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Abstract: Closed-cell metal syntactic foam is a new material consisting of hollow spheres embedded
in metal matrix syntactic foams. These foams have good physical and mechanical properties and
are increasingly used worldwide in industrial and high-tech fields. Magnesium matrix syntactic
foams containing hollow Al2O3 spheres ((Al2O3hs)/AZ91D) were successfully fabricated by hot press
sintering at different temperatures. The fabrication of Al2O3hs/AZ91D and the effect of sintering tem-
perature on the microstructure and properties are reported in this paper. Additionally, sandwiched
magnesium matrix syntactic foams were prepared by placing magnesium plates on both sides of the
syntactic foam. Some Al2O3hs particles became filled with matrix particles during preparation. Thus,
the actual density was greater than the theoretically calculated value and increases with increasing
sintering temperature. Above 723 K, a brittle phase MgAl2O4 formed in Al2O3hs/AZ91D. The qua-
sistatic and dynamic compressive strengths of Al2O3hs/AZ91D first increased and then decreased
with increasing sintering temperature, and the maximums were 162 MPa and 167.87 MPa, respec-
tively. Thus, this paper reports a new strategy for the controlled preparation of metal matrix syntactic
foams with predetermined porosity. The results show that this strategy improved the performance of
lightweight and high-strength syntactic foam materials and shows potential for further research.

Keywords: hollow spheres; Al2O3; metal matrix syntactic foams; powder metallurgy

1. Introduction

Metal matrix syntactic foams (MMSFs) are synthesized by dispersing hollow particles
in a metallic matrix. The hollow particles provide these materials with closed-cell structures
and make them more lightweight compared to the matrix alloy [1,2]. The properties of
the two materials are combined in MMSFs, including high specific strength and specific
stiffness, low density, outstanding compressive properties, and excellent energy absorption
capability compared to conventional open- and/or closed-cell metallic foams [3–5]. As a
consequence, MMSFs are used as energy absorbers, e.g., bumpers to protect automobiles
against impacts and crashes, protective skins on military vehicles, and hull materials for
deep sea applications and aeronautics [4].

MMSFs can be produced by stir casting [6–8], pressure infiltration [5,9–11], powder
metallurgy (PM) [4,12–14], and so on. Pressure infiltration and stir casting are common
ways to fabricate MMSFs in which the matrix is in the liquid stages [2]. During stir casting,
the matrix material is melted and preheated, and cenospheres are added in relatively small
quantities under continuous stirring [11,15]. Although this method is relatively simple,
there is the potential for the cenospheres to fracture during mixing. Thus, this method is
only suitable for producing MMSFs with a low volume fraction of cenospheres. Compared
to the theoretical volume fraction, a lower volume fraction of filling material can always be
achieved. The disadvantages of pressure infiltration are the need for complex production
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equipment, difficult process of producing MMSFs with different volume fractions of ceno-
spheres, and potential for cenospheres to be crushed or become filled with the matrix as
the infiltration pressure exceed their fracture strength [11,15].

The powder metallurgy method is the most suitable for fabricating MMSFs [4,12,13,16,17].
Its most important advantage is its low processing temperature, a condition not shared by
the melting technique which prevents the reaction of the matrix with the reinforcement to
form undesired phases. Moreover, hollow particles are easily and uniformly distributed
throughout the matrix. Guo and Rohatgi [18] first attempted to produce and evaluate
MMSFs prepared by PM while using fly ash particles as a reinforcement. Their study
demonstrated that the proper selection of the compacting pressure played a vital role in the
PM of cenosphere MMSFs. Neville and Rabiei [1] used steel particles and cenospheres as
reinforcements to produce a new type of MMSF with better mechanical properties than
many existing foams.

Common filling materials [19] include fly ash [10,20–23], SiC hollow spheres [24], ceno-
spheres [4,25–28], glass microspheres [29–32], expanded perlite [33–35], and pumice [36].
However, there have been few studies on the use of Al2O3hs as filling material to fabricate MMSFs.

In this study, Al2O3hs/AZ91D syntactic foams were sintered at 663, 693, 723, and 753 K
by the hot press sintering method, and the structural properties of Al2O3hs/AZ91D were
investigated by using the optical microscopy (OM), scanning electron microscopy (SEM),
X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS) techniques. To
further improve the strength of the syntactic foams, the interface between the syntactic
foams and magnesium plates added on both sides of the MMSFs were studied. Here, the
controlled preparation of metal matrix syntactic foams with predetermined porosity was
reported to strengthen the lightweight and high-strength syntactic foam materials.

2. Materials and Methods
2.1. Fabrication of the Al2O3hs/AZ91D Syntactic Foams

In this study, Al2O3 hollow spheres (Al2O3hs, α-Al2O3 crystal, 600–850 µm, wall
thickness of about 40 µm, Ruizi Technology Co., Ltd. in Beijing, China) and commercial
AZ91D (1.69 g/cm3, ≤325 mesh, Weihao New Materials Co., Ltd. in Tangshan, China) were
used as the filling and matrix materials, respectively, to prepare lightweight syntactic foam.
The microstructures of Al2O3hs and AZ91D are shown in Figures 1 and 2. A few spherical
shells with small holes and fragments were observed. The main components of AZ91D are
listed in Table 1. DV (10), DV (50), and DV (90) are listed in Table 2, and DV (50) = 758 µm.
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Table 1. Composition of the AZ91D alloy (mass fraction, %).

Al Cu Fe Mn Ni

8.90 0.0006 0.0112 0.19 0.0030

Si Zn Be Impurities Mg

0.0030 0.0030 0.00098 0.001 Bal.

Table 2. Particle size distribution of Al2O3hs.

Item Category DV (10)/µm DV (50)/µm DV (90)/µm

Al2O3hs Volume fraction 575 758 1010

Syntactic powders with 60 vol% Al2O3hs were mixed in a high-speed vibrating ball mill
eccentric swing for 30 min without ball, to avoid crushing the Al2O3hs. Then, hybrid pow-
ders were loaded into a cylindrical graphite mold with an interior hole (diameter 30 mm)
and hot pressed at a set temperature (663, 693, 723, 753 K) and pressure of 25 MPa for 1 h at
a heating rate of 10 K/min in Ar-protective atmosphere. The hot press sample was cooled
naturally in the furnace (Chenhua Science Technology Corp., Ltd. in Shanghai, China).

2.2. Characterization Methods

Specimens for the microstructural observations were prepared using standard met-
allographic procedures, including grinding, polishing, and etching. An Olympus optical
microscope was used to observe the Al2O3hs/AZ91D syntactic foam microstructures and
the distribution of Al2O3hs. The microstructural properties were characterized using an
X-ray diffractometer (Rigaku SmartLab, in Osaka, Japan) with a Cu Ka radiation source
(I = 1.54056 A) at a scanning speed of 5◦/min in the 2θ range of 10–90◦ and a scanning
electron microscope (FEI Quanta 250 FEG; in Hillsboro, USA) equipped with an Oxford
Instrument energy dispersive X-ray detector (Bruker Quantax 200 XFlash 6|30; in Hills-
boro, OR, USA). The specimens were freeze-fractured and sputter-coated with gold before
SEM was performed. The quasistatic compressive strength was measured by a univer-
sal testing machine (CMT5205, MTS Systems (China) Co. Ltd., Shenzhen, China) with a
constant nominal crosshead speed of 1 mm/min, according to the international standard
ISO13314. Dynamic compression was undertaken using a split Hopkinson pressure bar
(SHPB) prepared by Luoyang Levi Technology, as shown in Figure 3, and the air pressure
was 0.5–0.75 MPa. The lengths of the striker, incident bar, and transmission bar were
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1000 mm, 2500 mm, and 2500 mm, respectively. The specimen was sandwiched between
the incident bar and transmission bar. Moreover, since the stress wave transmitted from
the sample into the transmission bar was too small, the semiconductor strain gages were
adopted to record the weak transmission waves, with the sensitivity coefficient of 2.08–2.11.
The strain histories recorded by strain gauges fixed on the incident and transmission bars
were converted to the stress–strain curve. The energy absorption efficiency was determined
to investigate the variation in compressive deformation resistance using Equation (1):

We =

∫ 0.5
0 δdε

0.5× σmax
(1)

where σmax is the maximum stress observed up to a strain of ε = 0.5.
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Figure 3. Schematic diagram of the SHPB setup: 1—launcher, 2—launch gun barrel, 3—speedometer,
4—strain gauge, 5—incident bar, 6—sample platform, 7—transmitted bar, 8—damping bar,
9—damper, 10—slideway, and 11—base.

3. Results
3.1. Optical Macrostructure and Microstructure of the Al2O3hs/AZ91D Syntactic Foam

Figure 4 shows optical metallographic pictures of 60 vol% Al2O3hs/AZ91D prepared
at a sintering pressure of 25 MPa and sintering temperatures of 663, 693, 723, and 753 K. As
shown in Figure 4, the hollow spheres were round and evenly distributed in the matrix. In
this group of experiments, Al2O3hs with particle sizes of mostly 425–600 µm was observed.
The particle size fluctuation shown in Figure 4a,b was small. In Figure 4c, some small
hollow spheres of Al2O3hs were visible, and the particle size fluctuated greatly due to the
normal size distribution of the Al2O3hs hollow spheres. A very small number of small
Al2O3hs hollow spheres was observed, as shown in Figure 4. Figure 4d shows that the
fluctuation in the size was small, and some Al2O3hs fragments were observed. Figure 4c, d
are compared with Figure 4a,b at sintering temperatures of 723 and 753 K, and the results
show that the wall thickness of Al2O3hs was uneven and fluctuated greatly due to the
interfacial reaction between Al2O3hs and the matrix. Figure 4a,b show that at 663 and 693 K,
the size fluctuation of the matrix and the sizes of the Al2O3hs/AZ91D are small. Compared
with Figure 4a,b, the matrix particles in Al2O3hs/AZ91D increases in size when prepared at
663 and 693 K. Additionally, in Figure 4d, some of the hollow spheres are filled with matrix
particles. This is due to the incomplete shell or pores in the hollow spheres. During the
powder mixing process, matrix particles filled the hollow spheres and were then sintered
by hot pressing. In addition, bright dendritic precipitates were observed in the cavities
of hollow spheres filled with matrix particles, as shown in Figure 5. Moreover, there are
some bright precipitates in the matrix outside the hollow spheres. Figure 6 shows the XRD
results. According to the previous literature [37], SiO2 and Al2O3, the major constituents of
the hollow spheres, can react with Mg and Al, according to Equations (2) and (3), forming
the MgAl2O4 phase. Furthermore, the distributions of Al, Mg, Si, and O at 693 K are shown
in Figure 7. Figure 7 shows that elemental diffusion occurred between the Al2O3hs and
AZ91D matrix, and there is a narrow transition layer on the contact surface. Besides that,
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the main elements are distributed uniformly in the matrix, indicating no other second
phase forming.

3Mg(l) + Al2O3(s)→ 3MgAl2O4(s) + 2Al(l) ∆G1000K = −2576 kJ mol−1 (2)

Mg(l) + 2Al(l) + 2SiO2(s)→ MgAl2O4 (s) + 2Si(s) ∆G1000K = −440.7 kJ mol−1 (3)

(l = liquid and s = solid).
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3.2. Density of the Al2O3hs/AZ91D syntactic foam

Figure 8 shows the density of Al2O3hs/AZ91D syntactic foam at temperatures of 663,
693, 723, and 753 K. The actual density of Al2O3hs/AZ91D syntactic foam was positively
correlated with the sintering temperature. The actual density of the Al2O3hs/AZ91D
sintered at 663 K was 1.661 g/cm3. Thus, the higher the temperature was, the stronger
the plastic mobility of the AZ91D matrix. Under pressure, the matrix flow filled the pores
in the syntactic foams, thus increasing their density. With increasing temperature, the
density increased gradually. The actual density of the Al2O3hs/AZ91D sintered at 753 K
was 1.861 g/cm3. The linear equation obtained by fitting the data for the actual density vs.
temperature was:

y = 0.00221x + 0.7879 (4)

where y is the actual density of the MMSFs and x is the sintering temperature of the MMSFs.
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3.3. Compressive Properties of the Al2O3hs/AZ91D Syntactic Foam
3.3.1. The Quasistatic Compressive Properties of the Al2O3hs/AZ91D Syntactic Foam

Figure 9 shows the quasistatic compressive strength of the Al2O3hs/AZ91D syntactic
foam at different sintering temperatures. With increasing sintering temperature, the com-
pressive strength of Al2O3hs/AZ91D first increased and then decreased, and the maximum
value was obtained at 693 K. The quasistatic compressive strength of the Al2O3hs/AZ91D
syntactic foam sintered at 663 K reached 120 MPa due to the weak bonding at relative
low temperatures. With increasing sintering temperature, the compressive strength of the
Al2O3hs/AZ91D syntactic foam gradually increased. The maximum value was 167 MPa
for Al2O3hs/AZ91D sintered at 693 K. With a further increase in the sintering temperature,
the compressive strength of the Al2O3hs/AZ91D syntactic foam decreased gradually to
97 MPa for Al2O3hs/AZ91D sintered at 753 K. According to the XRD pattern in Figure 6,
many brittle MgAl2O4 phases formed at 723 and 753 K. Under loading, the brittle phase
was the first to break, which led to a decrease in the quasistatic compressive strength of the
Al2O3hs/AZ91D syntactic foam prepared at 723 and 753 K. Compared with the data in the
literature [4,6,25,37–47], the performance of the present Al2O3hs/AZ91D syntactic foam is
much better.
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Figure 10 shows the quasistatic compression fracture morphology of the Al2O3hs/AZ91D
syntactic foams prepared at different sintering temperatures of 663 K, 693 K, 723 K, and
753 K. Figure 10a,b show that for the Al2O3hs/AZ91D sintered at 663 K and 693 K, many
Mg particles in the fracture morphology were polygonal in the rectangle remarked as A, B
area, and each surface of the polygon was relatively flat with a large number of dimples.
The Al2O3hs microspheres in the matrix broke from the lower section, leaving residual
Al2O3hs microspheres. With an increase in sintering temperature, the Al2O3hs/AZ91D
sintered at 723 K and 753 K retained the small dimples caused by the many Mg particles in
the fracture morphology. However, the color of the dimple surface was brighter due to the
brittle phase MgAl2O4 in the Al2O3hs/AZ91D syntactic foam formed during the hot press
sintering process.
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3.3.2. Dynamic Compact Properties of the Al2O3hs/AZ91D Foams

The specific values of the compression properties are shown in Table 3, according
to Equation (1). The yield strength and compressive strength of the Al2O3hs/AZ91D
prepared at 663 K were 143.5 MPa and 139.5 MPa, respectively. The yield strength and
compressive strength reached maximum values of 167.87 MPa and 156.10 MPa, respectively,
at 693 K. At a sintering temperature of 753 K, the yield strength and compressive strength of
Al2O3hs/AZ91D exhibited their minimum values of 112.5 MPa and 98.85 MPa, respectively.

Figure 11 shows the fracture morphology of the Al2O3hs/AZ91D syntactic foams
sintered at different temperatures. As shown in Figure 11a, for the Al2O3hs/AZ91D sintered
at 663 K, some Al2O3hs microspheres were removed and holes appeared in the matrix;
some Al2O3hs microspheres were broken in the middle, and fragments of the damaged
Al2O3hs microspheres were left. Additionally, as the matrix broke, many dimples remained.
As shown in Figure 11b, at 693 K, as the Al2O3hs/AZ91D bore the load, a crack expanded
to the connection between the matrix and Al2O3hs microspheres. Due to the weak bonding
between the matrix and Al2O3hs microspheres, the crack bypassed the Al2O3hs microspheres
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and pulled them out of the matrix. In the Al2O3hs/AZ91D sintered at 723 K and 753 K, many
dimples remained in the matrix, and the surface color of the dimples was bright, which was
mainly related to the brittle MgAl2O4 phase formed during the hot press sintering process.
Therefore, during the high-frequency impact of Al2O3hs/AZ91D, the fracture mechanism
of the matrix of Al2O3hs/AZ91D syntactic foam was mainly ductile fracture, while that of
the microspheres was brittle fracture.

Table 3. Compressive properties of Al2O3hs/AZ91D.

Temperature/◦C Yield
Strength/MPa

Compressive
Strength/MPa Strain/% Energy Absorption

(ε = 2%)/MJ·mm−3
Energy Absorption
(ε = 6%)/MJ·mm−3

663 143.5 139.5 7 4.18 —
693 167.87 156.10 15 8.54 10.07
723 135.6 132.5 12 5.35 8.83
753 112.5 98.85 9 3.28 5.53
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Figure 11. Fracture morphology at cross section of the Al2O3hs/AZ91D syntactic foams prepared at
different sintering temperatures after dynamic compact: (a) 663 K, (b) 693 K, (c) 723 K, and (d) 753 K.

3.4. Research on the Preparation and Properties of Sandwiched Magnesium Matrix Syntactic
Foams (Plates Added)

Based on Sections 3.1–3.3, AZ91D magnesium plates (Guangzhou Hongqi Metal Co.,
Ltd., Guangzhou, China) with different thicknesses were placed on both sides of the
Al2O3hs/AZ91D syntactic foam layers to prepare sandwiched Mg matrix syntactic foams
at 693 K and 20 MPa. The preparation process is shown in Table 4, and a schematic diagram
is shown in Figure 12, followed by the influence of the thickness of both sides on the density
and compressive strength of the sandwiched syntactic foams.
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Table 4. Preparation of the sandwiched magnesium matrix syntactic foams.

No. Volume
Fraction/%

Sintering
Pressure/MPa

Sintering
Temperature/◦C

Thickness of the Mg
Plates/mm

#1 70 15 573 K /1 h–693 K /1 h 0.8
#2 70 15 573 K /1 h–693 K /1 h 2
#3 70 15 573 K /1 h–693 K /1 h 3
#4 70 15 573 K /1 h–693 K /1 h 5
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Figure 12. Schematic diagram of the sandwiched magnesium matrix syntactic foams.

Figure 13 shows the relationship between the density of the sandwiched magnesium
matrix syntactic foam and the thickness of both end plates. As shown in Figure 13, the
density of the sandwiched syntactic foam material was 1.263 g/cm3 with a thickness of
0.8 mm. The strength of the sandwiched syntactic foam increased with increasing thickness
of both end plates. As the thickness of both plates increased to 5 mm, the density of the
sandwiched syntactic foam reached 1.706 g/cm3. The density depends on the properties of
the sandwiched syntactic foam. The density of the AZ91D magnesium plate on both sides
is higher than that of the sandwiched structure, but the inner part of the sandwich retained
the same structure, density, and other properties. With the increase in thickness of both
plates, the overall density of the sandwiched syntactic foam gradually increased.
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Figure 14 is a diagram of the relationship between the quasistatic compression of the
sandwiched magnesium matrix syntactic foam and the thickness of both plates. According
to Figure 14, the quasistatic compressive strength of the sandwiched syntactic foam was
45 MPa when the thickness of the two sides was 0.8 mm. The strength of the sandwiched
syntactic foam increased with increasing thickness of both plates. When the thickness of
both plates was increased to 5 mm, the strength of the sandwiched syntactic foam reached
120.2 MPa, which was approximately three times that when the plates were 0.8 mm thick,
and twice that of VF460 (62.7 MPa) and RR30 (59.4 MPa) [48]. However, the strength of the
sandwiched syntactic foam in this study differed from the ideal strength. Thus, this paper
reports a new strategy for the controlled preparation of metal matrix syntactic foams with
predetermined porosity and improvement of the performance of syntactic foam materials
for further research.
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Figure 14. Quasistatic compression of sandwiched magnesium syntactic foam with different thick-
nesses of the two side plates.

Gupta [48] and Orbulov [49] studied three typical fracture modes (A’, B’, and C’) of
MMSFs. The first two (A’ and B’) were related to the formation of compression cones at the
top and bottom of the specimen at approximately 30◦ and 45◦, respectively. A shear plane
is formed at the top of the wall. The third mechanism (C’) was related to the initiation of
failure along some weak planes transverse to the applied compressive load.

Figure 15 shows the characteristics of longitudinal cracks at the bottom of the spec-
imen during compression. With an increase in deformation, the cracks in the syntactic
foams started from the bottom, and the outer wall separated from the main body, exposing
the inner core of the material (Figure 15b,c). This behavior was related to the uneven
density distribution of the sandwiched syntactic foams. The density of the AZ91D magne-
sium plates at the bottom of the sandwiched syntactic foam was greater than that of the
Al2O3hs/AZ91D syntactic foam. The density of the sandwiched Al2O3hs/AZ91D syntactic
foam was less than that of the Al2O3hs/AZ91D syntactic foam. Some studies have shown
that contact between hollow microspheres is beneficial to the growth of syntactic foams
at 30◦ and 45◦, where fracture cracks form [5,50]. In this case, when under strain, a 30◦

shear plane formed inside the Al2O3hs/AZ91D syntactic foam, indicating brittle fracture of
the material. As compression continued, the fracture of the material gradually progressed
from the bottom to the top, and the dense part of the sample (with uniform porosity)
deformed along with the appearance of a 30◦ shear plane. In this process, Al2O3hs bore the
load and gradually broke, layer by layer, while absorbing a large amount of energy. As a
result, the upper region of the specimen was nearly unaffected. Due to the low porosity
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of these regions and sufficient bonding between the matrix and Al2O3hs particles, the best
deformation response was obtained.
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4. Conclusions

In this study, Al2O3hs/AZ91D was successfully prepared by a sintering method involv-
ing hot pressing. The effects of sintering temperature on the microstructure and mechanical
properties of Al2O3hs/AZ91D syntactic foam were studied. The main conclusions are as
follows: Al2O3hs was distributed uniformly in the AZ91D matrix, and some Al2O3hs micro-
spheres were filled with matrix particles. The actual density increases with the sintering
temperature. With increasing sintering temperature, a brittle MgAl2O4 phase is formed
in Al2O3hs/AZ91D. In quasistatic compression and high-speed dynamic impact tests, the
compressive strength of Al2O3hs/AZ91D first increased and then decreased with increasing
sintering temperature. The matrix of the Al2O3hs/AZ91D syntactic foam mainly under-
went ductile fracture, while Al2O3hs underwent brittle fracture. Cracks extended around
the Al2O3hs microspheres and left a large number of exposed Al2O3hs microspheres or
vacancies in the fracture morphology. The sintering temperature of 693 K was the optimum
preparation condition for Al2O3hs/AZ91D. Regarding the sandwiched magnesium matrix
syntactic foam, as the thickness of both side plates was gradually increased, the overall
density and strength increased. In the quasistatic compression process, the fracture of
the sandwiched Mg-based syntactic foam started from the weak interface at the bottom
near the magnesium plate and moved gradually towards the top. The outer wall of the
sandwich layer was separated from the foam body (core) and then cracking proceeded
from the bottom to the top.

Compared with the substantial progress in technologies for traditional open-cell
syntactic foam composites by development of foaming methods and foaming agents, re-
search on closed-cell syntactic foams has progressed slowly. At present, the fabrication
of lightweight and high-strength syntactic foams using state-of-the-art technology is the
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most critical task for broad commercial applications. Future studies should focus on fun-
damental systematic engineering research, such as the controlled preparation of syntactic
foams with predetermined porosity, according to the need for practical strength. Specif-
ically, lightweight and high-strength syntactic foams are another opportunity to meet
requirements for net zero carbon emissions. Therefore, using advanced design concepts
for the controlled preparation of syntactic foams with predetermined porosity and greater
mechanical strength will be a promising area for future work.
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