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Abstract: The main motivation of this work was to present a semi-analytical extension of the cor-
respondence principle in stochastic dynamics. It is demonstrated for the stochastic structural free
vibrations of Kirchhoff–Love elastic, isotropic and rectangular plates supported by viscoelastic gen-
eralized Maxwell dampers. The ambient temperature of the plate affects the dampers only and is
included in a mathematical model using the frequency–temperature correspondence principle. The
free vibration problem of the plate–viscoelastic damper system is solved using the continuation
method and also the Finite Element Method (FEM). The stochastic approach begins with an initial
deterministic sensitivity analysis to detect the most influential parameters and numerical FEM re-
covery of the polynomial representation for lower eigenfrequencies versus these parameters. A final
symbolic integration leads to the first four basic probabilistic characteristics, all delivered as functions
of the input uncertainties.

Keywords: finite element method; free damped vibrations; Kirchhoff–Love plates; viscoelastic
dampers; continuation method; semi-analytical probabilistic technique; stochastic perturbation
technique; Monte Carlo simulations

1. Introduction

Probabilistic mechanics is a topic that has been extensively studied, e.g., in [1,2], and
one of its fundamental numerical methods—the Stochastic Finite Element Method (SFEM)—
was invented and has been applied in the context of thin rectangular plate bending [3].
Considering multiple geometric scale uncertainties, the bending analysis of thin plates may
also be performed using the Wavelet-based Stochastic Finite Element Method [4]. The SFEM
was efficiently applied for the stochastic dynamic response analysis of graphite–epoxy
composite plates [5]; other studies in this area can be found in [6,7]. An interesting scientific
and engineering problem, the modeling of propeller blades, is presented in [8]. The authors
did not use the typical random approach; however, they did perform an analysis of the
deviation histogram of machining errors that may be random in nature.

The probabilistic structural response for the free damped vibrations of thin elastic and
isotropic plates resting on viscoelastic supports is considered in this work. The nonlinear
eigenproblem is solved here to determine the natural frequencies of the plate–viscoelastic
damper system, and its solution is obtained thanks to the iterative continuation method
presented by Lewandowski et al. [9–11]. The authors considered different types of vis-
coelastic dampers based on the generalized Maxwell model of a damper. An experimental
study considering a generalized Maxwell model for nonlinear viscoelastic dampers was
comprehensively performed by Lu et al. [12]. A comprehensive overview of some other
deterministic and stochastic methods used in dynamics can be found in [13]. Several
uncorrelated Gaussian random design variables are considered in this study, with an initial
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sensitivity study leading to the selection of the most influential parameters. The Least-
Squares Method enables the determination of the random polynomials of eigenfrequencies,
whose further integration with the Gaussian kernel finally returns the probabilistic char-
acteristics. It should be underlined that the FEM experiments were entirely programmed
in the Octave environment, whereas sensitivity and probabilistic analyses were all im-
plemented in the computer algebra system MAPLE. The most important novelty of this
work is the common application of a probabilistic numerical apparatus for a solution of an
eigenproblem obtained using the continuation method.

2. Eigenvibration Analysis Methodology

The main purpose of this analysis is to determine the first few natural frequencies of
thin rectangular elastic and isotropic plates supported by viscoelastic dampers and also
their first four probabilistic characteristics. The numerical analysis of this problem is based
upon the Finite Element Method (FEM) with a regular discretization including 4-node-plate
finite elements with linear approximation functions, as shown in Figures 1 and 2 [14]. The
deformation vector we

i of the i-th node within the finite element e can be written as

we
i =

[
wi ϕix ϕiy

]T
=
[
wi

∂wi
∂y − ∂wi

∂x

]T
; i = 1, 2, 3, 4. (1)
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Figure 2. Finite element type plQ4 used for discretization of the tested plate: (a) node numbering;
(b) active degrees of freedom. The numbers 1–4 are the element node numbers.
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The displacement field within the element e is expressed as a linear combination of
shape functions Ne

k(x, y):
we(x, y) = Newe, (2)

where we =
[
we

1, we
2, we

3, we
4
]T and Ne =

[
Ne

1, Ne
2, Ne

3, . . . Ne
12
]
. The element stiffness

matrix Ke and the consistent mass matrix Me are defined in the traditional way. The
stiffness matrix is derived here analytically, and the mass matrix is derived numerically
using 16-point Gaussian quadrature. Further, it is known that the equation of motion of a
structure with viscoelastic dampers can be written in the following form [9,10]:

M
..
q(t) + C

.
q(t) + Kq(t) = f(t). (3)

where C denotes the global plate-damping matrix.
The application of the Laplace transform with zero initial conditions leads to the

following transform of Equation (3):

(
s2M + sC + K

)¯
q(s) =

¯
f (s), (4)

where
¯
q(s) is the L-transform of q(t), and

¯
f (s) can be expressed as

¯
f (s) = −

nd

∑
r=1

(Kr + Gr(s))Lr
¯
q(s). (5)

In this formula, nd is the total number of dampers attached to the plate at selected
nodes of a finite element mesh, and Lr is a global matrix indicating the location of the r-th
damper in the plate. A viscoelastic damper is represented graphically in Figure 3, and
it consists of m spring-dashpot elements and an additional spring element. Each of the
Maxwell elements contains a viscous part with the constant cj and an elastic part with the
constant k j, where j = 1, 2, . . . , m.
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All quantities appearing in Equation (5) can be expressed as follows:

Kr = k0; Gr(s) =
m

∑
j=1

k js
νj + s

(6)

where νj = k j/cj is the quotient of the stiffness and damping coefficients of the j-th Maxwell
element. Obviously, the stiffness and damping parameters, k j and cj, of the individual
elements constituting the viscoelastic damper attached to the structure additionally depend
upon the temperature. Let the damper parameters be known for a certain reference
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temperature T0 and have the values k j and cj. The damper model constants at temperature
T can be expressed using the frequency–temperature correspondence principle as [9,10]

kj = k j; j = 0, 1, 2, . . . , m, (7)

cj = cjαT ; j = 1, 2, . . . , m. (8)

The shift factor αT is a function of temperature T and can be expressed by the William–
Landel–Ferry formula as [15,16]

log10 αT =
−C1(T − T0)

C2 + T − T0
, (9)

where C1 and C2 are experimental constants. After substituting Equation (5) into Equation
(4), the L-transform of Equation (3) of the motion of a plate with viscoelastic dampers takes
the following form: (

s2M + sC + K + Kd + Gd(s)
)¯

q(s) = 0, (10)

where

Kd =
nd

∑
r=1

KrLr, (11)

Gd(s) =
nd

∑
r=1

Gr(s)Lr. (12)

Equation (10) represents a nonlinear eigenproblem that is solved for the eigenvalue

s and the eigenvector
¯
q(s) using the continuation method comprehensively described by

Lewandowski in, e.g., [9,10]. Below, the foundations of this method are quoted.
In the case of Equation (10), the components containing the variable s in the first power

are multiplied by the parameter κ ∈ [0; 1]. The equation can then be re-written as

h1

(
¯
q, s
)
= D(s)

¯
q(s) = 0, (13)

where
D(s) = s2M + κsC + K + Kd + κGd(s) (14)

In order for the elements of the eigenvector
¯
q corresponding to the eigenvalue s to be

determined unambiguously, an additional normalizing equation of the following form is
introduced into the matrix in Equation (13):

h2

(
¯
q, s
)
=

1
2

¯
q(s)T ∂D(s)

∂s
¯
q(s)− a = 0, (15)

where a has a given value.
In the first step of the continuation method, in Equation (13), the parameter κ1 = 0 is

assumed, and the generalized eigenproblem is solved.(
s2M + K + Kd

)¯
q(s) = 0 (16)

This problem was solved in the Octave program using the built-in command ‘eig’,
which allows both standard and generalized eigenproblems to be solved. As a result of solv-
ing this problem, the first approximations of eigenvalues s(1)1 , s(1)2 , . . . , s(1)3n and eigenvectors

¯
q
(1)

1 ,
¯
q
(1)

2 , . . . ,
¯
q
(1)

3n are obtained. On their basis, the parameter a(1)j = s(1)j

(
¯
q
(1)

j

)T

M
¯
q
(1)

j ,

where j = 1, 2, . . . , 3n, is determined.
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In the l-th step (l = 2, 3, 4, . . .), the increment ∆κl is assumed, and the Newton
method is used to solve the system of Equation (13) with the additional Equation (15). For
this purpose, the system of incremental equations of the Newton method is solved using

κl = κl−1 +∆κl , s(k−1)
j ,

¯
q
(k−1)

j and a(k−1)
j . This system of equations takes the following form:
∂h1

∂
¯
q

δ
¯
q + ∂h1

∂s δs = −h1,

∂h2

∂
¯
q

δ
¯
q + ∂h2

∂s δs = −h2,

(17)

where
∂h1

∂
¯
q

= D(s) = s2M + κsC + K + Kd + κGd(s), (18a)

∂h1

∂s
=

(
2sM + κC + κ

∂Gd(s)
∂s

)
¯
q, (18b)

∂h2

∂
¯
q

=
¯
q

T(
2sM + κC + κ

∂Gd(s)
∂s

)
, (18c)

∂h2

∂s
=

1
2

¯
q

T(
2M + κ

∂2Gd(s)
∂s2

)
(18d)

The derivatives in Equations (18b)–(18d) are calculated as follows:

∂Gd(s)
∂s

=
nd

∑
r=1

m

∑
j=1

k jνj(
νj + s

)2 Lr, (19a)

∂2Gd(s)
∂s2 =

nd

∑
r=1

m

∑
j=1
−

2k jνj(
νj + s

)3 Lr. (19b)

The increments δ
¯
q and δs are obtained from the system of Equation (17), and the

following are calculated:
s(k)j = s(k−1)

j + δs, (20a)

¯
q
(k)

j =
¯
q
(k−1)

j + δ
¯
q, (20b)

a(k)j =
1
2

(
¯
q
(k)

j

)T
∂D(s)

∂s
¯
q
(k)

j . (20c)

Successive approximations of the j-th eigenvalue and the j-th eigenvector in the l-th
step of the algorithm are calculated until the desired accuracies ε1 and ε2, of the final results
are achieved, that is, until the following inequalities are satisfied:

δs < ε1

∣∣∣s(k)j

∣∣∣, (21)

‖δq‖ < ε2‖
¯
q
(k)

j ‖. (22)

The final values of s(k)j ,
¯
q
(k)

j and a(k)j obtained in the l-th step are taken as starting
values for step l + 1 and the new parameter κl+1 = κl + ∆κl+1.

The procedure described above is carried out up to the value of the parameter κ = 1,
when the final eigenvalues and eigenvectors for the nonlinear eigenproblem in Equation (10)
are obtained.
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The obtained eigenvalues of the problem in Equation (10) are complex numbers of
the form sj = µj + iηj. On this basis, the j-th natural frequency ωj of the structure and
the non-dimensional damping ratio γj of the j-th mode of vibration are determined from
the formulas:

ω2
j = µ2

j + η2
j ; γj = −

µj

ωj
. (23)

The continuation method makes it possible to calculate the first few natural frequen-
cies and the corresponding non-dimensional damping ratios without having to solve the
entire nonlinear eigenproblem. Using proprietary algorithms written in the Octave pro-
gramming language, the natural frequencies of a plate equipped with viscoelastic vibration
dampers are determined. In the program, the user can independently select the positions
of the selected number of dampers in the FEM mesh nodes. With the help of proprietary
software, the matrices occurring in the nonlinear eigenproblem in Equation (10) are deter-
mined. Using the built-in command, the program solves the generalized eigenproblem
in Equation (16). Then, the program uses the above-described iterative algorithm of the
continuation method, which allows the unknown natural frequencies of a plate equipped
with viscoelastic vibration dampers to be determined.

3. Sensitivity and Uncertainty Analyses

The so-called normalized sensitivity gradients are determined using the following
standard definition [1]:

∆ωi
∆vj
≡
(

∂ωi
∂vj

)
vj

·
vj

ωi
(24)

where vj denotes the mean value of the given parameter vj. The following design parame-
ters affecting the natural frequencies of the rectangular plate are checked at the initial stage:
(i) geometric dimensions of the plate lx × ly × H, (ii) material constants of the plate E, νp
and ρp, (iii) damper parameters k0, k1 and c1, (iv) the ambient temperature of the plate,
namely, T, and (v) the reference temperature T0. Further probabilistic analysis is carried out
for two parameters exhibiting the highest positive and negative sensitivity coefficients. The
eigenfrequencies ωi of the plate under consideration are all found via the polynomial basis

ωi =
n

∑
j=1

Cijvj (25)

via the Least-Squares Method fittings made on the basis of several FEM solutions for
varying values of the parameter v [1,2]. Statistical optimization of this basis order is
employed through the common minimization of the fitting variance and the maximization
of the correlation factor. Finally, the basic probabilistic characteristics, i.e., expected values,
standard deviations, coefficients of variation, skewness and kurtosis, are computed. The
following integral definitions are applied:

E[ωi] =

+∞∫
−∞

n

∑
j=1

Cijvj pv(x)dx, σ(ωi) =


+∞∫
−∞

(
n

∑
j=1

Cijvj − E[ωi]

)2

pv(x)dx


1
2

(26)

α(ωi) =

∣∣∣∣σ(ωi)

E[ωi]

∣∣∣∣, β(ωi) =
µ3(ωi)

σ3(ωi)
, κ(ωi) =

µ4(ωi)

σ4(ωi)
(27)

4. Numerical Experiment

A square isotropic plate fixed on one edge was discretized using the 14 × 14 plate
rectangular finite element mesh, whose material properties are E = 205 GPa, νp = 0.3 and
ρp = 7850 kg/m3. The plate dimensions are equal to lx × ly × H = (2.0× 2.0× 0.01) m.
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Three viscoelastic dampers are attached in the middle and at both ends of the free edge of
the plate (see Figure 4).
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Figure 4. Plate fixed on one edge with three viscoelastic dampers.

These dampers contain a single spring element and also a Maxwell element (Figure 5)
with the following parameters at T0 = 0.2 °C: k0 = 108.56 N/m; k1 = 19968.09 N/m;
c1 = 229.63 Ns/m.
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Figure 5. Model of a viscoelastic damper attached to the tested plate.

The influence of temperature on the values of the above-mentioned parameters is
taken into account by applying the frequency–temperature correspondence principle. In
order to calculate the value of the shift function from Equation (9), the values of the
constants C1 = 19.5 and C2 = 80.2 were adopted. The initial sensitivity analysis results
were computed analytically using polynomial responses and are compared in Table 1 below.
Quite expectedly, the two most influential parameters for the given plate are its thickness
(the minimum value of the gradient) and the edge length (the maximum gradient).

Table 1. Values of the normalized sensitivity gradient for successive design variables on which the
value of the first natural frequency of the tested plate depends.

Design Variable
Name Design Variable Normalized Sensitivity

Gradient

Plate length lx = ly [m] –1.908109

Thickness of the plate H [m] 1.136478

Young’s modulus E [N/m2] 0.473791

Poisson ratio νp [–] 0.0669623

Density ρp [kg/m3] –0.584767

Stiffness parameter of the
damper’s Kelvin element k0 [N/m] 0.0109382

Stiffness parameter of the
damper’s Maxwell element k1 [N/m] –0.0708819

Viscosity parameter of the
damper’s Maxwell element c1 [Ns/m] 0.164465

Reference temperature T0 [◦C] 0.0189089

Ambient temperature T [◦C] –0.0295390

So, these two parameters were further selected for stochastic analysis. They were
treated as Gaussian variables having expected values equal to the mean values given
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above and a coefficient of variation belonging to the interval α(v) ∈ [0.00, 0.20]. Such
a wide interval was assumed to check theoretical variations in all characteristics being
computed, and it includes the statistical scattering of all possible measurement techniques.
It should be noted that the time effort and computer power required for the semi-analytical
probabilistic solutions were only a little bit greater than the deterministic origin. Polynomial
approximation was used to describe the response function. The degree of the polynomial
was assumed to be 4 or 5 depending on the necessary accuracy of matching the response
function. Examples of polynomials obtained for a random plate side length and a random
plate thickness are given in Chapter 5 by the relations in (28) and (29), respectively.

Figures 6 and 7 show the graphs of the dependence of the expected value, variance,
skewness and kurtosis on the coefficient of variance when the random variable is the plate
side length and its thickness, respectively; each of the graphs in Figures 6a–d and 7a–d
shows these characteristics for the first five natural frequencies, ω1–ω5. These probabilistic
coefficients were all found from their integral definitions, and they can be treated as exact
in the probabilistic context (no convergence studies are necessary).
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It is seen in Figure 6 that Gaussian uncertainty in the plate length causes some nonlin-
ear increases even for the expected values of the fundamental free vibrations. This is in
contradiction to the case illustrated in Figure 7, where they are simply constant. Moreover,
the plate length randomness greatly amplifies the uncertainty in this problem, because
its output-to-input ratio equals almost 3; the plate thickness shows a direct interrelation
between the input and output CoVs (Figure 7b). Interestingly, the largest statistical dis-
persion is always associated with the first eigenvalue. Finally, it is seen that both the
skewness and kurtosis monotonously increase together with an additional increase in the
input CoV in Figure 6. Hence, the positive non-symmetry and concentration about the
expected values remarkably increase together with the input uncertainty level. One no-
tices that the differences between probabilistic characteristics for various eigenfrequencies
are rather small. Figure 7c,d show that higher-order probabilistic coefficients relevant to
the plate thickness oscillate about (for the 1st and the 2nd) or are almost equal to 0 (for
higher eigenfrequencies).
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5. Comparative Analysis—Results Validation

In order to better illustrate the previously obtained results, calculations were per-
formed using three probabilistic approaches: the Semi-Analytical Method (SAM), the
Stochastic Perturbation Technique (SPT) and Monte Carlo simulations (MCSs).

These analyses were applied for a plate exhibiting Gaussian uncertainty in the first
natural frequency, uniquely defined by its mean value and the specific range of its coefficient
of variation, i.e., α(b) ∈ [0.00, 0.025]. The global response function for random plate side
length lx = ly = l was obtained in the form of the following fourth-order polynomial:

ω1(l) = 367.570938927759− 555.768532731197·l + 336.646138548979·l2

−92.8342487373826·l3 + 9.66595643939497·l4 (28)

The choice of the degree of the approximating polynomial to the random quantity
was dictated by the sufficient accuracy of matching the response function. The number
of trials for the Monte Carlo simulations was equal to 150,000. The expected values E(l),
coefficients of variation α(l), skewness β(l) and kurtosis κ(l) of the first natural frequency
are presented in turn in Figure 8. Considering the large variations in the resulting statistics,
the expected values and coefficients of variation for the first natural frequency are presented
in Tables 2 and 3.

Table 2. Expected values of the first circular frequency for a random plate side length.

α(b)
E(l)

SAM SPT MCS

0.025 362.046846366682 362.046846366682 362.047466435600

0.050 362.046908966730 362.046908966730 362.046431550698

0.075 362.047013300146 362.047013300146 362.046932076133

0.100 362.047159366940 362.047159366940 362.046112284009

0.125 362.047347167119 362.047347167119 362.046692036114

0.150 362.047576700696 362.047576700696 362.049805913200

0.175 362.047847967686 362.047847967686 362.048943295710

0.200 362.048160968106 362.048160968106 362.050809955170

0.225 362.048515701978 362.048515701978 362.048477124862

0.250 362.048912169324 362.048912169324 362.051187451775

Table 3. Coefficients of variation of the first circular frequency for a random plate side length.

α(b)
α(l)

SAM SPT MCS

0.025 0.00037913840232059 0.00037913840225768 0.00037820668516146

0.050 0.00075827679791607 0.00075827679779030 0.00075890901680434

0.075 0.00113741518006143 0.00113741517987277 0.00113579512680720

0.100 0.00151655354203154 0.00151655354178001 0.00151584644876523

0.125 0.00189569187710127 0.00189569187678686 0.00189866159120374

0.150 0.00227483017854541 0.00227483017816811 0.00227385578919360

0.175 0.00265396843963868 0.00265396843919851 0.00265356938565002

0.200 0.00303310665365575 0.00303310665315269 0.00303502740231922

0.225 0.00341224481387114 0.00341224481330523 0.00340377236370069

0.250 0.00379138291355934 0.00379138291293050 0.00378941244520895
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A very good convergence of the results of the SAM and SPT approaches can be
observed. On the other hand, MCS results are in good agreement only for the coefficient of
variations α(l).

Another random parameter for which the validation of the calculation results was
performed is the plate thickness. In this case, the global response function for a random
plate thickness h was obtained in the form of the following fifth-order polynomial:

ω1(h) = 8.35555733333377− 7824.96232261055·h
+2.41798719696965·106·h2 − 2.55138948717944·108·h3

+1.18596617132865·1010·h4 − 2.02512179487178·1011·h5
(29)
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Similar to the above, the expected values E(h), coefficients of variation α(h), skewness
β(h) and kurtosis κ(h) of the first natural frequency are presented in turn in Figure 9.
Additionally, the expected values and coefficients of variation for the first natural frequency
are presented in Tables 4 and 5.
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Table 4. Expected values of the first circular frequency for random plate thickness.

α(b)
E(h)

SAM SPT MCS

0.025 15.1020303938680 15.1020303938679 55.8307084247803

0.050 15.0750528266381 15.0750528266359 56.6189485257520

0.075 15.0309030518086 15.0309030517976 –182.896206992036

0.100 14.9708003252100 14.9708003252100 59.6193578514476

0.125 14.8964516050049 14.8964516049194 61.9339027954595

0.150 14.8100515516881 14.8100515515109 64.6258515558037

0.175 14.7142825280868 14.7142825277585 68.1357033688504

0.200 14.6123145993600 14.6123145988000 72.1942549445554

0.225 14.5078055329993 14.5078055321022 76.9222494795175

0.250 14.4049007988281 14.4049007974609 82.4482857143314

Table 5. Coefficients of variation of the first circular frequency for random plate thickness.

α(b)
α(h)

SAM SPT MCS

0.025 0.021690206735279 0.021690206646010 0.09677329520225

0.050 0.043860569753305 0.043860569571128 0.19522123484153

0.075 0.066951757180877 0.066951756898434 –0.10707504128592

0.100 0.091326253488526 0.091326253094581 0.39417790477171

0.125 0.117231393179819 0.117231392659076 0.49988129568701

0.150 0.144765615806037 0.144765615138953 0.60551075944427

0.175 0.173850845320013 0.173850844482707 0.71407533547204

0.200 0.204216713685934 0.204216712650311 0.82487834596053

0.225 0.235407286078469 0.235407284812828 0.93330578277003

0.250 0.266829037072705 0.266829035543292 1.05206621395503

Similar to the previous case, a very good convergence of the results of the SAM and
SPT approaches can be observed. The MCS results are in quite good agreement only for
kurtosis and α(h) values from 0.0 to about 0.1.

The Monte Carlo simulation technique is the most time-consuming in terms of nu-
merical calculations when performed on a typical PC computer using the MAPLE v.21
computational package. The computation time ratio can be expressed simply by the quo-
tient tSAM

tMCS
or tSPT

tMCS
, which ranges from 1/50 to 1/100, depending mainly on the number of

MCS trials.

6. Conclusions

(1) The theoretical and computational studies presented in this work clearly show
that the common application of the semi-analytical stochastic approach with continuation
methods allows for the fast and accurate determination of the probabilistic coefficients of
free vibrations. It is demonstrated that the output randomness in rectangular elastic thin
isotropic plate eigenfrequencies is usually not larger than the input statistical scattering of
their design parameters. The only exception is in the plate dimension statistics; however,
successful measuring techniques are so accurate now that despite the huge sensitivity to
this parameter, the realistic coefficient of variation is less than a few percent. The fact that
the largest resulting statistical dispersion is obtained for the first eigenfrequency may be
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important in the reliability assessment of various dynamical systems. This is due to the
fact that a limit function, whose probability serves as the basis of the reliability index, is
introduced as the difference between the induced vibrations and the lowest eigenfrequency.

(2) A comparative analysis for the first eigenfrequency was performed using three
probabilistic approaches: the Semi-Analytical Method (SAM), the Stochastic Perturbation
Technique (SPT) and Monte Carlo simulations (MCSs). For the first two methods, results
with very high accuracy were obtained. The Monte Carlo simulation showed convergence
only for selected random moments—the coefficient of variation for the random plate side
length and kurtosis for the random plate thickness.

(3) A continuation of this research can include stochastic extensions of the contin-
uation method in the numerical analysis of forced vibrations, possibly with the use of
non-Gaussian random design parameters, too. In the case of any mathematical difficulties
with computer algebra integration, the iterative generalized stochastic perturbation tech-
nique implemented as the SFEM is recommended. Further uncertainty analysis may be
alternatively completed by the application of probabilistic entropy or its relative version
presented recently in the literature [17,18].
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