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Abstract: A new type of Filament Wound Profiles (FWPs) have been applied to strengthen the
deformed stagger-jointed segmental tunnel linings, and a full-scale test was carried out on the ultimate
bearing capacity of the linings that are strengthened by the new FWPs. The failure phenomena and
the main experimental results were obtained, including the load-displacement curve, strain and bond
failure. The internal forces of the FWPs in the strengthened lining were calculated and discussed. The
failure chain and weak sections of the strengthened lining were discussed. The overall strengthening
benefits were summarized. The results show that: (1) The FWPs were in the state of compression
bending or tension bending, and bore part of the axial force and bending moment in the strengthened
lining. (2) The initial failure of the strengthened linings was caused by the bond failure between
the FWPs and the concrete linings at 0◦. (3) The filament wound profiles strengthening method
can effectively improve the ultimate bearing capacity and stiffness of the stagger-jointed shield
tunnel linings.

Keywords: stagger-jointed shield tunnel linings; filament wound profiles; full-scale test; strengthening
ling; failure mechanism

1. Introduction

The number of tunnel diseases that are found in metro shield tunnel linings are
gradually increasing with the dual effects of the natural environment and the service that
they provide. Through long-term monitoring and investigation, the diseases of the metro
shield tunnel linings include the leakage of water, the cracking and spalling of concrete and
the longitudinal settlement and circumferential convergence of the tunnel [1–3]. Among
them, the excessive circumferential convergence of the tunnel is one of the most important
diseases endangering its structural safety, and the large deformation of the tunnel threatens
the tunnel clearance. The purpose of shield tunnel strengthening is to improve the rigidity
of it to ensure that the linings will not be excessively deformed, improve the bearing
capacity and prevent the lining from collapsing.

The internal support is added to improve the overall bearing capacity and rigidity of
the tunnel linings with large circumferential convergence, and the materials that are used
include fiber-reinforced polymer (FRP) [4], steel plates [5–7] and ultra-high-performance
concrete (UHPC) [8]. The FRP is pasted on the intrados of the linings to work together with
the segments. However, with its one-way tensile property, the FRP can only be applied to
the intrados’ tensile zone of the concrete linings. The thickness of FRP is only 0.2 mm, and
the steel plate thickness is 20 mm. Therefore, the benefits of the rigidity and bearing capacity
improvement of the FRP strengthening method are much lower than that of the steel plates
strengthening method. Steel plates have been used in practical projects in Britain [9],
Japan [10], Shanghai [11], Taiwan and China [12]. Liu [5] carried out a full-scale test on the
deformed continuous-jointed shield tunnels that were strengthened by epoxy-bonded steel
plates, and they obtained the conclusion that the failure of the bonding surface between
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the steel plate and the concrete lining was the key point for the failure of the strengthened
linings. The test proved that the steel plates could greatly improve the rigidity and bearing
capacity of the deformed tunnel. However, the self-weight of the steel plates is so high that
the construction procedure needs to employ hoisting machine whose transportation takes
much time, while the steel plates also need to be welded during construction. Therefore,
the construction efficiency of the steel plates is insufficient. Liu [8] carried out full-scale
tests on UHPC-strengthened continuous-jointed shield tunnel linings. The tests proved that
UHPC could improve the rigidity and bearing capacity of the deformed segmental tunnel
linings, and the failure of them was controlled by the joints. However, the construction
efficiency of the UHPC method is low because the UHPC method requires formwork and
long-term curing.

In order to increase the efficiency of the strengthening construction process, Liu [13]
proposed a new strengthening method which was denoted as the epoxy-bonded FWP
method, and a full-scale study was carried out to test the effect that it had on the continuous-
jointed shield tunnel. However, there is no report about the FWP method having strength-
ening benefits on staggered-jointed shield tunnels, and there is no discussion on the work
mechanism of FWPs in tunnel linings.

The basic information of the FWP is summarized in the present paper first, then,
the full-scale test is carried out in which a new type of FWP is applied to strengthen the
deformed stagger-jointed shield tunnels. Finally, the work mechanism of the FWPs, the
failure chain and the weak sections of the strengthened linings are analyzed, and the
strengthening benefits are summarized.

2. Filament Wound Profiles

FWPs refers to concrete-filled CFRP-steel tube (CFRP-CFST) column members that are
used in building structures [14]. Within this, the steel tube is used as the outer reinforcement
of the concrete; CFRP can effectively delay the local buckling of the steel tube and improve
the bearing capacity and durability. The combination of CFRP and the steel tube can make
up for the lack of ductility of concrete. The CFRP-wrapped steel tubes are light in weight,
and the non-grouted FWPs can be fixed by a manual operation which means that all of
the deformed linings of one tunnel could have the non-grouted FWPs applied to them
as internal supports at the same time, and then, the FWPs can be formed after pressure
grouting is performed. Therefore, FWP not only makes use of the characteristics of different
materials, but also improves the efficiency of the strengthened construction.

For the FWPs that are used in this full-scale test, the CFRP layer is designed conceptu-
ally. As shown in Figure 1, the steel tubes are wrapped with six layers along the steel tube
direction and three layers along the circumferential direction. The CFRP along the circum-
ferential direction of the steel tubes can effectively limit the local buckling effect and the
bulging deformation of the steel tubes when the FWPs are compressed. The longitudinal
CFRP can work together with the steel tubes to bear the tensile stress when the FWPs are
subjected to bending or tension. The test was carried out and mechanical properties of the
FWPs were obtained [15].
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Figure 1. The CFRP pavement design of FWP.

3. Full-scale Experiment
3.1. Experimental Program
3.1.1. Strengthening Method

The epoxy-bonded FWP strengthening method is illustrated in Figure 2. The FWPs are
added to the intrados of the deformed lining. The strengthening components are comprised
of three parts. The central angles of parts 1, 2 and 3 are 102◦, 99◦ and 99◦, respectively.
There are four FWPs which are deployed along the width direction of the tunnel lining,
avoiding the hand holes of the segments. The strengthening procedure consists of the
following steps: firstly, holes are drilled for someone to place bolts on the segments and the
intrados concrete are carved to increase the contact area for the epoxy; secondly, the plug
bolts are employed to fix the FWPs onto the surface of the tunnel linings; thirdly, the gap
between the FWPs and the tunnel lining is injected with structural adhesive; lastly, concrete
is grouted into the cavity of FWPs under a pressure condition.
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Figure 2. Filament wound profile strengthening method.

3.1.2. Experimental Specimen

As shown in the Figure 3, the specimen consists of a full ring and two half-width rings.
The key segment of the half-width ring is located at 337.5◦, while the key segment of the
full-width ring is located at 22.5◦. The outer diameter of the full-width ring is 6.2 m, the
inner diameter is 5.5 m, the segment thickness is 0.35 m and the ring width is 1.2 m. The
full-width ring is comprised of a key segment (K), two adjacent segments (B1 and B2), and
three standard segments (A1, A2 and A3), whose central angles are 10.75◦, 68.5◦ and 67.5◦,
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respectively. The concrete grade is C50, and the steel bar grade is HRB335. The adjacent
segments are connected with M30 bolts. A tongue and groove structure is used for the
longitudinal joints, while a plain joint is used for the circumferential joints.
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Figure 3. Stagger-jointed segmental tunnel lining specimen.

The loading facility consists of a horizontal loading system, a vertical loading system
and a deformation-maintaining system, as shown in Figure 4. The horizontal loading sys-
tem simulates the water and earth pressure, the strata resistance and the ground overload. It
includes 24 loading points, and every loading point has four jacks, four distribution beams
and one oil pump. For each jack, the maximal horizontal load is 1000 kN and the maximum
displacement is 400 mm. The 24 jacks are controlled by the central host to apply and change
the load. During the FWP construction process, the jacks keep working, simulating the
earth pressure, while the load fluctuation of the jack is controlled to be within a certain
range. The vertical loading system simulates the residual jacking force after the thrust of
the shield-tunneling machine. It includes 12 pairs of symmetrical tensile loading points.
Each loading points consists of two tensile jacks (200 kN) and two distribution beams. In
order to reduce the friction resistance between the segments and the ground that is caused
by the self-weight, a steel plate is evenly arranged at the bottom of the whole specimen to
ensure the flatness of the ground, and an oil pad is arranged between the bottom of the test
specimen and the steel plate to form the sliding support conditions.

3.1.3. Loading Scheme

The 24 point loads are divided into three groups, as shown in Figure 5a, i.e., six P1s,
ten P2s, and eight P3s. P1 simulates the vertical earth pressure, P2 simulates the horizontal
earth pressure, and P3 simulates the load on the shoulder of the structure.

Figure 5b illustrates the loading process of the test, which is divided into three
stages. In stage one, P1, P2 and P3 increase simultaneously, in which P2 = 0.65 × P1 and
P3 = 0.5 × (P1 + P2). When the soil resistance reaches the passive earth pressure, it can-
not continue to increase with the increase of the soil displacement and the value of P2 is
the product of the passive earth pressure and the area which one jack is responsible for.
When P2 reaches the passive earth pressure point, P2 is kept constant while P1 increases
continuously, P3 = 0.5 × (P1 + P2). The second stage starts when the structural vertical con-
vergence reaches 83 mm (the strengthening point), the structural deformation is maintained
by the deformation maintaining system and the construction of the FWPs is conducted. In
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stage three, P2 is kept constant, while P1 increases continuously, and P3 = 0.5 × (P1 + P2).
This stage ends when the strengthened lining fails.
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The following consideration is adopted for the design of the loading scheme: (1) The
distribution of the loads that are acting on the linings is similar to the external loading that
are acting on the lining in a practical engineering situation. (2) The internal forces of the
critical cross section are equal to those in actual tunnel structures that are under operation.
The design strategy was employed in the test [5,13,16].

3.1.4. Measurement Program

In the test, the structural deformation, the dilations of the segmental joints, the strains
of the steel bars, of the concrete, of the bolts and of the FWP, as well as the relative
tangential slippage, and the radial stripping value between the tunnel linings and the FWPs
are observed. The summary of the measurement points is listed in Table 1.

Table 1. Summary of measurement points.

Test Item Sensor Range Precision Number

Overall deformation Displacement meter 500 mm 0.01 mm 14
Strain of steel bar Strain gauge 20,000 µε 1 µε 416

Strain of bolt Strain gauge 20,000 µε 1 µε 48
Strain of concrete Strain gauge 20,000 µε 1 µε 308

Joint dilation Displacement meter 100 mm 0.01 mm 48
Strain of steel FWP Strain gauge 20,000 µε 1 µε 308
Relative slippage Displacement meter 100 mm 0.01 mm 38

Relative stripping value Displacement meter 100 mm 0.01 mm 38
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3.2. Failure State
3.2.1. Structural Failure

When the loads that are acting at P1 reach 677.5 kN, the deformation of the lining
is kept constant and the construction of the FWPs is carried out. After the construction
is completed, the load scheme is continued. When the loads that are acting at P1 reach
800 kN, the displacement increases rapidly and the overall structural stiffness decreases,
wherein this load level is determined as the ultimate bearing capacity load.

The failure state of the strengthened lining is shown in Figure 6. The debonding
failure between the FWPs and the segments occurs in the areas ranging from 326.25◦ to
45◦, peeling from both the clockwise and counterclockwise directions. The longitudinal
joint at 11.25◦of the middle full-width ring is subjected to a sagging moment, while the
extrados concrete of this joint is compressed and crushed. The extrados concrete of the
upper half-width ring and the lower half-width ring at 0◦ and 168.75◦are crushed because
of compression.
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There are two kinds of phenomena in concrete segment, one is the tensile cracking of
it and the other is the crushing of it under compression. The layout of the cracks and the
crush zones is shown in Figure 6c,d. The black solid line represents the cracks, and the
shadow represents the position of the crushing zones. The intrados cracks are filled with
epoxy resin after the construction of the FWPs, which can improve the durability of the
cracked lining.

In the unstrengthened linings, the segments underwent no compression damage, and
only tensile cracking occurred. The cracks are on the crown and bottom of the lining
intrados, the waist of the lining extrados, and the corresponding positions of the longitudi-
nal joints of the adjacent rings. The maximum width of the crack is near 0◦ of the lower
half-width ring and the maximum width is 0.37 mm. The cracks on the intrados of the
middle full-width ring are fully developed, and the average distance between the cracks is
about 200 mm.
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In the strengthened linings, the cracks on the intrados of the segmental tunnel lining
could not be observed because of them being hidden by the FWPs, and the extrados has no
new cracks, but only the width of the existing cracks keep increasing. The maximum width
of the extrados crack is located at 90◦ of the lower half-width ring, and the width is 5 mm.
As shown in Figure 7a,b, when P1 = 802.5 kN, the extrados concrete at 168.75◦ of upper and
lower half-width rings are crushed by compression forces; whereas when P1 = 835 kN, the
extrados concrete at 0◦ of the upper and lower half-width rings are crushed by compression
forces, and the extrados concrete of joint at 11.75◦of the middle full-width ring is crushed
by compression forces.
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As shown in Figure 8, when the loads that are acting at P1 reach 723.6 kN, the joint at
101.25◦ of the full-width ring and the joint at 258.75◦ of the upper half-width ring are under
the coupling action of axial forces and hogging moments. Therefore, the intrados of the
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first joint is compressed, while the extrados of the second joint is pulled, which makes the
sealing mortar that is filled into the joints break.
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3.2.2. Bond Failure

As shown in Figure 9a, when the loads that are acting on P1 reach 800 kN, the bond
failure between the FWPs and the full-width ring occurs at 0◦. The stripping value of the
bond at the failure state is shown in Figure 9b,c.
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3.3. Experimental Results
3.3.1. Structural Deformation

As shown in Figure 10, the crown and the bottom of the strengthened linings deform
inward, and the waist of the linings deform outward.
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At the strengthening point, the vertical convergence is 84.66 mm, and the horizontal
convergence is 82.55 mm. When the loads that are acting at P1 reach 800 kN, the vertical
and the horizontal convergences are 111.41 mm and 112.37 mm, respectively. When the
loads that are acting at P1 reach 835 kN, the vertical and the horizontal convergences are
181.00 mm and 194.13 mm, respectively.
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3.3.2. Material Strain

As shown in Figure 11, the bolts of the joints at 11.75◦ and 168.75◦ yield strains that
exceeds 2000 µε. As the load increasing, the bolt strains at the joint at 33.25◦ and the joint at
101.25◦ keep increasing after the FWP strengthening construction procedure is performed.
The bolt at the joint at 33.25◦ yields when the P1 equals 800 kN. The strain gauges of
the bolts of the joints at 236.25◦ and 303.25◦ in the middle full-width ring are damaged
during loading.
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Figure 11. The load–bolt strain diagram.

The main reinforcing steel bar of the segment is HRB335, and its elastic strain limit is
2000 µε. The crown and the bottom of the linings are subjected to hogging moments, so the
intrados steel bars are subjected to tension, and the extrados steel bars are compressed. The
waist of the linings, however, is subjected to sagging moments, so the extrados steel bars
are subjected to tension and the intrados steel bars are compressed. When the loads that
are acting on P1 reach 677.5 kN, the extras steel bars at 270◦ are tensioned, and the strain of
the steel bars rapidly increases to 2000 µε, thereby reaching a yielding state. As shown in
the Figure 12, when the loads that are acting on P1 reach 800 kN, the strain of the intrados
steel bars at 0◦ increase to 2000 µε, thereby reaching a yielding state.

The strain of the FWP is shown in Figure 13, and the strain gauges measure the surface
strain of the CFRP in the FWPs. When the loads that are acting at points P1 reach 800 kN,
the distribution of the strain of the FWP is symmetrical along the vertical axis. The FWPs
at the crown of the linings are subjected to tensile stress, and the FWPs at the waist are
subjected to compressive stress. When the loads that are acting at points P1 are equal to
802.5 kN, the FWPs at 0◦ have separated from the segment. At the same time, the strain of
the FWPs at 0◦ suddenly decrease, as shown in Figure 13.

As a result of the stripping failure, the superimposition effect between the FWPs at
the crown and the segments are weakened. The internal force is redistributed, leading to
the strain of the FWPs at the crown decreasing, while the strain of the FWPs at the other
positions increases.

When the loads that are acting at P1 are equal to 800 kN, the strain of the FWPs at 0◦

has a sudden decrease, which indicates that the bond between the FWPs and the segment
fails, as illustrated in Figure 14.
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Figure 12. The development of steel bars strains: (a) the steel strain of full-width ring; (b) the steel
strain of half-width rings.
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3.3.3. Relative Slip and Stripping Value of the Bond

The slippage and stripping of the bond between the FWPs and the linings are tested. As
shown in Figure 15, the debonding failure happens almost at the same time when the loads
that are acting at P1 are equal to 800 kN, which is same as that of the experimental phenomena.
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Figure 14. Load-strain curves of FWPs beginning at the strengthening point.
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Figure 15. Load-displacement curves of the bond: (a) stripping of the middle ring; (b) slipping of the
middle ring; (c) stripping of the upper ring; (d) stripping of the lower ring.
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4. Discussion
4.1. Internal Force of Filament Wound Profiles
4.1.1. Assumption

The internal force of the FWPs is calculated in this section and the calculation range is
shown in Figure 16. The following assumptions are considered:

(1) Interfacial bonding assumption: The concrete segments and the FWPs are perfectly
bonded to form composite linings that bear the external load. When P1 > 800 kN, the
bond at 0◦ between the FWPs and the segments failed, and the strengthened linings at
0◦ was locally changed from a superimposed structure to a composite structure. With
the same boundary and load conditions, the internal force of the composite structure
is smaller than that of the superimposed structure [13]. When the calculation is based
on a perfect bond, the results is larger than the true internal force of the segments and
the FWPs, which is a conservative design.

(2) Material assumptions: The steel conforms to the elastic–plastic assumption, with an
elastic modulus of 210 GPa, a yield strength of 420 MPa and an ultimate elongation
of 1%. The CFRP is an ideal elastic-plastic material when it is under tension, whose
elastic modulus is 235 GPa and ultimate elongation is 1%. The CFRP along the
steel tube circumferential direction is not considered, and only the CFRP along the
direction of the steel tubes is considered. The concrete is only considered as an elastic–
plastic material when it is under compression, whose elastic modulus is 34.5 GPa and
ultimate strain is 0.33%.

(1) Plane section assumption: With an incremental load, all of the materials work together
while the strain conforms to the assumption of a plane section.
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4.1.2. Calculation Results and Analysis

For example, as shown in Figure 17, when P1 = 800 kN, the strain curve of 0◦ is
obtained by the linear fitting of the strain of the concrete, steel and FWPs. According
to the stress development of the unstrengthened linings, the steel bars at the intrados at
0◦ have yielded, so the stress of intrados steel bars at 0◦ keeps yeild strength as loads
increasing. The stresses of the concrete and the CFRP are obtained according to the material
assumptions that are made. According to the layered strain of each material in the FWPs,
the axial force and bending moment of the FWPs can be obtained by integrating the stress.
The calculation result is shown in Table 2. The axial force of the total section is −308.14 kN,
and the bending moment of the total section is 356.23 kNm. The FWPs bear 471.02 kN
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tensile force and contribute 103.81 kNm to the bending moment. The FWPs are subjected
to an axial tension of 471.02 kN and a bending moment of 0.5 kNm, which means that they
are in a tension bending state.
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Table 2. The calculation results of internal force at 0◦.

Incremental
Load Total Load The Internal Force of 0◦ FWP Contribution The Internal Force of FWP

∆P1/kN P1/kN M/kNm N/kN M/kNm N/kN M/kNm N/kN

122.5 800 356.23 −308.14 103.81 471.02 0.5 471.02

With an incremental load, the internal forces of the segments and the FWPs are shown
in Figure 18. The FWPs bear tensile force and bending moments at 0◦ and 22.5◦, while at
56.25◦, 90◦ and 270◦, the FWPs bear compressive force and bending moments. With the
load increasing, the FWPs and the concrete segments work together in the elastic stage, and
the internal forces gradually increase.

The internal forces of the FWPs are shown in Figure 19. The FWPs at 0◦ and 22.5◦ are
in bending and tension states. The FWPs of the 56.25◦, 90◦ and 270◦ sections are in bending
and compression states. When the strengthened linings are in the elastic stage, the internal
force of the FWPs increases with the increase of the load. The hogging moment indicates
that the surface strain of the FWPs that are not bonded with the segments is greater than
that of the FWPs that are bonded with the lining, and the sagging moment indicates the
that the opposite is true.

Since the load conditions of the FWP test [15] were axial compression and bending,
the discussion about the material utilization rate of the FWPs is limited within the 56.25◦,
90◦ and 270◦ sections. As shown in Table 3, the utilization rate of the FWPs at 56.25◦, 90◦

and 270◦ are 8.37%, 41.29% and 47.6%, respectively. Therefore, the FWPs are still in elastic
states, without a failure occurring.

Table 3. The material utilization rate of FWPs.

Section
Angle N/kN N/Nu M/kNm M/Mu N/Nu +

M/Mu

56.25◦ −97 6.86% 0.38 1.51% 8.37%
90◦ −453 32.04% 2.33 9.25% 41.29%

270◦ −581 41.09% 1.64 6.51% 47.60%
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4.2. Failure Process of Strengthened Segmental Tunnel Linings
4.2.1. Failure Chain

The experimental load-displacement curves of the deformed stagger-jointed segmental
tunnel linings that are strengthened by the epoxy-bonded filament wound profiles is
illustrated in Figure 16, and the load levels of P1, which are associated with the progressive
failure of the specimen, are listed in Table 4.
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Table 4. Failure process of strengthened stagger-jointed tunnel lining.

Load/kN Displacement/mm Phenomenon

1© 667.5 39.73 the steel bars of intrados at 180◦ yield because of tension
2©

677.5 45.77

the steel bars of extrados at 270◦ yield because of tension
3© the bolts at joint 11.75◦ of middle full-width ring yield
4© the bolts at joint 168.75◦ of middle full-width ring yield
5© Strengthening point
6© 800 112.37 bond failure occurs at 0◦

7© 802.5 133.79 the concrete of extrados at 168.75◦ is crushed in the
half-width ring

8© 835 194.13
the concrete of extrados at the 0◦ is crushed in the
half-width ring; the bolts at joint 33.25◦ of middle

full-width ring yield

When the loads that are acting on P1 reach 667.5 kN, the steel bars of the extrados at
270◦ and the steel bars of the intrados at 180◦ yield because of the tension that is occurring.
When the loads that are acting on P1 reach 677.5 kN, the bolts at the 11.75◦and 168.75◦ joints
yield. Therefore, four plastic hinges form in the middle full-width ring at P1 = 677.5 kN,
i.e., the 180◦ section, the 270◦ section, the joint at 11.75◦ and the joint at 168.75◦. The
unstrengthened ring becomes a multi-hinge structure with displacements that are rapidly
increasing in the range of small load fluctuations.

The failure process of the linings that are strengthened by the FWPs can be divided
into two stages, i.e., the elastic stage and the plastic stage.

When the loads that are acting on the P1 points reach 800 kN, a bond failure occurs
between the FWPs and linings from 326.25◦ to 45◦. The superposition between the FWPs
and the linings in the crown is ineffective, and internal force redistribution occurs in the
structure. The load-displacement curve shows that the structure enters into a plastic state.
Its stiffness decreases significantly, with the displacement increasing sharply. This load
is defined as the ultimate bearing capacity of the strengthened stagger-jointed segmental
tunnel lining.

When the loads that are acting on the P1 points reach 802.5 kN, the extrados concrete
of the upper and lower half-width ring at 168.75◦ is crushed. When the loads that are
acting on the P1 points reach 835 kN, the extrados concrete of upper half-ring is crushed by
compression at 0◦. At the same time, the bolts at the joint at 33.25◦ yield. Then the loads
keep decreasing, and the displacement increases continuously. Then the test is finished.

4.2.2. Weak Sections

The full-scale experiment results indicate that the initial failure of the strengthened
staggered-jointed segmental tunnel linings originates from the debonding in the crown,
which is same as with the continuous-jointed segmental tunnel lining experiment [13].

The bonding interface is mainly connected by glue, and it is resistant to pull-out and
shear. In the sagging moment area of the lining, i.e., the crown and the bottom of the lining,
the bonding interface, is in the unfavorable state of shear and tension which makes it easier
for interface damage to occur.

According to the research [7], the peel stress of the bonding interface could be cal-
culated. For example, when P1 = 800 KN, the average tensile stress of the FWPs at 0◦

is 73.59 MPa, and the inner diameter of the segment and the height of the FWPs are
2.75 m and 0.04 m, respectively. The calculation result of the peel stress of the bonding
interface is 4.28 MPa, which is greater than the tensile bearing capacity of the bonding
interface, which is 1.5 MPa. Therefore, the bonding interface at 0◦ is peeled off. Hence,
the bonding interface at the crown and the bottom of linings are the weak sections of the
FWP-strengthened linings.

The steel bars of the intrados at the crown and bottom of the lining and the steel
bars of extrados at the waist are prone to yield failure. The internal force distribution
of the unstrengthened lining is shown in Figure 20. For the calculation method and the
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assumption of the internal force, refer to Section 4.1.1. As shown in Figure 20, the peak
values of the sagging moment are at the crown and the bottom of the lining, while the peak
value of the hogging moment is at the waist. At this load level, the steel bars of the intrados
at the crown and the bottom bear the tensile stress, and the steel bars of the extrados at the
waist bear the tensile stress.
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The internal force of the strengthened lining with the incremental loads are shown in
Table 5. The sagging moment at the crown and the bottom of the lining and the hogging
moment at the waist continue to increase. Therefore, the tensile strain of the steel bars at
the intrados of the crown and the bottom and the steel bars at the extrados of the waist
continue to increase, which are areas that are prone to yield failure. As shown in Figure 12,
the steel bars at the 0◦ zone of the intrados in the middle full-width ring and the steel bars at
the 270◦ zone if the intrados in the middle full-width ring yielded, while the strengthening
point and the tensile strain of the steel bars at the 180◦ zone of the intrados continued to
increase after the FWPs construction. Therefore, the steel bars at the intrados of the crown
and the bottom of the linings and the steel bars at the extrados of the waist are the weak
sections of the FWP-strengthened lining.

Table 5. The internal force of strengthened lining.

Strengthening Point P1 = 677.5 kN ∆P1 = 122.5 kN P1 = 800 kN

Section Angle M/kNm N/kN ∆M/kNm ∆N/kN

0◦ 747.63 −1773.32 356.22 −308.14
90◦ −755.36 −1925.76 −118.49 −650.44

180◦ 490.75 −1851.85 Strain gauge breakdown
270◦ −624.91 −3536.87 −214.22 −484.01

After strengthening, the extrados concrete of the joints near the crown and the bottom
of the lining is crushed. As shown in Figure 7a,b, the sagging moment is large enough
to make the bolts yield under tension and the extrados concrete of the joint crush. After
the bonding between the segments and the FWP is intensified, the initial failure of the
strengthened lining changed from the bonding failure at the crown to the crush of the
352◦ zone of the extrados surface joint concrete [17]. Therefore, the extrados concrete
of the joints near the crown and the bottom of the tunnel are the weak sections of the
FWP-reinforced lining.

In conclusion, the bonding interface at the crown and the bottom of the linings, the
steel bars at intrados of the crown and the bottom and extrados of the waist, and the
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concrete on the extrados of the crown and the bottom joints are the weak sections of the
FWP-strengthened linings.

4.3. Strengthening Benefits

The FWP strengthening method can effectively increase the ultimate bearing capacity
and overall stiffness of the tunnel lining, as shown in Table 6.

Table 6. Strengthening benefits of FWPs.

Symbol Value

P0 (kN) 677.5
y0 (mm) 82.55
Pe (kN) 800
ye (mm) 112.37

Ke (kN/mm) 4.11
K0 (kN/mm) 0.20

∆y (mm) 29.82
∆p (kN) 122.50

Rp 18.08%
Rk 20.55

The load and waist convergence of the linings at the strengthening point are recorded
as P0 and yo, respectively, while those of the strengthened linings at the elastic limit are
denoted as Pe and ye, respectively. In Figure 16, the slope of the line connecting the
strengthening point and point 6© represents the rigidity Ke of the strengthened linings.
The stiffness of the unreinforced structure is K0. The ductility is denoted as ∆y, given that
∆y = ye − yo.

The relative increase of the ultimate bearing capacity of the structure Rp and of its over-
all stiffness Rk are used as criteria for assessing the effectiveness of the FWP strengthening
method. Rp is given as Rp = (Pe − P0)/P0, and Rk is given as Rk = (Ke − K0)/K0.

As shown in Table 5, the increase in the ultimate bearing capacity is 122.5 kN and the
relative increase is 18.08%. The overall stiffness is 4.11 KN/mm, and the relative increase
is 20.55.

5. Conclusions

In the present paper, a full-scale test of FWP-strengthened stagger-jointed tunnel
linings was conducted. The FWP working mechanism, the failure mechanism of the
strengthening linings and the strengthening benefits were analyzed and summarized. The
following conclusions are drawn from the experimental investigation:

(1) The FWPs bear the axial force and the bending moment with incremental loads. The
FWPs are under tension and a bending state at 0◦ and 22.5◦, while they under in
compression and a bending state at 56.25◦, 90◦ and 270◦.

(2) Based on the experimental phenomena and the theoretical analysis, the weak sections
of the FWP-strengthened linings are summarized. After strengthening, the bond
between the crown and the bottom of the lining is prone to bond failure, the extrados
concrete of the joint near the crown and the bottom is prone to be crushed, and the
steel bars at the intrados of the crown and the bottom and extrados of the waist are
prone to yielding.

(3) The stiffness and ultimate bearing capacity of the structure improved significantly
with the FWPs. The increase in the ultimate bearing capacity of the stagger-jointed
segmental tunnel lining that was strengthening by the FWPs was 122.5 kN, and the
relative increase was 18.08%. The overall stiffness of the strengthening structure was
4.11 KN/mm, and the relative increase of stiffness was 20.55.

The results and experimental data that were obtained in this research can be used
to make foundation for further investigation into the numerical model of stagger-jointed
segmental tunnel linings that are strengthened by FWPs. Subsequently, the internal force
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of the FWPs will be obtained by calibrating the numerical model to guide the design of the
FWP strengthening method.

Author Contributions: Conceptualization, X.L. and L.Z.; methodology, X.L.; investigation, X.L. and
L.Z.; data curation, L.Z.; writing—original draft preparation, L.Z.; writing—review and editing, X.L.;
visualization, L.Z.; supervision, X.L.; project administration, X.L. and L.Z.; funding acquisition, X.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, Y.; Jiang, X.; Liu, X. Predictive maintenance of shield tunnels. Tunn. Undergr. Sp. Technol. 2013, 38, 69–86. [CrossRef]
2. Ai, Q.; Yuan, Y.; Shen, S.; Wang, H.; Huang, X. Investigation on inspection scheduling for the maintenance of tunnel with different

degradation modes. Tunn. Undergr. Sp. Technol. 2020, 106, 103589. [CrossRef]
3. Ai, Q.; Yuan, Y. Rapid Acquisition and Identification of Structural Defects of Metro Tunnel. Sensors 2019, 19, 4278. [CrossRef]

[PubMed]
4. Liu, X.; Zhang, C.; Zhang, C.; Jiang, Z.J. Experimental study on the longitudinal joint in shield tunnel reinforced with FRP

material. J. Railw. Sci. Eng. 2016, 13, 316–324.
5. Liu, X.; Jiang, Z.; Yuan, Y.; Mang, H.A. Experimental investigation of the ultimate bearing capacity of deformed segmental tunnel

linings strengthened by epoxy-bonded steel plates. Struct. Infrastruct. Eng. 2018, 14, 685–700. [CrossRef]
6. Ren, T.; Liu, S.; Liu, X. Experimental study of bearing capacity of shield tunnel lining segment strengthened by corrugated steel.

Tunn. Constr. 2019, 39, 317–323.
7. Zhang, J.; Liu, X.; Ren, T.; Yuan, Y.; Mang, H.A. Structural behavior of reinforced concrete segments of tunnel linings strengthened

by a steel-concrete composite. Compos. Part B Eng. 2019, 178, 107444. [CrossRef]
8. Liu, X.; Zhang, J.; Jiang, Z.; Liu, Z.; Xu, P.; Li, Z. Experimental investigation of a segmental tunnel ring strengthened by using

UHPC. China J. Highw. Transp. 2021, 34, 181–190.
9. Burgess, N.; Fagents, J.; Paterson, J. Northern Line tunnel reconstruction at Old Street. Proc. Inst. Civ. Eng. 2002, 1, 1–11.
10. Kiriyama, K.; Kakizaki, M.; Takabayash, T.; Hirosawa, N.; Takeuchi, T.; Hajohta, H.; Yano, Y.; Imafuku, K. Structure and

Construction Examples of Tunnel Reinforcement Method Using Thin Steel Panels. Nippon. Steel Tech. Rep. 2001, 92, 45–50.
11. Zhang, D.; Zhang, D. Rehabilitation of Overdeformed Metro Tunnel in Shanghai by Multiple Repair Measures. J. Geotech.

Geoenviron. Eng. 2019, 145, 2019. [CrossRef]
12. Chang, C.; Wang, M.; Chang, C.; Sun, C.W. Repair of displaced shield tunnel of the Taipei rapid transit system. Tunn. Undergr. Sp.

Technol. 2001, 16, 167–173. [CrossRef]
13. Liu, X.; Jiang, Z.; Zhang, L. Experimental investigation of the ultimate bearing capacity of deformed segmental tunnel linings

strengthened by epoxy-bonded filament wound profiles. Struct. Infrastruct. Eng. 2017, 13, 1268–1283. [CrossRef]
14. Wang, Q.; Shao, Y. Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST). Steel Compos. Struct.

2014, 16, 455–480. [CrossRef]
15. Deng, S.; Shen, Z.; Liu, X.; Xu, W.; Cao, W.B.; Zhang, L.; Liu, X.Y. Experimental study on the mechanical performance of metro

shield tunnel filament wound profiles. Urban Mass Transit. 2022, 6, 31–34.
16. Blom, C.B.M. Design philosophy of concrete linings for tunnels in soft soils. Ph.D. Thesis, Delft University of Technology, Delft,

The Netherlands, 2002.
17. Yan, Q.; Yao, C.; Yang, Y.-B.; He, C.; Geng, P. An Improved Numerical Model of Shield Tunnel with Double Lining and Its

Applications. Adv. Mater. Sci. Eng. 2015, 2015, 1–15. [CrossRef]

http://doi.org/10.1016/j.tust.2013.05.004
http://doi.org/10.1016/j.tust.2020.103589
http://doi.org/10.3390/s19194278
http://www.ncbi.nlm.nih.gov/pubmed/31581666
http://doi.org/10.1080/15732479.2017.1354892
http://doi.org/10.1016/j.compositesb.2019.107444
http://doi.org/10.1061/(ASCE)GT.1943-5606.0002169
http://doi.org/10.1016/S0886-7798(01)00050-5
http://doi.org/10.1080/15732479.2016.1260601
http://doi.org/10.12989/scs.2014.16.5.455
http://doi.org/10.1155/2015/430879

	Introduction 
	Filament Wound Profiles 
	Full-scale Experiment 
	Experimental Program 
	Strengthening Method 
	Experimental Specimen 
	Loading Scheme 
	Measurement Program 

	Failure State 
	Structural Failure 
	Bond Failure 

	Experimental Results 
	Structural Deformation 
	Material Strain 
	Relative Slip and Stripping Value of the Bond 


	Discussion 
	Internal Force of Filament Wound Profiles 
	Assumption 
	Calculation Results and Analysis 

	Failure Process of Strengthened Segmental Tunnel Linings 
	Failure Chain 
	Weak Sections 

	Strengthening Benefits 

	Conclusions 
	References

