ratios with 9 contribution
parameters [50–66]. All the samples were water cured at 28 days. Figures 2 and 3 exhibit
the dataset that was employed to estimate SFRC strengths. These include water (kg/m3),
cement (kg/m3), coarse aggregate (CA) (kg/m3), fine aggregate (FA) (kg/m3), superplasti-
cizer (SP) (%), silica fume (%), volume fraction of steel fiber (Vf SF) (%), SF Length (mm),
and SF diameter (mm). The prediction variables for output parameters (i.e., compressive
and flexural strength) relied on the above-mentioned input parameters. Python scripting in
Spyder Anaconda software was used to predict compressive and flexural strength.
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4. Results and Discussion
4.1. Multiple-Layer Perceptron Neural Network (MLPNN)

The comparison of the MLPNN algorithm projected and experimental values for
SFRC compressive strength are shown in Figure 4. MLPNN shows a reasonably estimated
outcome with minimal variation in SFRC compressive strength. The appropriateness of
the MLPNN model is represented by an acceptable R2 of 0.79. The error distribution of
MLPNN predicted and experimental values for SFRC compressive strength are illustrated
in Figure 5. The average error values for SFRC compressive strength are 8.69 MPa: 46% of
the error values are below 5 MPa, 29% of these values range between 5 and 10 MPa, and
25% are more than 10 MPa.
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The MLPNN projected and investigational results for SFRC flexural strength are
presented in Figure 6. The R2 of 0.81 reveals the less appropriate outcome. Similarly, the
projected results for the flexural strength of SFRC with the help of MLPNN lie in suitable
array. The distribution of error for MLPNN projected, and investigational flexural strength
of SFRC is shown in Figure 7. Nearly one third of values, 29%, are below 1 MPa, 66% are in
the range of 1 to 5 MPa, and the remaining 5% are above 5 MPa.

Materials 2022, 15, x FOR PEER REVIEW 8 of 26 
 

 

strength of SFRC is shown in Figure 7. Nearly one third of values, 29%, are below 1 MPa, 

66% are in the range of 1 to 5 MPa, and the remaining 5% are above 5 MPa. 

 

Figure 6. Experimental and MLPNN predicted results for flexural strength. 

 

Figure 7. Experimental and MLPNN predicted values with errors for flexural strength. 

  

y = 0.9046x

R² = 0.8157  

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

P
re

d
ic

te
d

 f
le

x
u

re
 s

tr
en

g
th

 (
M

P
a)

Experimental flexure strength (MPa)

Training data Estimated (MPa) Linear (Estimated (MPa))

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45

E
rr

o
r 

(M
P

a)

F
le

x
u

re
 s

tr
en

g
th

 (
M

P
a)

Data set

MLPNN

Experimental (MPa) Estimated (MPa) Errors

Figure 6. Experimental and MLPNN predicted results for flexural strength.

Materials 2022, 15, x FOR PEER REVIEW 8 of 26 
 

 

strength of SFRC is shown in Figure 7. Nearly one third of values, 29%, are below 1 MPa, 

66% are in the range of 1 to 5 MPa, and the remaining 5% are above 5 MPa. 

 

Figure 6. Experimental and MLPNN predicted results for flexural strength. 

 

Figure 7. Experimental and MLPNN predicted values with errors for flexural strength. 

  

y = 0.9046x

R² = 0.8157  

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

P
re

d
ic

te
d

 f
le

x
u

re
 s

tr
en

g
th

 (
M

P
a)

Experimental flexure strength (MPa)

Training data Estimated (MPa) Linear (Estimated (MPa))

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45

E
rr

o
r 

(M
P

a)

F
le

x
u

re
 s

tr
en

g
th

 (
M

P
a)

Data set

MLPNN

Experimental (MPa) Estimated (MPa) Errors

Figure 7. Experimental and MLPNN predicted values with errors for flexural strength.



Materials 2022, 15, 6928 8 of 21

4.2. MLPNN-AdaBoost

Figure 8 shows the predicted MLPNN-AdaBoost algorithm and investigational results
for compressive strength of SFRC. The R2 of 0.95 for MLPNN-AdaBoost depicts a higher ac-
curacy of outcomes than that of the MLPNN algorithm. Figure 9 represents the distribution
of error for MLPNN-AdaBoost estimated and investigational results for the compressive
strength of SFRC. It may be seen that 62% of values are below 5 MPa, 29% of these values
range from 5 and 10 MPa, and 9% of values are above 10 MPa. The higher R2 and lower
error values show more precision of the MLPNN-AdaBoost model than MLPNN.
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The MLPNN-AdaBoost model’s estimated and investigational results were compared
for SFRC flexural strength (Figure 10). MLPNN-AdaBoost depicts reduced variation in
error for SFRC flexural strength and highly precise predicted results. The adequacy of the
MLPNN-AdaBoost model is represented by an acceptable R2 of 0.94. The error distribution
of MLPNN-AdaBoost predicted and experimental SFRC flexural strength is illustrated in
Figure 11. The average error value for SFRC flexural strength is 1.57 MPa: 47% of total
error values are below 1 MPa, 53% of these values are between 1 and 5 MPa, and no value
is more than 5 MPa.
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Figure 10. Experimental and MLPNN-AdaBoost predicted results for flexural strength.
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4.3. MLPNN-Bagging

Figure 12 shows the projected and investigational outputs in case of MLPNN-Bagging
for SFRC compressive strength. The R2 of 0.89 for this model depicts comparatively less
appropriate results than the above-mentioned ensembled MLPNN-AdaBoost model. The
estimated SFRC compressive strength outcomes for MLPNN-Bagging are superior to the
individual MLPNN model. Figure 13 depicts the distribution of error for MLPNN-Bagging
projected and investigational results for SFRC compressive strength: 49% of values are
below 5 MPa, 28% are from 5 to 10 MPa, and the remaining 22% of these values are
higher than 10 MPa. The R2 and error values for SFRC compressive strength in the case of
MLPNN are more precise than the MLPNN-Bagging model. At the same time, the MLPNN
ensembled machine learning algorithms error and R2 values are satisfactory. Therefore, this
result shows the higher accuracy of estimation outcomes of MLPNN compared to other
considered models.
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The estimated MLPNN-AdaBoost and investigational results for SFRC flexural strength
are presented in Figure 14. The R2 of 0.92 for MLPNN-AdaBoost displays less accurate
outcomes compared with MLPNN-AdaBoost. The distribution of error for the MLPNN-
AdaBoost estimated and investigational results for SFRC flexural strength are presented in
Figure 15. It is assessed that 33% of values are below 1 MPa, 62% lie in the 1 to 5 MPa range,
and 4% are above 5 MPa. The higher R2 and lower error values demonstrate the higher
accuracy of MLPNN-AdaBoost compared with MLPNN. In contrast, the attained R2 and
error values for MLPNN-Bagging ensembled machine learning algorithms are suitable: this
result showed the most accuracy for estimation outputs of MLPNN-AdaBoost compared
with the other considered algorithms.
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Figure 14. Experimental and MLPNN-Bagging predicted results for flexural strength.

Materials 2022, 15, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 14. Experimental and MLPNN-Bagging predicted results for flexural strength. 

 
Figure 15. Distribution of experimental and MLPNN-Bagging predicted values with errors for flex-

ural strength. 

  

y = 0.9383x

R² = 0.929

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

P
re

d
ic

te
d
 f

le
x

u
re

 s
tr

en
g
th

 (
M

P
a)

Experimental flexure strength (MPa)

Training data Estimated (MPa) Linear (Estimated (MPa))

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45

E
rr

o
r 

(M
P

a)

F
le

x
u
re

 s
tr

en
g
th

 (
M

P
a)

Data set

MLPNN-AdaBoost

Experimental (MPa) Estimated (MPa) Errors

Figure 15. Distribution of experimental and MLPNN-Bagging predicted values with errors for
flexural strength.



Materials 2022, 15, 6928 12 of 21

4.4. Comparison of All Models

The k-fold technique was adopted for cross-validation in order to assess the perfor-
mance of model while implementation. The performance of a model is determined by
employment of statistical checks [67–70]. Normally, in the said k-fold process, there is
splitting data in 10 clusters for random spreading by repeating this process 10 times for
attaining suitable results. Table 3 provides the employed statistical checks. The compres-
sive strength R2 values for MLPNN, MLPNN-Bagging, and MLPNN-AdaBoost models
were 0.79, 0.89, and 0.95, respectively, as presented in Figure 16a–c. In the case of flexural
strength, the R2 values for MLPNN, MLPNN-Bagging, and MLPNN-AdaBoost model were
0.81, 0.92, and 0.94, respectively, as presented in Figure 17a–c. It is observed that the R2 for
MLPNN-AdaBoost is higher than those of the other considered algorithms, having lower
error values for the SFRC compressive and flexural strengths.

Table 3. Statistical checks of comparison of this study with the literature.

Material Type Parameters Techniques MAE (MPa) RMSE (MPa) R2 References

SFRC
Compressive

strength

MLPNN 8.7 12.3 0.79 This study

SFRC MLPNN-AdaBoost 4.5 5.8 0.95 This study

SFRC MLPNN-Bagging 6.6 8.8 0.89 This study

SFRC
Flexural
strength

MLPNN 2.0 2.6 0.81 This study

SFRC MLPNN-AdaBoost 1.6 2.0 0.94 This study

SFRC MLPNN-Bagging 1.8 2.3 0.92 This study

Recycled coarse
aggregate concrete

(RCAC)

Compressive
strength SVM-AdaBoost 7.7 9.5 0.94 Amin, et al. [71]

Geopolymer concrete Compressive
strength MLPNN 5.8 7.4 0.81 Amin, et al. [72]

Geopolymer concrete Compressive
strength

Support vector
machine 6.7 8.1 0.78 Amin, et al. [72]

Waste marble powder
Concrete (WMC)

Compressive
strength DT-AdaBoost 3.9 7.9 0.91 Khan, et al. [73]

Fly ash concrete Compressive
strength Decision Tree - - 0.88 Khan, et al. [74]

Fly ash concrete Compressive
strength MLP - - 0.90 Khan, et al. [74]

Fly ash concrete Compressive
strength Bagging - - 0.93 Khan, et al. [74]

Geopolymer concrete Compressive
strength Decision Tree 4.1 6.2 0.88 Zou, et al. [75]

Recycled coarse
aggregate concrete

(RCAC)

Compressive
strength DT-XGBoost 7.7 10.5 0.94 Amin, et al. [71]
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Figure 16. Compressive strength statistical representation: (a) MLPNN; (b) MLPNN-AdaBoost;
(c) MLPNN-Bagging.
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Figure 17. Flexural strength statistical representation: (a) MLPNN; (b) MLPNN-AdaBoost;
(c) MLPNN-Bagging.
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The comparison of current models with the models in the literature is shown in Table 3.
SFRC compressive strength is estimated by applying ensembled ML techniques in the
current study, which intends to offer reliable and efficient results as compared to the
other studies in the literature. The R2 of 0.95 for MLPNN-AdaBoost outcomes provides a
more precise estimation of SFRC compressive strength. The ensembled MLPNN-AdaBoost
ML models perform better in predicting compressive strength by utilizing an optimized
model extracted from 20 sub-models, as presented in Figure 18a,b. It can be observed that
ensembled MLPNN-AdaBoost models depict more accuracy and lower error than other
models as well as the models reported in the literature. Despite this, SFRC flexural strength
is estimated by applying ensembled ML techniques in the current study, which intends
to offer reliable and efficient outcomes. The R2 of 0.94 in the case of MLPNN-AdaBoost
results provides a more precise estimation for the compressive strength of SFRC. Out
of 20 sub-models, an optimized model is used to estimate SFRC flexural strength in the
case of ensembled MLPNN-AdaBoost ML models that perform better (Figure 19a,b). In
comparison with other models, the ensembled MLPNN-AdaBoost models show higher
accuracy and lower error.
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Figure 18. Compressive strength sub-models results: (a) MLPNN-AdaBoost; (b) MLPNN-Bagging.
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5. Feature Importance of ML Models for Compressive and Flexural Strength

A thorough explanation is also given in the current research of the ML algorithm
and interactions of considered input features. Different feature importance correlation for
compressive strength of SFRC is shown in Figure 20. It can be observed that the feature
value of cement feature is highest, i.e., 0.46, for SFRC compressive strength estimation.
The cement feature has a positive influence, which means that by enhancing the cement
content, the SFRC compressive strength increases. The SHAP plot (Figure 21) also shows
that cement has the highest impact on SFRC compressive strength. The water feature
has the second highest feature value of 0.26 for SFRC compressive strength; however, it
influences negatively. Increasing the amount of water will reduce the compressive strength
(Figure 21). Thirdly, the main factor for SFRC is silica fume, and this feature has approxi-
mately 0.1 feature value (Figures 20 and 21). Further, the content of silica fume as a feature
is positively influencing the SFRC compressive strength. It means that enhancement in
its content turns into more compressive strength of SFRC. Coarse aggregate is next in
line with a feature value of almost 0.8, but, in this case, the increase in coarse aggregate
content up to optimum content only results in enhanced compressive strength. Beyond
this optimum content of coarse aggregates, the SFRC compressive strength decreases.
This behavior shows coarse aggregates’ positive and negative influence on SFRC com-
pressive strength. Similarly, the feature value for sand, super-plasticizer is next, followed
by steel fiber length, volume and diameter. All these considered features have more or
less the same feature values near zero, showing their minimal impact on compressive
strength of SFRC.
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Similarly, Figures 22 and 23 present the features’ importance correlations and features
and SHAP plot for SFRC flexural strength. In this scenario, it is indicated in Figure 22 that
the volume content of steel fiber has the highest feature value of 0.24 for flexural strength
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prediction of SFRC. It may also be observed from Figure 23 that the enhancing content of
steel fiber volumes is increasing the SFRC flexural strength and vice versa. The second
highest feature value of 0.22 is for coarse aggregates feature in the case of SFRC flexural
strength. At the third level, the water has a feature value of 0.18, but with a negative
influence, which means the enhancement in water content causes a reduction in flexural
strength (Figure 23). Figure 22 depicts that the cement feature has a feature value up to
0.14 and positively influences the flexural strength of SFRC. The higher the cement content,
the more the SFRC flexural strength (Figure 23). Afterwards, the silica fume, an important
feature of SFRC, has a feature value of 0.11 for SFRC flexural strength, which is almost the
same as for compressive strength of SFRC. The enhancing silica fume results in more SFRC
flexural strength (Figure 23). Subsequently, the fine aggregates feature has a feature value
of almost 0.07, followed by the feature values of super-plasticizer, steel fiber diameter, and
length. The same feature values for all these features are nearly zero, depicting their lesser
influence on SFRC flexural strength. The database used in the current study is the base of
this prediction, and highly accurate results can be achieved with added data points.
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This study assessed the compressive and flexural strength of 150 mixture proportions
using 9 input factors with satisfactory performance. A substantially more accurate model
might be generated by increasing the number of datasheets, importing a significantly
larger number of mixes, and taking into account a greater number of input parameters.
In order to increase the quantity of data points and outcomes in future research, it is
recommended that experimental work, field testing, and numerical analysis utilizing a
variety of techniques be employed (e.g., Monte Carlo simulation, among others). To
improve the models’ performance, environmental conditions (such as high temperatures
and humidity) might be incorporated in the input parameters along with a full explanation
of the raw materials. The detailed limitations of machine learning models to estimate the
strength properties of concrete is already reported in the literature [76].
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6. Conclusions

The main aim of the current study is to determine the precision level of soft compu-
tational techniques to estimate SFRC compressive and flexural strengths. The considered
input parameters for said prediction are cement, water, fine aggregate (FA), coarse aggre-
gate (CA), super-plasticizer (SP), silica fume, the volume fraction of steel fiber (Vf SF), SF
length (mm), and SF diameter (mm). The conclusions are as follows:

• As demonstrated by the R2 of 0.95, the MLPNN-AdaBoost technique may be applied
for precise estimation of SFRC compressive strength from its actual dataset. In contrast,
individual ML MLPNN and ensembled MLPNN-Bagging ML models have R2 values of
0.79 and 0.89, respectively, providing satisfactory results for SFRC compressive strength.

• The predicted compressive strength of SFRC is optimized by employing 20 sub-models
from 10 to 200 estimators. SFRC compressive strength is more effectively predicted
by an ensembled model MLPNN than other models. K-fold validation outcomes
show that MLPNN models have lower MAE and RMSE with higher R2 for SFRC
compressive strength than other considered models. The model for having the best
prediction for SFRC compressive strength is MLPNN.

• Statistical checks like RMSE and MAE are used to evaluate the model’s performance.
However, the superiority of MLPNN is demonstrated by its having a higher determina-
tion coefficient and fewer error values for SFRC compressive strength. The MLPNN is the
most effective soft computational technique for predicting SFRC compressive strength.

• The cement content has the highest influence on compressive strength prediction
of SFRC, followed by the contents of water, silica fume, and coarse aggregates, as
revealed from SHAP analysis. The diameter of steel fibers has the least influence on
SFRC compressive strength. The SHAP plot shows that the cement and silica fume
content positively influence the compressive strength of SFRC.

• SFRC flexural strength is accurately predicted from its actual data by the MLPNN-
AdaBoost technique as evident from the R2 of 0.94. However, the R2 of 0.81 and
0.92 in the case of individual MLPNN and ensembled MLPNN-Bagging ML models,
respectively, estimated suitable results for SFRC flexural strength.

• The predicted flexural strength of SFRC is augmented by employing 20 sub models
from 10 to 200 estimators. The more precise estimation of SFRC flexural strength is
come out in case of an ensembled MLPNN model compared to other models. After
applying the k-fold checks, the MLPNN algorithms are come out with higher R2 values
and lower RMSE and MAE values for SFRC flexural strength than other models.

• MLPNN is come out with the best prediction for SFRC flexural strength. RMSE and
MAE statistical checks are applied to evaluate the performance of the model. Similarly,
the higher determination coefficient with lower values of error show the superiority
of MLPNN for the prediction of SFRC flexural strength. Among soft computational
techniques, MLPNN emerged as the most effective technique for the estimation of
SFRC flexural strength.

• It is revealed from SHAP analysis that the volume of steel fiber significantly influenced
the predicted SFRC flexural strength, followed by contents of coarse aggregates, water,
cement, and silica fume. However, the SFRC flexural strength is least influenced
by steel fiber length. The SHAP plot shows that the steel fiber volume positively
influences the flexural strength of SFRC.

Author Contributions: M.N.A.-H.: Funding Acquisition, Resources, Visualization, Writing—reviewing
and editing. M.N.A.: Conceptualization, Funding acquisition, Resources, Project administration, Su-
pervision, Writing-Reviewing and Editing. W.A.: Conceptualization, Data curation, Software, Method-
ology, Investigation, Validation, Writing—original draft. K.K.: Methodology, Investigation, Writing—
Reviewing and Editing. A.A.: Resources, Visualization, Writing-Reviewing and Editing. S.E.: Visu-
alization, Validation. Q.M.S.A.-A.: Visualization, Resources. M.G.Q.: Funding acquisition, Writing—
Reviewing and Editing. All authors have read and agreed to the published version of the manuscript.



Materials 2022, 15, 6928 19 of 21

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for Grad-
uate Studies and Scientific Research, King Faisal University, Saudi Arabia (Project No. GRANT1406),
through its KFU Research Summer Initiative. The APC was also funded by Project No. GRANT1406.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this research have been properly cited and reported
in the main text.

Acknowledgments: The authors acknowledge the Deanship of Scientific Research, Vice Presidency
for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Project No.
GRANT1406), through its KFU Research Summer Initiative. The authors extend their appreciation
for the financial support that made this study possible.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naaman, A.E. High Performance Fiber Reinforced Cement Composites. In High-Performance Construction Materials: Science and

Applications; Shi, C., Mo, Y.L., Eds.; World Scientific Publishing: Singapore, 2008; pp. 91–153.
2. Imam, M.; Vandewalle, L.; Mortelmans, F.; Van Gemert, D. Shear domain of fibre-reinforced high-strength concrete beams. Eng.

Struct. 1997, 19, 738–747. [CrossRef]
3. Furlan, S., Jr.; de Hanai, J.B. Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Compos. 1997, 19, 359–366. [CrossRef]
4. Kene, K.S.; Vairagade, V.S.; Sathawane, S. Experimental study on behavior of steel and glass fiber reinforced concrete composites.

Bonfring Int. J. Ind. Eng. Manag. Sci. 2012, 2, 125–130. [CrossRef]
5. Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different testing methods for assessing the synthetic fiber distribution in cement-based

composites. Constr. Build. Mater. 2018, 184, 128–142. [CrossRef]
6. Khan, M.; Cao, M.; Hussain, A.; Chu, S. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix

interface in cement-based composites. Constr. Build. Mater. 2021, 300, 124046. [CrossRef]
7. Arshad, S.; Sharif, M.B.; Irfan-ul-Hassan, M.; Khan, M.; Zhang, J.-L. Efficiency of supplementary cementitious materials and

natural fiber on mechanical performance of concrete. Arab. J. Sci. Eng. 2020, 45, 8577–8589. [CrossRef]
8. Xie, C.; Cao, M.; Guan, J.; Liu, Z.; Khan, M. Improvement of boundary effect model in multi-scale hybrid fibers reinforced

cementitious composite and prediction of its structural failure behavior. Compos. Part B Eng. 2021, 224, 109219. [CrossRef]
9. Cao, M.; Khan, M. Effectiveness of multiscale hybrid fiber reinforced cementitious composites under single degree of freedom

hydraulic shaking table. Struct. Concr. 2021, 22, 535–549. [CrossRef]
10. Khan, U.A.; Jahanzaib, H.M.; Khan, M.; Ali, M. Improving the tensile energy absorption of high strength natural fiber reinforced

concrete with fly-ash for bridge girders. Key Eng. Mater. 2018, 765, 335–342. [CrossRef]
11. Khan, M.; Cao, M.; Ai, H.; Hussain, A. Basalt Fibers in Modified Whisker Reinforced Cementitious Composites. Period. Polytech.

Civ. Eng. 2022, 66, 344–354. [CrossRef]
12. Zhang, N.; Yan, C.; Li, L.; Khan, M. Assessment of fiber factor for the fracture toughness of polyethylene fiber reinforced

geopolymer. Constr. Build. Mater. 2022, 319, 126130. [CrossRef]
13. Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203,

174–187. [CrossRef]
14. Ramakrishnan, V.; Wu, G.Y.; Hosalli, G. Flexural fatigue strength, endurance limit and impact strength of fiber reinforced

concretes. Transp. Res. Rec. 1989, 1226, 17–24.
15. Gupta, S.; Rao, V.K.; Sengupta, J. Evaluation of polyester fiber reinforced concrete for use in cement concrete pavement works.

Road Mater. Pavement Des. 2008, 9, 441–461. [CrossRef]
16. Sinha, D.; Mishra, C.; Solanki, R. Comparison of normal concrete pavement with steel fiber reinforced concrete pavement. Indian

J. Appl. Res. 2014, 4, 233–235. [CrossRef]
17. Khan, M.; Cao, M.; Chu, S.; Ali, M. Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding

conditions. Constr. Build. Mater. 2022, 322, 126340. [CrossRef]
18. Li, L.; Khan, M.; Bai, C.; Shi, K. Uniaxial tensile behavior, flexural properties, empirical calculation and microstructure of

multi-scale fiber reinforced cement-based material at elevated temperature. Materials 2021, 14, 1827. [CrossRef]
19. Khan, M.; Cao, M.; Xie, C.; Ali, M. Hybrid fiber concrete with different basalt fiber length and content. Struct. Concr. 2022, 23,

346–364. [CrossRef]
20. Khan, M.; Cao, M.; Xie, C.; Ali, M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud.

Constr. Mater. 2022, 16, e00941. [CrossRef]
21. Purkiss, J. Steel fibre reinforced concrete at elevated temperatures. Int. J. Cem. Compos. Lightweight Concr. 1984, 6, 179–184.

[CrossRef]

http://doi.org/10.1016/S0141-0296(96)00150-2
http://doi.org/10.1016/S0958-9465(97)00031-0
http://doi.org/10.9756/BIJIEMS.1617
http://doi.org/10.1016/j.conbuildmat.2018.06.207
http://doi.org/10.1016/j.conbuildmat.2021.124046
http://doi.org/10.1007/s13369-020-04769-z
http://doi.org/10.1016/j.compositesb.2021.109219
http://doi.org/10.1002/suco.201900228
http://doi.org/10.4028/www.scientific.net/KEM.765.335
http://doi.org/10.3311/PPci.18965
http://doi.org/10.1016/j.conbuildmat.2021.126130
http://doi.org/10.1016/j.conbuildmat.2019.01.103
http://doi.org/10.1080/14680629.2008.9690127
http://doi.org/10.15373/2249555X/August2014/60
http://doi.org/10.1016/j.conbuildmat.2022.126340
http://doi.org/10.3390/ma14081827
http://doi.org/10.1002/suco.202000472
http://doi.org/10.1016/j.cscm.2022.e00941
http://doi.org/10.1016/0262-5075(84)90006-X


Materials 2022, 15, 6928 20 of 21

22. Patil, S.P.; Sangle, K.K. Tests of steel fibre reinforced concrete beams under predominant torsion. J. Build. Eng. 2016, 6, 157–162.
[CrossRef]

23. Noaman, A.T.; Bakar, B.A.; Akil, H.M.; Alani, A. Fracture characteristics of plain and steel fibre reinforced rubberized concrete.
Constr. Build. Mater. 2017, 152, 414–423. [CrossRef]

24. Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S. Flexural behaviour of steel fibre-reinforced concrete under cyclic
loading. Constr. Build. Mater. 2016, 126, 253–262. [CrossRef]

25. Gholamhoseini, A.; Khanlou, A.; MacRae, G.; Scott, A.; Hicks, S.; Leon, R. An experimental study on strength and serviceability
of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs. Eng. Struct. 2016, 114, 171–180. [CrossRef]

26. Xu, M.; Bao, Y.; Wu, K.; Xia, T.; Clack, H.L.; Shi, H.; Li, V.C. Influence of TiO2 incorporation methods on NOx abatement in
Engineered Cementitious Composites. Constr. Build. Mater. 2019, 221, 375–383. [CrossRef]

27. Shang, M.; Li, H.; Ahmad, A.; Ahmad, W.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Majka, T.M. Predicting the Mechanical
Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Materials 2022, 15, 647. [CrossRef]

28. Ahmad, A.; Ahmad, W.; Chaiyasarn, K.; Ostrowski, K.A.; Aslam, F.; Zajdel, P.; Joyklad, P. Prediction of Geopolymer Concrete
Compressive Strength Using Novel Machine Learning Algorithms. Polymers 2021, 13, 3389. [CrossRef]

29. Zheng, D.; Wu, R.; Sufian, M.; Kahla, N.B.; Atig, M.; Deifalla, A.F.; Accouche, O.; Azab, M. Flexural Strength Prediction of Steel
Fiber-Reinforced Concrete Using Artificial Intelligence. Materials 2022, 15, 5194. [CrossRef]

30. Chaabene, W.B.; Flah, M.; Nehdi, M.L. Machine learning prediction of mechanical properties of concrete: Critical review. Constr.
Build. Mater. 2020, 260, 119889. [CrossRef]

31. Ramadan Suleiman, A.; Nehdi, M.L. Modeling self-healing of concrete using hybrid genetic algorithm–artificial neural network.
Materials 2017, 10, 135. [CrossRef]

32. Xu, Y.; Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Dudek, M.; Aslam, F.; Joyklad, P. Computation of High-Performance Concrete
Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. Materials 2021, 14, 7034. [CrossRef]

33. Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by
improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [CrossRef]

34. Al-Shamiri, A.K.; Yuan, T.-F.; Kim, J.H. Non-tuned machine learning approach for predicting the compressive strength of
high-performance concrete. Materials 2020, 13, 1023. [CrossRef] [PubMed]

35. Dingqiang, F.; Rui, Y.; Zhonghe, S.; Chunfeng, W.; Jinnan, W.; Qiqi, S. A novel approach for developing a green Ultra-High
Performance Concrete (UHPC) with advanced particles packing meso-structure. Constr. Build. Mater. 2020, 265, 120339. [CrossRef]

36. Fan, D.; Yu, R.; Shui, Z.; Wu, C.; Song, Q.; Liu, Z.; Sun, Y.; Gao, X.; He, Y. A new design approach of steel fibre reinforced ultra-high
performance concrete composites: Experiments and modeling. Cem. Concr. Compos. 2020, 110, 103597. [CrossRef]

37. Marani, A.; Nehdi, M.L. Machine learning prediction of compressive strength for phase change materials integrated cementitious
composites. Constr. Build. Mater. 2020, 265, 120286. [CrossRef]

38. Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning.
Constr. Build. Mater. 2018, 175, 562–569. [CrossRef]

39. Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. A hybrid intelligent system for designing optimal proportions of recycled
aggregate concrete. J. Clean. Prod. 2020, 273, 122922. [CrossRef]

40. Han, T.; Siddique, A.; Khayat, K.; Huang, J.; Kumar, A. An ensemble machine learning approach for prediction and optimization
of modulus of elasticity of recycled aggregate concrete. Constr. Build. Mater. 2020, 244, 118271. [CrossRef]

41. Behnood, A.; Golafshani, E.M. Machine learning study of the mechanical properties of concretes containing waste foundry sand.
Constr. Build. Mater. 2020, 243, 118152. [CrossRef]

42. Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K. New
Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubes: An Evolutionary Approach. Crystals 2020,
10, 741. [CrossRef]

43. Zhu, Y.; Ahmad, A.; Ahmad, W.; Vatin, N.I.; Mohamed, A.M.; Fathi, D. Predicting the Splitting Tensile Strength of Recycled
Aggregate Concrete Using Individual and Ensemble Machine Learning Approaches. Crystals 2022, 12, 569. [CrossRef]

44. Iftikhar, B.; Alih, S.C.; Vafaei, M.; Elkotb, M.A.; Shutaywi, M.; Javed, M.F.; Deebani, W.; Khan, M.I.; Aslam, F. Predictive modeling
of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. J. Clean. Prod.
2022, 348, 131285. [CrossRef]

45. Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P. Compressive strength prediction of fly ash-based geopolymer concrete via
advanced machine learning techniques. Case Stud. Constr. Mater. 2022, 16, e00840. [CrossRef]
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