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Abstract: In our previous work, epitaxial Ba(Zr0.2Ti0.8)O3 thick films (~1–2 µm) showed an excellent
energy storage performance with a large recyclable energy density (~58 J/cc) and a high energy
efficiency (~92%), which was attributed to a nanoscale entangled heterophase polydomain structure.
Here, we propose a detailed analysis of the structure–property relationship in these film materials,
using an annealing process to illustrate the effect of nanodomain entanglement on the energy storage
performance. It is revealed that an annealing-induced stress relaxation led to the segregation of
the nanodomains (via detailed XRD analyses), and a degraded energy storage performance (via
polarization-electric field analysis). These results confirm that a nanophase entanglement is an origin
of the high-energy storage performance in the Ba(Zr0.2Ti0.8)O3 thick films.

Keywords: ferroelectric films; polymorphic phase boundary (PPB); domain structure; lead-free;
strain engineering

1. Introduction

Ferroelectrics with a composition near a morphotropic or polymorphic phase boundary
(MPB or PPB) often exhibit anomalous functional responses under the stimulation of an elec-
trical or mechanical field, such as Pb(Zr1−xTix)O3 (PZT), (1-x)Pb(Mg1/3Nb2/3)O3−xPbTiO3
(PMN−PT), (K,Na)NbO3 (KNN) and Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3)TiO3 (BZT-BCT) [1–5].
A chemical substitution in the above-mentioned material systems is an effective way to
drive the MPB- or PPB-like behavior with large piezoelectric or ferroelectric responses.
These responses are commonly attributed to the shallow energy barriers between the
multi-polar state ferroelectric phases [6,7]. Under an external field, these shallow energy
barriers could be overcome easily, leading to phase transformations and strongly enhanced
functional properties [8–10]. Recently, Pan et al. constructed polymorphic nanodomains
in epitaxial ferroelectric films by combining two regular ferroelectrics with a paraelectric
component. By disrupting the long-range polar order of a homogeneous ferroelectric, this
design has created a relaxor-like, multi-polar ground state at the nanometer scale, leading
to a greatly enhanced energy storage density [11]. However, due to a random mixing of the
ferroelectric nanophases, a sizable remanent polarization (Pr) still remains, which hinders
the improvement of the charge–discharge efficiency of ferroelectric-based multi-layer or
film capacitors [11,12].

Compared to the chemical substitution, engineering of an epitaxial strain (“strain
engineering”) was demonstrated to be an alternative effective way to drive the MPB- or PPB-
like behavior with enhanced ferroelectric responses [13–17]. Zeches et al. used an epitaxial
strain to drive the formation of an MPB consisting of a metastable pseudo-tetragonal (T)
and a stable pseudo-rhombohedral (R) phase in BiFeO3 thin films [17]. Compared with
films consisting of pure R or T phase, BiFeO3 films with a mixture of T and R phases
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show a much higher piezoelectric response [18]. Recently, polymorphic nanodomains with
coexisting tetragonal-like (T) and orthorhombic-like (O) phases were reported in BaTiO3
films grown on (110) GdScO3 substrates, due to the effect of an asymmetric misfit strain [19].
Polymorphic nanophases could also be created by engineering the mechanical constraint
from the underlying substrate [19–22]. Strain-relaxed epitaxial BaTiO3 films grown on
(111)-SrTiO3 substrates displayed coexisting R, O and T phases in the form of nanodomains
ranging from 1–10 nm [21]. Meanwhile, coexisting T and R phases were discovered in
CVD-processed PZT thick films (~1.5 µm) on (111)-SrTiO3, which was believed to be the
reason for a large piezoelectric strain [21].

Landau free energy profiles which are characterized by a shallow energy well together
with a small energy difference between multi-polar states may be easily fine-tuned by
applying a doping or substitution method on simple perovskite ferroelectrics [23]. A
desirable strain-induced heterophase polydomain structure could be realized in the as-
grown film. The electric polarization of such a film can closely follow the variation of field
strength, resulting in a linear-like P-E loop [24–26]. Substituting Ti4+ with Zr4+ in BaTiO3
will slightly enlarge its unit cell, reduce its self-polarization and draw its multipolar ground
states closer to each other, resulting in a large number of polymorphs in epitaxially strained
films [25,26]. In our previous work, 1.4 µm thick epitaxial Ba(Zr0.2,Ti0.8)O3 films displayed
a pseudo-linear, ultra-slim P-E hysteresis loop with a large recycle energy storage density
(~58 J/cm3) and efficiency (~92%) [27]. Here, by utilizing a thermal annealing process, we
present a focused analysis of the structure–property relationship in the Ba(Zr0.2,Ti0.8)O3
films. The XRD and P-E hysteresis results indicated that a relaxation of the misfit stress
via the annealing process has led to the segregation of the nanodomains and a degraded
energy storage performance. It is concluded that the excellent energy storage properties of the
Ba(Zr0.2Ti0.8)O3 thick film are mainly due to its entangled heterophase nanodomain structure.

2. Materials and Methods

Materials. (100)-oriented SrTiO3 (STO) single crystal and SrRuO3 sputtering targets
were prepared by Anhui Institute of Optics and Fine Mechanics (Chinese Academy of
Sciences, Hefei, China). The Ba(Zr0.2Ti0.8)O3 (BZT) ceramic target, with the same shape and
size as those of the SrRuO3 target (Φ = 50 mm, t = 5 mm), was prepared by a conventional
solid-state reaction method. X-ray diffraction measurements of the BZT target revealed a
single rhombohedral phase with a lattice parameter of ~4.06 Å.

Deposition of the BZT Film. BZT films with a thickness from 350 nm to 1.25 µm and
a SrRuO3 bottom electrode of ~100 nm thick were sequentially deposited on STO(100) sub-
strates, in an RF-magnetron sputtering system with a base pressure of 2.0 × 10−4 Pa. The
SrRuO3 bottom electrode and BZT film were both sputtered in a mixed Ar/O2 atmosphere
(Ar:O2 = 4:1) at a deposition pressure of 1.2 Pa and a substrate temperature of 650 ◦C. After
deposition, the as-grown film was kept at 650 ◦C for 10 min and then cooled down to room
temperature at a rate of 7–8 ◦C/min with a pure O2 of 1.2 Pa. Although, the annealed
samples also experienced the same procedures, the only difference was that these films
were kept at 650 ◦C/1 h in pure O2 atmosphere with different pressures (1.2 Pa and 10 Pa).
The sandwiched metal–ferroelectric–metal (MFM) structures were prepared by sputtering
circular Au dots (Φ = 200 µm) on the surface of the BZT film at a low-pressure chamber via
a shadow mask.

Characterizations. The phase structures and crystallographic orientations of the
BZT films were characterized by X-ray diffraction (XRD) using a Dmax-rc diffractometer
(Toyo, Japan) for 2θ scans and a Smart Lab Rigaku for pole figures measurements. TEM
(Transmission Electron Microscopy) in a JEM-2010 microscope (JEOL, Tokyo, Japan) and
STEM (Scanning Transmission Electron Microscopy) in an ARM-200CF (JEOL, Tokyo,
Japan) were used to investigate the nanoscale polymorphic phase structures. A Focused
Ion beam milling technique was applied to prepare the cross-sectional TEM/STEM samples
(Scios2, FEI, Waltham, MA, USA). The ferroelectric hysteresis loops (P-E loops) and the
leakage current characteristics (I-V curves) of the BZT films were measured by using an RT-
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Precision LC ferroelectric tester (Radiant Technology, Redmond, WA, USA), at a frequency
of 1 kHz.

3. Results

Figure 1a shows a representative XRD 2θ-scan pattern of the as-grown BZT films. A
single perovskite phase with only {00l} diffraction peaks indicates a highly c-axis-oriented
growth of the BZT films on an SRO(100)/STO(100) substrate. Figure 1b is the XRD 2θ-scan
patterns of as-grown and annealed BZT films in a pure O2 atmosphere for 1 h (with different
annealing oxygen pressures: 1.2 Pa and 10 Pa). It is noted that the film composition will
not change after the annealing process as there are no volatile elements in the film. The
full width at half maximum (FWHM) of the (002) diffraction peak for the as-grown film
is wider than those of the other two annealed films. Using the d(002) spacing (2.057 Å)
from the XRD 2θ-scan pattern of the as-grown film and that of the ceramic target of BZT
(d(002)~2.0285 Å), and through the Poisson’s effect, the residual in-plane strain is estimated
to be about ~−1.9% for the 1.25 µm thick BZT film [28]. In addition to a significant shift
with respect to the bulk (002) peak, the broad FWHM of the (002) peak suggests that the BZT
film may have a nanoscale entangled heterophase structure with its majority component
being a T-like phase (with a longer out-of-plane axis). Such a strain-induced heterophase
nanostructure was verified through its relaxation after annealing (in a pure O2 atmosphere
at 650 ◦C for 1 h). In Figure 1b, the annealed BZT films displayed a narrow (002) peak and
an elevated right shoulder (near the dashed line which marks the position of the bulk (002)
BZT peak). Specifically, in the BZT film annealed in the high O2 pressure, the broad (002)
peak split into a rhombohedral peak and a tetragonal one. These dramatic changes in the
(002) BZT peak indicate that thermal annealing has induced segregation of the entangled
nanophases, as well as a transformation from the majority of T-like phases into the stable
bulk rhombohedral phase.
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Figure 1. XRD 2θ-scan patterns of (a) the as-grown BZT film (1.25 µm thick); (b) the BZT films
annealed at 650 ◦C and in a pure O2 (1.2 Pa or 10 Pa) atmosphere, in comparison with that of its
as-grown state.

The P-E hysteresis loops of the as-grown and annealed BZT films are shown in
Figure 2a at the same applied electric field. Smaller Pr (0.26 µC/cm2 @ 10 Pa, 0.29 µC/cm2

@ 1.2 Pa), Pmax (11.6 µC/cm2 @ 10 Pa, 12.0 µC/cm2 @ 1.2 Pa) and lower coercive field (inset
of Figure 1a) values are shown by the annealed films, in comparison with those of the
as-grown film (Pr: 0.49, Pmax: 15.6 µC/cm2). These changes in the P-E characteristics of
the annealed films can be attributed to nanophase segregation and a substantial transfor-
mation of the phase structure from the T-like to the R-like ones, as shown in Figure 1b. As
is discussed in our previous work, the rhombohedral phase has a hierarchical polytwin
structure with {100}-type domain boundaries. Under charging/discharging electric fields,
such a structure shows a lower coercive field and smaller polarization values than those
of the tetragonal ones [24,29]. Additionally, in Figure 2b, in comparison with that of the
as-grown film, the annealed film in a 1.2 Pa O2 atmosphere shows a higher leakage current,
while an almost identical leakage current behavior was shown by the film annealed in a
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10 Pa O2 atmosphere. The increased leakage current in the low O2 pressure annealed BZT
film may be attributed to an increased amount of diffusional defects resulting from the
high-temperature process. On the other hand, the recovery of a low leakage current in
the film annealed at a higher O2 pressure (10 Pa) can be explained by a reduction of the
oxygen vacancies in the film, which was processed at a lower O2 pressure (1.2 Pa) prior to
the annealing. These results in XRD and hysteresis measurements were similar with our
previous work in fatigued samples [30].
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The XRD pole figure measurements using the (002) and (111) BZT peaks are conducted
for a detailed analysis of the nanoscale entangled T/R phases (“heterophase nanodomains”)
in the as-grown film (Figure 3a,b). The central peak near Ψ = 0◦ comes from the (002)
diffraction of the nanoscale entangled T and R phases in the as-grown film, while the
well-regulated dots (Ψ~48◦ and ~71◦) in the film represent three-fold {221} oriented T-phase
nanodomains. Eight small peaks at Ψ~48◦ can be divided into two groups, corresponding
to {2 1 2}- and {2 −1 2}-oriented nano T-phases, which are separated by an Φ angle of ~35◦.
This measured angle difference is a little smaller than the calculated one (~38.9◦), which
may be due to a cubic lattice approximation, and a small rotation of the nanophases under
the effect of the film–substrate misfit strain. The four peaks at Ψ = ~71◦ are {221}-oriented
nano T-phases. Polarizations of {2 1 2}-, {2 −1 2}- and (2 2 1)-oriented nano T-phases are
aligned along a direction of ∼48◦, ~48◦ and ~71◦ away from the film normal, respectively.
Meanwhile, in Figure 3b, the (111) pole figure displays four peaks at Ψ~17◦ and Ψ~54.7◦,
suggesting the coexistence of {221}- and (001)-oriented nanophases in the BZT film. The
volume ratios of the (001) and {221}-oriented nanophase structures were estimated by
comparing their integrated XRD intensity counts (I(002)/I{221}) from the pole figures. The
as-grown film showed a I(002)/I{221} phase ratio of ~3.75:1 (Intensity Counts: 306,958(002),
81,764{221}) from the (002) pole figure, and ~3.45:1 (Intensity Counts: 36,781 (002), 10,661{221})
from the (111) pole figure. These results suggest that the volume ratio of the {221}-oriented
T-like nanophases was ~20% in the as-grown BZT film. It is noted that the {221}-oriented
T-like nanophases contributed to the broad diffraction peak near (003) BZT in the XRD
2θ-scan pattern [27].

As discussed in Figure 1b, the broad (002) peak corresponding to nanoscale entangled
T/R phases splits into two peaks, (002)T and (002)R, after thermal annealing in a pure
oxygen atmosphere of 10 Pa at 650 ◦C for 1 h. The post-annealing microstructure is
investigated via pole figure analysis of the annealed BZT film, using its (002)T and (002)R
diffraction peaks (Figure 3c,d). The integrated XRD intensities of the (002) (Ψ~0◦) and
the {221} (Ψ~48◦ and Ψ~71◦) diffractions are 286,270(002)-3c, 2,972,960(002)-3d, 59,294{221}-3c
and 22,355{221}-3d counts, obtained from the (002)T (Figure 3c) and (002)R (Figure 3d) pole
figures, respectively. Compared with those from the as-grown BZT film, the above results
of the annealed BZT film reveal that: (i) the intensity counts increased substantially, which
confirms an improved crystalline quality of the BZT film (Intensity Counts ratio at Ψ = 0◦:
~10.6) as a typical annealing effect; (ii) the integrated XRD intensity ratio of {221}3c: {221}3d
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is ~2.7, which verifies that the {221}-oriented nanostructure is a tetragonal phase; and
(iii) the R-like phase in Figure 3d showed a 10-times higher integrated XRD intensity than
that of the T-like phase (IR(002)-3d/IT(002)-3c = ~10.4), indicating that the R-like phase is
dominant in the annealed film. This is consistent with the result of Figure 1b.
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BZT film; (c,d) the split (c) {002}T and (d) {002}R peaks of the annealed BZT film (in 10 Pa O2); (insets:
top view of of (a–d)).

Nanoscale entangled T/R phases of the as-grown BZT film are analyzed via high angle
angular dark-field (Z-contrast) scanning transmission electron microscopy (HAADF-STEM,
Tokyo, Japan). The representative HAADF-STEM atomic images of the rhombohedral and
tetragonal-like phases, together with their electron diffraction patterns obtained by FFT
(Fast Fourier Transition), are shown in Figure 4. The parallelogram in Figure 4b displays
an angle of ~87◦ between the (0l0) and (00l) planes, confirming a rhombohedral symmetry
for the lattice structure shown in Figure 4a. On the other hand, the diffraction pattern in
Figure 4d is rectangular-shaped, verifying a tetragonal symmetry for the lattice structure
shown in Figure 3c. Although these R- and T-like phases were observed via STEM and TEM [24]
throughout the film, they could not always be observed by regular XRD 2θ-scans due to the low
resolution of the XRD method in probing the nanostructure of an epitaxial thick film, especially
when there is a nanoscale entanglement of phases with close lattice parameters.
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an {00l}R//(221)T-type crystalline orientation. The angle between (221)T plane and a {110}-
type T/R phase boundary (marked red and blue in the T and R phase regions, respectively) 
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Figure 4. STEM analysis. Atomic scale HAADF-STEM images from (a) an R phase region and (c) a
T phase region of the as-grown BZT film. Corresponding electron diffraction patterns via FFT are
shown in (b,d) for the T and R phases, respectively.

Figure 5a–c show a high-resolution TEM image and its FFT diffraction pattern, as
well as a schematic diffraction pattern for the T(221)/R(001) heterophase nanodomain struc-
ture in the as-grown BZT film, respectively. The high-resolution TEM image displays an
{00l}R//(221)T-type crystalline orientation. The angle between (221)T plane and a {110}-type
T/R phase boundary (marked red and blue in the T and R phase regions, respectively) is
∼73.5◦ (vs. ∼71◦ from consideration of a cubic structure), as is shown in Figure 5a. The FFT
diffraction pattern in Figure 5b shows the coexistence of T(221)/R(001) nanophases, which is
schematically shown in Figure 5c. The diffraction spots of T(221) and R(003), both along the
film growth direction, overlapped with each other due to a close match of their ((221) and
(003)) d-spacings.
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Figure 5. (a) A high-resolution TEM image of the as-grown BZT film with a <−1 1 0> zone axis near
the bottom electrode, (b,c) are an FFT electron diffraction pattern from (a) and a schematic drawing
for the diffraction pattern (blue dots: {00l}R phase, red dots: (221)T).

4. Discussions

In the nanoscale entangled T/R phases in the BZT thick film, the misfit strain induced
coexisting R- and T-like phases with an {l00} out-of-plane orientation and a {110} interface,
as shown in Figure 4, are the backbone or matrix of the heterophase nanodomain structure
across the film thickness. Meanwhile, the scattered {221}T nanophases help to mediate
the interphase misfit between the {l00}-oriented R- and T-like phases. These heterophase
nanodomains contributed to the strong central spot in (002) pole figures of the as-grown
and annealed BZT films (Figure 3a,c,d). Meanwhile, the (221)-oriented nanodomains, with
a three-fold orientation, in the film bulk are the “in-plane” dominated T-phases, and their
polarizations are aligned ~71◦ away from the film normal. On the other hand, the “out-
of-plane” and “in-plane” polarization components for the (2 1 2) and (2 −1 2)-oriented
T-phase nanodomains are equal due to their polarizations aligned along a direction of
~48◦ away from the film normal. The effects of these nanophase structures on the energy
storage performance are: (1) the entangled {l00}-oriented T/R nanodomains in the as-grown
BZT film will make the polarization switching much easier and polarization saturation
much harder, resulting in a slim P-E loop with a small Pr and a delayed polarization
saturation. Such a P-E loop corresponds to a large recyclable energy density and a high
charge–discharge efficiency; (2) the {221}-oriented T-phase nanodomains, scattered in the
matrix of the entangled T/R polydomains, led to a net in-plane polarization. This results in
a smaller remnant polarization of the BZT film (measured out-of-plane), further improving
its energy efficiency. Lastly, a large poling field is necessary to completely align these
nanodomains, at which the electric polarization and energy storage density of the film are
significantly improved.

5. Conclusions

The µm thick BZT films which feature a slim P-E hysteresis loop and a delayed
polarization saturation displayed a large recyclable energy density and a high charge–
discharge efficiency. These excellent energy storage properties are attributed to a nanoscale
entangled heterophase polydomain structure. The structure–property relationship was
investigated by employing XRD, TEM and STEM techniques, as well as a high-temperature
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annealing process. It was revealed that the nanoscale entangled T/R phases are segregated
following a relaxation of the film stress via annealing. The annealed film possesses a
slimmer P-E loop with lower Pr and Pmax values, corresponding to a degraded energy
storage performance. The XRD pole figure and TEM analyses confirmed the coexistence of
{l00}R,T and {221}T heterophase nanodomains in the as-grown and annealed films. The film
structure can be described as an entangled {l00}-oriented T/R phase matrix with scattered
{221}T nanophases. The entangled {l00}T,R nanodomains can be switched much easier and
saturate much harder under an external electric field. Meanwhile, the {221}T nanophases
led to a net in-plane polarization. Overall, such a heterophase nanodomain structure
features a pseudo-linear P-E loop with a small Pr, a delayed Pmax and a high breakdown
field, resulting in a greatly improved energy storage performance [19,22].
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