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Abstract: In this study, the chemical structure of asphalt aging was analyzed and identified based
on 1H-NMR quantitative technology and chemometrics analysis. The characteristic full component
information of 30 samples before and after aging from 5 different oil sources was measured by
1H-NMR, and the results were converted into a data matrix. This study used PCA, HAC, OPLS-DA,
and Fisher discriminant analysis to evaluate the change rules of the chemical composition of asphalt
from different oil sources after aging. The results showed that the 1H-NMR spectra of 30 asphalt
samples were very similar, and hydrogen could be divided into 4 categories according to the chemical
shift: HA, Hα, Hβ, and Hγ. The shapes of 1H-NMR of asphalt samples from different oil sources
showed slight differences, while the shapes of the 1H-NMR spectra of asphalt samples with different
aging degrees from the same oil source was basically the same. The results of PCA and HAC analysis
showed that the samples of the same asphalt and asphalt with similar oil sources before and after
aging were still in the same category, and the spatial distance was very close, while the spatial
distance of asphalts from different oil sources was very different. The Fisher discriminant function
established by PCA and HAC can be used to distinguish asphalt samples from different oil sources
with an accuracy of up to 100%.

Keywords: asphalt; aging; 1H-NMR; fingerprint identification; chemometrics analysis

1. Introduction

Asphalt is a by-product of the petroleum industry that is widely used in pavement
construction. During pavement use, asphalt undergoes a series of complex physical and
chemical changes, such as volatilization, oxidation, and condensation, which make the
asphalt hard and brittle, and further lead to the deterioration of the pavement structure,
such as fatigue, cracking, and moisture damage. This process is called asphalt aging [1,2].
The thin film oven test (TFOT), rolling thin film oven test (RTFOT), and pressurized aging
vessel (PAV) are usually used in the laboratory to simulate short-term aging and long-term
aging [3]. At present, much research work has been carried out on asphalt aging based on
simulating asphalt aging in the laboratory, and many testing techniques and performance
indicators have been proposed for evaluating the degree of asphalt aging [4,5]. The most
extensive research on asphalt aging is on the changes in physical properties. Many scholars
have studied the influence of asphalt aging on pavement performance by conducting
aging experiments on asphalt and analyzing the changes in physical performance indexes
such as penetration, softening point, ductility, viscosity, creep stiffness, and dynamic
viscoelasticity [6]. After significant amounts of research, a deeper understanding of the
changes of physical indexes of performance of aged asphalt now exists. It is generally
believed that the aging performance of different asphalts is basically the same. That is,
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with increasing aging time, the penetration and ductility of asphalts decrease, while the
softening point, viscosity, complex shear modulus, and creep stiffness gradually increase [7].
Additionally, the elasticity of asphalt is enhanced, the temperature sensitivity is weakened,
and the fatigue cracking resistance becomes poor after aging, thus shortening the service
life of the pavement [8,9].

Although the aging performance of asphalt varies in the same way, the aging resistance
and durability of different asphalts greatly vary. This is the external manifestation of the
chemical composition, molecular structure, and transformation of asphalt. Therefore, it is
of great significance to study the influence of the chemical composition and structure on
the aging performance of asphalt in order to reveal its aging law and mechanism. With the
progress in instrumental analysis technology, the research on asphalt aging has gradually
shifted from the changes in macroscopic physical indexes to the characterization of the
microstructure. Many scholars have studied the changes in the microscopic properties of
asphalt before and after aging, by means of chemical microscopic characterization such
as the infrared spectrum, gel chromatography, elemental analysis, thermogravimetry, and
mass spectrometry, in order to explore its aging mechanism [10–14]. For example, gel
permeation chromatography (GPC) can be used to detect and analyze the decreases in
small molecular substances and the increases in large molecular substances after asphalt
aging, and its test results can be used to predict the aging degree of asphalt [15,16]. Many
scholars use Fourier transform infrared spectroscopy (FTIR) to quantitatively analyze
the aging degree of asphalt at the molecular level. The results showed that carbonyl
index (CI) is suitable for evaluating the aging effect of base asphalt, and the butadiene
index (BI) is suitable for evaluating the aging effect of modified asphalt [17,18]. However,
FTIR is only suitable for the study of structural changes in the same asphalt after aging.
In addition, fluorescent spectral intensity, spectrophotometric changes, and fluorescent
images can also be used as references to evaluate the degree of asphalt aging [19]. Different
compounds in asphalt have completely different chemical properties because of asphalt’s
complex composition, so it is not possible to determine all of them in a single chemical
analysis. However, the analytical testing techniques mentioned above usually focus on
a few major compounds in the determination of the chemical composition of asphalt,
which may mislead its identification and evaluation. In addition, there is no report on
the differences in chemical composition of asphalt from different oil sources after aging,
so it is necessary to conduct nontargeted chemical fingerprint analysis of aging asphalt
and analyze asphalt samples from different oil sources in order to study the differences or
similarities in chemical composition of asphalt after aging.

Compared with other technologies, nuclear magnetic resonance hydrogen spectroscopy
(1H-NMR) has become one of the most reliable and suitable technologies for qualitative
and quantitative comprehensive analysis due to its characteristics of being simple, uncom-
plicated, rapid, and nondestructive with good repeatability and stable time for sample
preparation [20]. 1H-NMR was widely used in the structural analysis of organic compounds
and their mixtures. It could clearly distinguish the chemical environment of hydrogen
atoms in the sample and obtain the type and corresponding content of hydrogen atoms
based on the chemical shifts and peak areas. That is, it could determine molecular struc-
tures from complex sample matrices and simultaneously quantitatively analyze multiple
compounds from mixtures [21,22]. In addition, quantitative nuclear magnetic resonance
spectroscopy combined with multivariate data analysis technology can simultaneously
detect all active components of organic substances, which makes it possible to carry out
overall identification and evaluation of asphalt aging [23,24].

In this paper, the quantitative technology of 1H-NMR and multivariate data analysis
were used to study the changes in chemical composition and structure of asphalt from dif-
ferent oil sources after aging. With this method, the whole spectrum of NMR is used as the
fingerprint area without specifying specific characteristic peaks, and it has characteristics
such as specificity, validity, quantifiable, stability, and reproducibility [13,25,26]. First, this
study used 1H-NMR to identify and quantitatively analyze the fingerprints of 30 samples



Materials 2022, 15, 6825 3 of 16

before and after asphalt aging from 5 different oil sources. Then, the overall differences
in the asphalt structure in the aging process were analyzed through the unsupervised
machine learning method. Finally, the study determined whether the “gene framework”
had fundamentally changed after asphalt aging through the supervised machine learning
and explored the influence of the aging process on asphalt structural change. A graphical
flowchart of the experimental programs conducted in this study is shown in Figure 1.
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2. Materials and Methods
2.1. Selection of Asphalt Samples

From different asphalt oil sources and manufacturers, five representative AH-70 base
asphalt samples were selected. TFOT was used to carry out short-term aging on 5 kinds of
base asphalts and long-term aging on PAV after TFOT aging for 5 h, 10 h, 15 h, and 20 h,
and finally, 25 aged samples were obtained. Sample numbers of base asphalt and aged
asphalt are shown in Table 1.

Table 1. Asphalt oil source and asphalt sample code.

Base
Asphalt TFOT PAV 5 h PAV 10 h PAV 15 h PAV 20 h Oil Source

I-1 I-2 I-3 I-4 I-5 I-6 a. Northwest China (China Karamay)
II-1 II-2 II-3 II-4 II-5 II-6 b. Middle East (Korea Ssangyong)
III-1 III-2 III-3 III-4 III-5 III-6 b. Middle East (China Qilu)

IV-1 IV-2 IV-3 IV-4 IV-5 IV-6 c. China Bohai SZ-361 (China
Zhonghai SZ-361)

V-1 V-2 V-3 V-4 V-5 V-6 d. China Bohai region (China Liaohe)

2.2. 1H-NMR Analysis

In this study, the quantitative 1H-NMR of asphalt samples was analyzed with a Bruker
AVANCE III 600 M (Bruker, Switzerland) high-resolution NMR spectrometer. The solution
was prepared at a ratio of 15 µg/500 µL (sample/solvent) using CDCl3 as the solvent and
tetramethylsilane (TMS) as the internal standard (0.03 wt%). The test temperature was
298 K, the number of scans was 16, the number of sampling points was 32 K, and the
relaxation delay time D1 was 10 s.

The phase, baseline, and maximum peak of the spectrum were manually corrected.
Specifically, the 1H-NMR of each asphalt sample was imported into MestReNova 14.1 for
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phase correction and baseline adjustment. First, the absorption peak of the TMS internal
standard was taken as the reference peak, and its chemical shift value was set to 0 ppm.
Then, the absorption peak within the chemical shift of 0–10 ppm was integrated in sections,
with the section interval being 0.05 ppm. Finally, the area of the absorption peak in the
segmented interval was normalized, and the data matrix of each absorption peak area of
all asphalt samples was obtained after removing the solvent peak CDCl3 and TMS peak.

2.3. Data Processing and Analysis

The processed 1H-NMR data were imported into SPSS v26.0 (IBM, Armonk, NY, USA)
and SIMCA-P v14.1 (Umetrics, Umeå, Sweden) for analysis. Then PCA, HAC, OPLS-DA,
and Fisher discriminant analysis were carried out on 1H-NMRs of asphalt samples from
different oil sources before and after aging by combining unsupervised and supervised
analysis methods. Among them, PCA and HAC are often used in exploratory research
to visualize data sets, which are unsupervised machine learning methods. OPLS-DA and
Fisher discriminant analysis are often used as algorithms for discriminant classification,
which are supervised machine learning methods [27].

2.3.1. Hierarchical Agglomerative Cluster (HAC)

HAC is a multivariate statistical method used to classify research samples. It can clas-
sify samples according to their closeness and similarity in nature. The 1H-NMR data matrix
of all asphalt samples was imported into SPSS v26.0 for HAC. All asphalt samples were
clustered with squared Euclidean distance by the Ward method, as shown in Equation (1).
After two samples are combined, the increment of the sum of the squared deviations is
regarded as the distance between clusters, and the smaller the distance, the greater the
similarity between the two samples.

D2
pq = Wr − (Wp + Wq) (1)

In this equation, D2
pq is the distance between each class in HAC, and Wr, Wp, and Wq

are the sum of squared deviations of r, p, and q, respectively.

2.3.2. Principal Component Analysis (PCA)

PCA is a statistical analysis method that transforms multiple indicators into a few
comprehensive indicators as principal components [28]. Principal components are linear
combinations of variables of the original data matrix that are orthogonal to each other and
used to represent the most important information in the data matrix.

Assuming X = (X1, X2, . . . , XP)’, p is a random variable, and the linear variations of
the principal components are as follows:

PC1 = a′1X = a11X1 + a21X2 + . . . + ap1Xp
PC2 = a′2X = a12X1 + a22X2 + . . . + ap2Xp

. . . . . .
PCp = a′pX = a1pX1 + a2pX2 + . . . + appXp

(2)

The new variable PC1 is used to replace the original p variables X1, X2, . . . , XP,
PC1 should reflect the original variable information as much as possible, and the second
principal component PC2 can also be introduced, as can others. The main purpose of
principal component analysis is to simplify data, so m (m < p) principal components are
usually selected instead of p principal components in practical application. The number
of principal components m is finally determined according to the cumulative variance
contribution rate of each principal component, as shown in Equation (3).

Cumulative variance contribution rate =
m

∑
k=1

λk/
p

∑
i=1

λi (3)
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In this equation, λ is the eigenvalue corresponding to each principal component; k is the
number of selected principal components; and i is the total number of principal components.

The 1H-NMR data matrix of the obtained asphalt samples was imported into SIMCA-
P14.1, and the variable of scaling type was centered. In the obtained model, R2 is the fitting
measure, that is, the fitting degree of the model to the data, and Q2 represents the prediction
of the model by cross-validation, that is, the accuracy of the model against the predicted
new data. By this method, the redundancy and noise of 1H-NMR spectra are compressed
and eliminated, and the evaluation results of different asphalt samples are more accurate.

2.3.3. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)

OPLS-DA is a supervised identification model that combines orthogonal signal correc-
tion (OSC) with partial least squares discriminant analysis (PLS-DA) to effectively separate
Y-predictor variables from Y-uncorrelated variables in independent variable X, as shown in
Equation (4).

X = X̂ + X̂O + E = TPT + TOPT
O + E (4)

In this equation, TO and PO are the score matrix and load matrix of Y-uncorrelated
variables, respectively, identified by OSC, T and P are the score matrix and load matrix
of Y-predictor variables, respectively, and E is the residual matrix. OSC filters out the
variables that are not related to the category judgment and only keeps the variables that
are e related to the category judgment, so that the category discriminant analysis can
focus on the variables related to the category and improves the judgment ability of the
pattern recognition method. The quality parameters of the OPLS-DA are R2X, R2Y, and
Q2Y, where R2X and R2Y represent the explanatory ability of the model to the X and Y
matrixes, respectively, and Q2Y represents the predictive ability of the model. The closer
R2 and Q2 are to 1, the more stable and reliable is the model. Generally, a value higher than
0.5 indicates a good model.

2.3.4. Fisher Discriminant Analysis

Fisher discriminant is one of the methods of discriminant analysis. It uses the idea of
variance analysis to construct one or more linear discriminant functions y = l′x by using
the p-dimensional observations of samples extracted from known populations. Let l = (l1,
l2 . . . lp)′, x = (x1, x2, . . . , xp)′, and the deviation between different populations (denoted as
B) should be as large as possible, while the deviation within the same population (denoted
as E) should be as small as possible, so as to determine the discriminant coefficient l = (l1, l2
. . . lp)′. In this paper, the Fisher discriminant model of asphalt samples was established
according to the principal components extracted from the PCA of the 1H-NMR data from
the asphalt samples as the evaluation index, and the oil region number was used as the
classification number.

3. Results and Discussion

3.1. 1H-NMR Analysis

Figure 2 shows the quantitative analysis of the 1H-NMR of 30 asphalt samples carried
out with an NMR spectrometer. In the analysis of 1H-NMR, the chemical composition
information and the relative contents of various components in the sample can be obtained.
For the attribution of different kinds of hydrogen in the 1H-NMR of asphalt, many re-
searchers have investigated ion this using model compounds. At present, it is generally
believed that the types of hydrogen in the spectrum can be classified into four groups: the
hydrogen directly connected to aromatic-carbon (HA), the hydrogen connected to α carbon
of the aromatic nucleus (Hα), the hydrogen on β carbon of the aromatic nucleus and on
-CH2-, -CH- beyond β carbon (Hβ), and the γ of the aromatic nucleus and on -CH3- beyond
γ carbon (Hγ) [29–31]. The division and attribution of 1H-NMR are shown in Figure 3
and Table 2.
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Figure 2. 1H-NMR spectra of bitumen samples. (a) asphalt No. I; (b) asphalt No. II; (c) asphalt No.
III; (d) asphalt No. IV; (e) asphalt No. V.
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Table 2. Types of protons in the 1H-NMR spectrum.

Signal Chemical Shift δ, ppm
(Base on TMS) Types of Protons

Hγ 0.5~1.0 Hydrogen linked to γ-carbon of the aromatic
nucleus and γ beyond CH3, CH group

Hβ 1.0~2.0 Hydrogen linked to β-carbon of the aromatic
nucleus and β beyond CH2, CH group

Hα 2.0~4.0 Hydrogen linked to α-carbon of the aromatic
Nucleus

HA 6.0~9.0 Hydrogen directly linked to aromatic carbon

Figure 2 shows that the 1H-NMR of all asphalt samples are very similar, and most of
the signals overlap and are not completely distinguished. This indicates that the chemical
structures of asphalt from different oil sources are highly similar, and it is reliable to use
1H-NMR for analysis. In the 1H-NMR, the hydrogen signals from strong to weak are Hβ,
Hγ, Hα, HA. Hγ and Hβ are dominant in the whole spectrum, representing the content of
methyl and methylene of long-auger-chain saturated hydrocarbon in asphalt. This indicates
the higher the content, the higher the saturated content in asphalt molecules.

In addition, the difference in the hydrogen spectrum mainly lies in the aromatic region
(6.0–9.0 ppm) and partial fatty region (1.5–3.0 ppm). By magnifying these two regions, it
was found that the shapes of asphalt samples from different oil sources are different, as
shown in Figure 4a,b. However, the spectrogram shapes of asphalt samples with different
aging degrees from the same oil source are basically the same, only showing different peak
intensities, as shown in Figure 4c,d. This result shows that the chemical compositions of
asphalt from different oil sources are different but that aging has little effect on the chemical
composition and structure of asphalt from the same oil source, and aging does not change
the gene framework of asphalt.

Asphalt is a complex mixture that consists of many molecules, and it is easy to show
the superposition of material signals in the 1H-NMR, which makes it difficult to analyze
the microstructure of asphalt, which needs to be analyzed by chemometrics.

3.2. Principal Component Analysis (PCA)

PCA is a commonly used method of reducing the dimensions of a large amount of data.
It can compress the original data into N principal components to describe the characteristics
of the original data set and can directly reflect the differences among samples. All the data
of quantitative 1H-NMR of 30 asphalt samples were imported into SIMCA-P14.1, and PCA
was carried out to further reveal the differences of chemical composition of asphalt samples
from different oil sources and with different aging degrees. Through PCA, five principal
components with large contributions were extracted, as shown in Figure 5.

According to this, the total variance of the first two principal components PC1 and PC2
is 89.3%, which makes a great contribution to the model and reflects that many indicators
in the original data are well reflected. PC1 and PC2 are respectively taken as the X and Y
axis to obtain the PCA score chart (Figure 6). The distance between two points in the chart
reflects the differences in chemical composition between the two samples. The farther apart
the two samples, the greater the difference in the chemical composition between them. As
shown in Figure 6, the distinction between asphalt samples from different oil sources is
apparently obvious, and asphalt samples from the same oil source with different aging
degrees still gather together and do not cross with asphalt samples from other oil sources.
This shows that the aging does not change the “gene” framework of asphalt. Among them,
asphalt No. IV whose oil is from China Bohai SZ-361 gathers in the first quadrant; asphalt
No. I whose oil is from northwest China and asphalt No. V from the China Bohai region
both gather in the second quadrant; and asphalts No. II and No. III whose oil is from the
Middle East gather in the fourth quadrant.
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Figure 4. Local magnification of 1H-NMR. (a) Partial magnification of the aromatic region of the
five unaged asphalts; (b) partial magnification of the aliphatic region of the five unaged asphalts;
(c) partial magnification of the aromatic region of the different aging stages of asphalt No. II; (d) partial
magnification of the aliphatic region of the different aging stages of asphalt No. II.
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In order to further screen out the potential chemical structure markers that distinguish
asphalt samples, the loading diagrams of the first two principal components of PCA
were analyzed, and the hydrogen atoms belonging to areas related to sample clustering
are pointed out in Figure 7. The chemical composition that contributes the most to the
classification of different groups of samples is usually the substance that is far away from
the center of the loading diagram, which shows that the farther away from the center,
the greater the influence on the classification. It can be seen from the loading diagram
that asphalt No. IV Hβ, HA in the first quadrant has a higher content, asphalts No. I and
V in the second quadrant have higher contents of Hγ, and asphalts No. II and No. III
in the fourth quadrant may have higher contents of Hα. The above results further show
that the oil source of asphalt determines the chemical composition of asphalt. Although
some chemical composition changes take place in the aging process of asphalt, they do not
cause the fundamental changes in asphalt composition and structure. That is, the aging
property of asphalt is determined by the original composition of asphalt, the oil source for
producing asphalt.
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3.3. Hierarchical Agglomerative Cluster (HAC)

In order to quantitatively analyze the differences in chemical composition among
asphalt samples from different oil sources, the four hydrogen atoms belonging to areas
that have the greatest influence on the clustering of asphalt oil sources were selected for
cluster analysis, and a cluster heat map was drawn (Figure 8). As shown in Figure 8, the
oil sources of asphalt samples can be classified according to the four kinds of hydrogen
atoms. Asphalt samples from the same oil source with different aging degrees can group
into one category, and the contents of the four kinds of hydrogen atoms among asphalt
samples with different oil sources are obviously different. Generally, the content order
of Hγ is I > V > IV > II, III, Hβ is II, III > IV > I > V, Hα is II, III > IV, V > I, and HA is II, III,
V > IV > I. The results of HAC are consistent with those of PCA, which further confirms
that the oil source of asphalt determines the chemical composition and aging performance
of asphalt.
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3.4. OPLS-DA Analysis

In order to further determine the differences between samples among various oil
sources, OPLS-DA under the Pa scaling method was used to centralize and nondimension-
alize the data [32]. Based on the principle of combining OSC with PLS, OPLS-DA with
supervised pattern recognition removes the influencing factors unrelated to the classifica-
tion information in the modeling process. Thus, some subtle differences among different
asphalt samples can be obviously reflected, and better classification results can be obtained.
As shown in Figure 9, compared with PCA, asphalt samples from different oil sources can
be better separated in OPLS-DA. Through OPLS-DA, the 30 asphalt samples were divided
into 4 categories according to oil source: asphalt No. I, whose oil source is northwest China,
gathers in Area A; asphalts No. II and No. III, whose oil source is the Middle East, gather
in Area B; asphalt No. IV, whose oil source is China Bohai SZ-361, gathers in Area C; and
asphalt No. V, whose oil source is the China Bohai region, gathers in Area D. Evaluation
parameters R2X (cum) and R2Y (cum) of the model, respectively, indicate the explanatory
rate of the model to the X and Y matrices, and Q2 (cum) indicates the prediction ability of
the model. In this model, Q2 is 0.573 > 0.5, which indicates that the model has good fit and
prediction ability. In this model, the boundaries between the four types of asphalt samples
are obvious and have no overlap, so the discrimination effect is good.

To further judge the key chemical composition that leads to the differences in oil
sources, variable importance in the projection (VIP) was used to screen the differential
substances of asphalt samples from different oil sources, as shown in Figure 10. The
larger the VIP, the greater the contribution of various chemical indexes to the explanatory
variables, and the higher the correlation with the differences in the anti-aging performances
of asphalts from different oil sources. In order to evaluate the importance of variables
to the model and describe the overall contribution of each variable to the model, VIP is
usually regarded as a difference substance when its threshold is greater than 1. It can
be seen from the VIP diagram that the VIP of HA (7.20 ppm), Hβ (1.30 ppm, 1.25 ppm),
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and Hγ (0.95 ppm, 0.85 ppm) are all greater than 1, which make great contributions.
Among them, HA (7.20 ppm) which is 5.348 has the highest VIP, indicating that it is the
main difference between different oil sources. The above substances are also the main
chemical compositions that lead to the different anti-aging properties of asphalt samples
from different oil sources. It is worth noting that the VIPs of the signals at the chemical
shifts corresponding to Hα (2.0–4.0 ppm) are all less than 1, which means that Hα is not the
differential substance between the different oil sources.
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3.5. Fisher Discriminant Analysis

The above analysis shows that the difference between the 1H-NMR fingerprints of
asphalt samples is determined by the oil source of asphalt, and the “gene” framework
of asphalt has not changed after asphalt aging. 1H-NMR can be used as the basis for
distinguishing the original oil source of each asphalt sample. Therefore, Fisher discriminant
analysis was further used to discriminate and predict the oil source types of asphalt. In order
to reduce the calculation of the model, the scores of the five principal components extracted
by PCA were used as variables, and the classification results of asphalt samples obtained by
PCA and OPLS-DA were further introduced into SPSS v26.0 software as grouping variables.
Through step-by-step analysis, the eigenvalues of the Fisher discriminant function were
output, as shown in Table 3.

Table 3. Fisher discriminant function eigenvalues.

Function Eigenvalue Variance / % Cumulative/%

1 253.161 99.8 99.8
2 0.308 0.2 100.0
3 0.268 0.0 100.0

As shown in Table 3, the cumulative variance contribution rate of the first two functions
reached 100%, indicating that the model data obtained by PCA and PLS-DA analysis could
be used to identify the five asphalt oil sources. According to the Fisher discriminant
function coefficient, the discriminant functions of different oil sources were obtained as
Equations (5)–(8):

Fa = −101.433PC1 + 132.216PC2 − 33.930PC3 + 21.244PC4 + 13.095PC5 − 341.202 (5)

Fb = 55.383PC1 − 71.855PC2 + 18.244PC3 − 11.243PC4 − 6.108PC5 − 101.593 (6)

Fc = 9.033PC1 − 12.063PC2 + 3.283PC3 − 1.438PC4 − 2.060PC5 − 4.571 (7)

Fd = −35.271PC1 + 45.594PC2 − 11.497PC3 + 6.237PC4 + 3.363PC5 − 42.533 (8)

In the equations, Fa, Fb, Fc, and Fd are respectively the discriminant scores for the
northwest China, the Middle East, Bohai Suizhong 361, and Bohai region oil sources, and
PC1, PC2, PC3, PC4 and PC5 are the first five principal component scores in PCA. When
distinguishing the oil source of the asphalt sample, the scores of the principal components
corresponding to the 1H-NMR of the asphalt sample were entered into Equations (5)–(8) to
calculate Fa, Fb, Fc, and Fd, respectively. The oil source with the highest score among these
four functions is the oil source to which the asphalt to be tested belongs.

According to the above discriminant function, all asphalt samples can be effectively
discriminated. The first two discriminant functions in Table 3 were used as the plane
scatter diagram of discriminant function (Figure 11). As shown in Figure 11, the 30 asphalt
samples from different oil sources and with different aging degrees are accurately clustered
according to oil sources, which indicates that the discrimination model is good at identifying
asphalt oil sources.

In order to test the accuracy of oil source identification, the leave-one-out method was
used for cross-validation. As shown in Table 4, all asphalt samples were accurately divided
into four groups, and the correct rate of judgment was 100%. The results of leave-one-out
cross validation further showed that the Fisher discriminant model based on 1H-NMR can
distinguish asphalt oil sources, and it is a reliable and stable discriminant model.
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Table 4. Original and cross verification of Fisher’s discrimination function.

Count Group
Classification results

Predication group members Total
1 2 3 4

Cross validation

Count

1 5 0 0 0 5
2 0 12 0 0 12
3 0 0 6 0 6
4 0 0 0 6 6

%

1 100.0 0.0 0.0 0.0 100.0
2 0.0 100.0 0.0 0.0 100.0
3 0.0 0.0 100.0 0.0 100.0
4 0.0 0.0 0.0 100.0 100.0

4. Conclusions

Based on 1H-NMR and combined with chemometric analysis technology, this paper
qualitatively and quantitatively analyzed the chemical compositions of and structural
changes in asphalt from different oil sources after aging. The fingerprint identification
method of asphalt aging and the discrimination model of asphalt oil source are established,
and the validity of the discrimination model is verified. According to the results and
discussion, the following conclusions can be drawn:

(1) Quantitative 1H-NMR analysis was carried out on 30 samples of 5 kinds of oil source
asphalt before and after aging. The 1H-NMRs of the 30 asphalt samples were very
similar, and hydrogen can be divided into HA, Hα, Hβ, and Hγ according to chemical
shifts. The 1H-NMR shapes of asphalt samples from different oil sources are slightly
different, while the spectrum shapes of asphalt samples from the same oil source with
different aging degrees are basically the same.

(2) The quantitative 1H-NMRs of the 30 asphalt samples were analyzed by PCA and
HAC. Asphalt samples of the same kind of asphalt and from the same kind of oil
source before and after aging can be grouped into one category, whose space distance
is very close. The 1H-NMRs of asphalt from different oil sources were far apart, and
the five kinds of asphalt could be obviously grouped into four categories. The aging
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performance of asphalt is determined by the oil source. Although aging leads to
changes in the chemical composition and structure of asphalt, it does not change the
“gene framework” of asphalt.

(3) Based on 1H-NMR and Fisher discriminant analysis, models of four kinds of oil source
asphalt after aging are established. The model data obtained by PCA and HAC can
discriminate the asphalt from different kinds of oil sources, and the established Fisher
discriminant function model has an accuracy of 100%.
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