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Abstract: Herein, an optoelectronic device synthesized from a CuFeO2/CuO/Cu nanocomposite was
obtained through the direct combustion of Cu foil coated with Fe2O3 nanomaterials. The chemical,
morphological, and optical properties of the nanocomposite were examined via different techniques,
such as XRD, XPS, TEM, SEM, and UV/Vis spectrophotometer. The optical reflectance demon-
strated a great enhancement in the CuFeO2 optical properties compared to CuO nanomaterials.
Such enhancements were clearly distinguished through the bandgap values, which varied between
1.35 and 1.38 eV, respectively. The XRD and XPS analyses confirmed the chemical structure of the
prepared materials. The produced current density (Jph) was studied in dark and light conditions,
thereby confirming the obtained optoelectronic properties. The Jph dependency to monochromatic
wavelength was also investigated. The Jph value was equal to 0.033 mA·cm−2 at 390 nm, which
decreased to 0.031 mA·cm−2 at 508 nm, and then increased to 0.0315 mA·cm−2 at 636 nm. The
light intensity effects were similarly inspected. The Jph values rose when the light intensities were
augmented from 25 to 100 mW·cm−2 to reach 0.031 and 0.05 mA·cm−2, respectively. The photore-
sponsivity (R) and detectivity (D) values were found at 0.33 mA·W−1 and 7.36 × 1010 Jones at 390 nm.
The produced values confirm the high light sensitivity of the prepared optoelectronic device in a
broad optical region covering UV, Vis, and near IR, with high efficiency. Further works are currently
being designed to develop a prototype of such an optoelectronic device so that it can be applied
in industry.

Keywords: CuFeO2; delafossite; optoelectronic; photoresponsivity; detectivity

1. Introduction

Light detection through optoelectronic devices has attracted a lot of interest in the
last decade, where it covers a wide range of technology instruments, such as cameras,
spacecraft, and laser-based rockets. Particularly, optoelectronic devices based on semicon-
ductor materials remain commonly used for these applications [1–3]. Their developments
facilitate technology advancement, while ensuring cost effective device fabrication. How-
ever, light detection highly depends on the wavelengths used and the intensities that
control the detection efficiency of the optoelectronic device, which is illustrated through
their photoresponsivity and detectivity. Here, the incident photon flux coming from the
semiconductor optoelectronic device induces level splitting that forms electron-hole pairs.
With an increase in the generated electrons, the produced Jph, R, and D values increase, and
all the photoreactor efficiencies increase [4–6].

Metal oxides are one of the most promising semiconductor materials known, with high
stabilities and low-cost properties. These great advantages increase through an increase
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in the optical behavior, thus, black-color metal oxides have additional photon absorbance
behavior and small band gaps. These characteristic properties motivate the application of
these oxides in the syntheses of optoelectronic devices [7]. Scientists and researchers are
working on raising the additional optical properties of such materials via the enhancement
of their surface area and active sites [8,9]. Thus, metal oxide with a large surface becomes
the more promising and selected material [10–12].

Recently, CuO has gained a lot of interest owing to its many properties, such as its opti-
cal absorbance in UV, Vis, near-IR regions, and its small bandgap from 1.2 to 1.5 eV [11,12].
Some studies have been carried out on CuO materials for light detection. Wang et al. [13]
synthesized CuO materials as optoelectronic, where the produced Jph value was small
(20 µA) at a bias voltage of +5 V. Similarly, Hong et al. [14] studied CuO/Si materials
heterostructure as an optoelectronic device with small Jph values of 4.5 µA at zero V. More-
over, Bai et al. [15] studied a ZnO/CuO composite for optoelectronic applications, but the
produced Jph values were small at 107 µA at +1 V. Shuai et al. [16] synthesized a CdS-ZnO
composite for optoelectronic applications, where the Jph value was 2 µA at 4.5 V.

Delafossite CuFeO2 is considered an upcoming and promising P-type material for sev-
eral applications, such as hydrogen generation, antibacterials, and optoelectronics [17–20].
This is related to its good optical absorbance behavior and moderate bandgap. CuFeO2
has different crystalline natures, such as hexagonal (2H) and rhombohedral 3R, as defined
by the layer stacking inside the crystal lattice [21]. Complex synthesis methods have been
developed to prepare these materials, such as laser and electrochemical deposition, sputter-
ing, physical deposition, and plasma annealing techniques [22]. CuFeO2 can be used as
P-type material for different applications, such as electrochemical H2 generation, with a
water splitting efficiency of about 3% [23]. Moreover, this material is used in solar energy
applications such as solar cells due to its ability to absorb light with high efficiency [24].
Deng et al. synthesized CuFeO2 through a sol–gel method to be tested as an optoelectronic;
the material appeared responsive to light, indicating good optoelectronic behavior [25].
However, the limited studies carried out on CuFeO2 as a potential optoelectronic material
show the obtained Jph values were very small.

Herein, a delafossite CuFeO2 material was synthesized using a simple and promising
technique through the direct combustion of Cu foil coated with Fe2O3 in air, which led to
the formation of CuFeO2/CuO/Cu nanomaterials. The chemical analyses: TEM, SEM, XRD,
XPS, and UV/Vis spectrophotometer, are used to confirm the morphological and chemical
structure, and optical properties. Furthermore, we apply the delafossite CuFeO2/CuO/Cu
as an optoelectronic material with high photoresponsivity and detectivity results. The
optoelectronic study is carried out by testing the effect of light wavelengths (390 to 636 nm)
and intensities (25 to 100 mW·cm−2) on the optoelectronic device. Moreover, the test
is carried out in the dark and under chopped light to confirm the responsivity of the
optoelectronic material to light illumination. Finally, a mechanism is detailed explaining
the sensitivity of the devices to light illumination.

2. Materials and Methods
2.1. Materials

FeCl3, acetone, and ethanol were purchased from Piochem Company, Cairo, Egypt.
Silver paste and Cu foil were purchased from Sigma Aldrich Co., Saint Louis, MO, USA.

2.2. Preparation of CuO/Cu

For the preparation of CuO/Cu, the Cu foil (0.3 mm thickness) was ultrasonically
cleaned with acetone, ethanol, and distilled water, for 10 min per solution, and then heated
in a combustion furnace at 500 ◦C for 10 min. This process led to the oxidation of the
external layer and the formation of a CuO-coated surface.
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2.3. Preparation of CuFeO2/CuO/Cu

An additional step was carried out to prepare CuFeO2 on the surface of CuO/Cu.
First, Cu foil was dipped inside a (0.1 M) FeCl3 solution for 30 min, and then this foil was
heated at 70 ◦C for 1 h. This led to the formation of Fe2O3 on the surface of the Cu, and then
all materials were annealed at 500 ◦C for 10 min. This ensured the transfer of the upper
surface to CuFeO2 and the formation of CuFeO2/CuO/Cu.

2.4. Characterization of CuO and CuFeO2/CuO Materials

The crystal structure of the prepared materials was investigated using PANalytical
Pro, X-ray diffraction (XRD) (Almelo, The Netherlands). Fourier transform infrared (FTIR),
Jasco spectrophotometer, and X-ray photoelectron spectroscopy (XPS) (K-ALPHA, Easton,
MA, USA). The morphologies were measured using scanning electron microscopy (SEM)
(ZEISS, Oberkochen, Germany), and TEM (JEOL JEM-2100), which was used to determine
the morphologies inside the sample. However, the optical spectra were determined through
Shimadzu UV/Vis spectrophotometer, Waltham, MA, USA).

2.5. The Electrochemical Study

Electrochemical testing was performed via an electrochemical workstation (CHI) from
−1.0 to +1.0. The light source was a solar simulator (100 mW·cm−2). The measurements
were carried out under different light wavelengths (from 390 to 636 nm) and different
light intensities (from 25 to 100 mW·cm−2) with a scan rate of 100 mV·s−1. The prepared
photoelectrode had two sides: one side was Cu and the other side was Ag. The Ag
paste covered a spot on the optoelectronic film that had contact with the wire of the
electrochemical workstation. The effects of light and dark and on/off chopped light were
studied. A schematic of the electrochemical measurements can be seen in Figure 1.
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Figure 1. A schematic diagram of the method used to measure the optoelectronic system.

3. Results and Discussion
3.1. Characterization and Analyses
The Chemical Structure

Figure 2a represents the XRD measurements of the synthesized Cu sheets. The as-
sociated diffraction illustrates the high crystallinity of the used Cu thin film. Both Cu
thin film peaks (111) and (200) were located at 2θ = 43.3◦ and 50.4◦, respectively. The
successful deposition of the CuFeO2 on Cu/CuO thin film was identified via XRD analysis
(see Figure 2a). The main reflection patterns (101), (012), (104), (018), (110), and (116) of a
typical CuFeO2 structure were located at 2θ = 34◦, 35◦, 41◦, 55◦, 61◦, and 70◦, respectively
(JCPDS No. 75-2146). Thus, XRD patterns demonstrated a pure phase of CuFeO2 thin film
for the current growth condition. This is in accordance with previous studies on CuFeO2
thin films. Therefore, XRD measurements demonstrated the synthesis of CuFeO2 films
with high crystallinity on a Cu/CuO substrate.
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Figure 2. (a) The XRD of CuFeO2, (b) XPS of CuFeO2, (c) Cu 2P, and (d) Fe 2P.

Photoelectron spectroscopy (XPS) identified the element composing the grown CuFeO2
films (see Figure 2b–d). The XPS survey spectrum of the grown films illustrated the
presence of Cu, Fe, O, and C element signatures of single-phase oxide as CuFeO2. Indeed,
the C1s peak located at 283.92 eV could be associated with the carbon originating from
hydrocarbon in ambient air. The Cu2p core level spectrum had two intense peaks at about
952.09 and 931. eV, which corresponds to the Cu 2p1/2 and Cu 2p3/2 spin-orbital components.
However, the satellite peak of weak intensity illustrated the presence of Cu2+ species in the
samples. Moreover, Fe 2p XPS demonstrated the well-resolved Fe 2p3/2 and Fe 2p1/2 peaks
at 712 and 726 eV, as confirmed by earlier studies. The XPS analysis demonstrated that the
prepared Cu and Fe in CuFeO2 crystals are in +1 and +3 electronic states. The O1s XPS
spectra displayed single peaks at 529.08 eV, which was associated with the lattice oxygen
in CuFeO2. No oxygen defects, i.e., the presence of O2− ions, were located.

Figure 3a,b show the SEM images of the CuO films. These figures confirm the for-
mation of porous materials similar to islands. Figure 3b,c show the typical SEM images
of the CuFeO2 films. Microcrystals were distinguished with rhombohedral morphology,
where edges, corners, and surfaces could be identified. The CuFeO2 sheet shapes can
be located in Figure 3c. Herein, a visible layer’s form was noticed. Particularly, small
defects randomly distributed on the surface were observed. This confirms the XPS analysis
revealed the presence of defects, which was associated with oxygen defects. The obtained
CuFeO2 rhombohedra size is captured in the zoomed image in Figure 3d, where a size
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range varying between 4 and 10 µm was located. TEM images confirm the formation of
a porous material with a rhombohedral morphology and crystalline nature, in which the
crystal sizes extend from 25 to 200 nm.
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The optical reflectance of CuO and CuFeO2 materials were determined from the optical
characterizations for the samples, as shown in Figure 4. The CuO and CuFeO2 materials
had almost the same behavior, but the reflectance of CuFeO2 had a more enhanced behavior.
This indicates the elevated absorbance in UV, Vis, and near-IR regions. The bandgap values
were enhanced after the CuFeO2 formation, in which CuO and CuFeO2 materials had
bandgap values of 1.38 and 1.35 eV, respectively. The bandgap values were calculated
using Kubelka–Munk equations (Equations (1) to (3)) [26]. These equations depend on the
scattering factor (S), reflectance (R), and the molar absorption coefficient (K). The produced
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values of CuO and CuFeO2 determined from these equations are well-matched with the
previous literature [27,28].

K = (1 − R)2 (1)

F(R) =
K
S

(2)

S = 2R (3)
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3.2. The Optoelectronic Electrochemical Study
3.2.1. The Photoelectrochemical Measurements

The photoelectrochemical measurements of the prepared CuFeO2/CuO/Cu opto-
electronic device were measured in dark and under light, as shown in Figure 5a, while
the chopped on/off current was measured with time, as shown in Figure 5b. The mea-
surements were carried out using an electrochemical workstation CHI from −1.0 to +1.0
voltage, under a sweep rate of 100 mV·s−1. The measurements were carried out under
a solar simulator Xenon lamp (100 mW·cm−2). From the dark and light behavior, the
prepared optoelectronic device had great responsivity and sensitivity to the light, in which
the Jph value increased from −0.11 to 0.05 mA·cm−2, in the potential range from −1.0 to
+1.0, respectively. The dark current (JO) had small values in comparison to the Jph values,
in which the JO values changed from −0.055 to 0.028 mA·cm−2, in the potential range from
−1.0 to +1.0, respectively. The small JO values are related to the semiconductor nature of
the electrode [29]. The great enhancement in the light confirms the high effect of incident
light on the optoelectronic device. The sensitivity occurred through the motivation of the
incident light at the active sites of the optoelectronic device, CuFeO2/CuO, in which elec-
trons transferred from the valency band to the conduction band in both CuO and CuFeO2
materials. This created an electron-hole pair phenomena through the nanomaterials. In
addition to that, the Cu plates act as current collectors with high electrical conductivity.
Then, under the accumulation of electrons, an electronic cloud can form on the surface
of the optoelectronic materials. This cloud can appear as a Jph value through the opto-
electronic device, in which the hug of this cloud represents the sensitivity of the prepared
optoelectronic device for the incident light. After measuring four runs under light, the
optoelectronic device had the same behavior; this confirms the great reproducibility of the
prepared optoelectronic device.
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The chopped on/off light illumination on the prepared electrode is mentioned in
Figure 5b at 0.1 V, which confirms the behavior seen in Figure 5a. Under dark conditions,
the Jph had very small values, while under illumination, there was a sudden increase in the
Jph values. The chopped behavior confirms the fast change and high responsivity of the
optoelectronic device to incident light. From the chopped curve behavior, the produced
Jph (on) values increased slowly with time; this indicates more activation of the prepared
CuFeO2/CuO electrode for H2 generation, in which the accumulation of charges over the
electrode motivates an additional H2 generation reaction.

3.2.2. The Effect of Monochromatic Light on the Optoelectronic Device

The effect of monochromatic light on the prepared optoelectronic device is very
important for determination of the device response under different wavelengths [30–34],
this effect is studied in the range of 390 to 636 nm, as shown in Figure 6a. Moreover, the Jph
values at 1.0 V are shown in Figure 6b. These figures confirm the high sensitivity of the
prepared optoelectronic device for light sensing in a wide optical region: UV, Vis, and near
IR. The optimum sensitivity is in the UV and the beginning of Vis regions. The Jph value at
390 nm was 0.033 mA·cm−2, this value decreased to 0.031 mA·cm−2 at 508 nm, and then
increased again to 0.0315 mA·cm−2 at 636 nm. The sensitivity of the optoelectronic device
is related to the different response rate under the light wavelengths [35–37]. Under UV light
that motivates electron transfer, the electrode has the optimum light response [38,39]. Thus,
the prepared optoelectronic device can work as a light detector in UV, Vis, and near-IR
regions, with a great advantage being low cost under normal conditions and over large
areas. These advantages highlight the potential benefit in using the optoelectronic device
for industrial applications.
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The effect of light intensity on the responsivity of the prepared optoelectronic device,
CuFeO2/CuO/Cu, is shown in Figure 7a. The Jph values with a light intensity at 1.0 V
are mentioned in Figure 7b. From these figures, the Jph values increased with an increase
in the light intensities from 25 to 100 mW·cm−2, in which the Jph values were 0.031 and
0.05 mA·cm−2, respectively. The high sensitivity of the optoelectronic device appears well
throughout the Jph values under small or significant intensities. This confirms that the
large surface of the prepared optoelectronic materials can respond to very small numbers
of photons [35]. This is related to the motivation of the CuFeO2/CuO/Cu surface with
the photon flux, whereby increasing the intensity increases the number of photons, which
activates the active sites on the materials. This appears well throughout the responsivity
of the nanomaterials with light photons, in which the splitting of energy levels and the
generation of electron-hole pairs increases, thereby motivating enhancements in the Jph
values [36,37].
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3.2.3. Optoelectronic Device Efficiency

The efficiency of the optoelectronic device is related to its ability to detect light under
different intensities or wavelengths. The R-value [38] is calculated through Equation (4), as
this relation represents the ratio of Jph-JO and the power intensity, and the relation between
the R and wavelengths is shown in Figure 8a. The R values of the fabricated optoelectronic
device have an optimum value of 0.33 mA·W−1 at 390 nm, then this value decreases with
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an increase in the wavelengths. In the same manner, the relation between the R and light
intensity is mentioned in Figure 8b. From this figure, the R-value has an optimum value
of 1.22 mA·W−1 at 25 mW·cm−2. The determination of D values for the optoelectronic
device is determined through the relation mentioned in Equation (5). This relation depends
on the R; moreover, it depends on surface area (A) and electron charge (e). The optimum
D value is 7.36 × 1010 Jones at 390 nm. This relation can be calculated through the light
intensity, as shown in Figure 8d, where the optimum value is 2.97 × 1011 Jones obtained at
25 mW·cm−2, and then with an increase in the light intensity power, the D value for the
prepared optoelectronic device decreases.

R =
Jph − Jd

P
(4)

D = R
√

A/2 e Jd (5)
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Both R and D values prove that the prepared CuFeO2/CuO/Cu optoelectronic device
can detect the optical light in broad light regions, such as UV, Vis, and near-IR regions.
These properties confirm the high activity of CuFeO2/CuO/Cu optoelectronic devices
for light detection, especially at the beginning of the Vis region. A schematic mechanism
for the electron and hole transfer is mentioned in Figure 9. Under light irradiation, both
CuO and CuFeO2 respond to incidence photons, in which the electron splitting levels are
produced [39,40]. The difference in the energy level (conducting band) of CuFeO2 and CuO
motivates the electron transfer from CuO to CuFeO2, and then these charges accumulate
over CuFeO2. Through measurements, the optoelectronic response appears through the Jph
value that represents the accumulation of charges over CuFeO2. To confirm the high optical
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property for the prepared optoelectronic device, a comparison is mentioned in Table 1
between the produced results and the previous literature.
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Table 1. Comparison of the produced results with the previous literature.

Structure Wavelength (nm) Bais (V) R
(mAW−1)

GO/Cu2O [31] 300 2 0.5 × 10−3

CuO nanowires [13] 390 5 -
ZnO/Cu2O [15] 350 2 4 × 10−3

ZnO-CuO [32] 405 1 3 × 10−3

CuO/Si Nanowire [14] 405 0.2 3.8 × 10−3

TiN/TiO2 [33] 550 5 -
Se/TiO2 [34] 450 1 5 × 10−3

TiO2-PANI [35] 320 0 3 × 10−3

TiO2/NiO [36] 350 0 0.4 × 10−3

Graphene/GaN [37] 365 7 3 × 10−3

ZnO /RGO [38] 350 5 1.3 × 10−3

CuFeO2/CuO/Cu (this work) 390 1 0.33

4. Conclusions

A CuFeO2/CuO/Cu composite was prepared through the direct combustion of Cu
foil coated with Fe2O3 nanomaterials at 500 ◦C for 10 min in ambient air. From the XPS
analyses, the peaks at 952.09 and 931 eV corresponded to the Cu 2p1/2 and Cu 2p3/2 spin-
orbital components, while Fe 2p XPS demonstrated well-resolved Fe 2p3/2 and Fe 2p1/2
peaks at 712 and 726 eV, as confirmed by earlier studies. O 1s XPS spectra displayed a single
peak at 529.08 eV. An enhancement in the produced optical bandgap was located after the
formation of CuFeO2, in which the bandgap values were 1.35 and 1.38 eV for CuO and
CuFeO2, respectively. The effect of the monochromatic wavelength study was carried out,
where the optimum Jph value was 0.033 mA·cm−2 at 390 nm. The effect of light intensity
was carried out, in which the optimum Jph value was 100 mW·cm−2 at 100 mW·cm−2.
The photoresponsivity (R) and detectivity (D) values were 0.33 mA·W−1 and 7.36 × 1010

Jones, respectively, at 390 nm. Soon, our team will work to design a prototype of this
optoelectronic device that can sense light in a broad optical region that can be applied in
the industrial field.
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