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Abstract: Currently, one of the topical areas of application of artificial intelligence methods in in-
dustrial production is neural networks, which allow for predicting the performance properties of
products and structures that depend on the characteristics of the initial components and process
parameters. The purpose of the study was to develop and train a neural network and an ensem-
ble model to predict the mechanical properties of lightweight fiber-reinforced concrete using the
accumulated empirical database and data from construction industry enterprises, and to improve
production processes in the construction industry. The study applied deep learning and an ensemble
of regression trees. The empirical base is the result of testing a series of experimental compositions
of fiber-reinforced concrete. The predicted properties are cubic compressive strength, prismatic
compressive strength, flexural tensile strength, and axial tensile strength. The quantitative picture of
the accuracy of the applied methods for strength characteristics varies for the deep neural network
method from 0.15 to 0.73 (MAE), from 0.17 to 0.89 (RMSE), and from 0.98% to 6.62% (MAPE), and for
the ensemble of regression trees, from 0.11 to 0.62 (MAE), from 0.15 to 0.80 (RMSE), and from 1.30% to
3.4% (MAPE). Both methods have shown high efficiency in relation to such a hard-to-predict material
as concrete, which is so heterogeneous in structure and depends on many factors. The value of the
developed models lies in the possibility of obtaining additional useful information in the process of
preparing highly functional lightweight fiber-reinforced concrete without additional experiments.

Keywords: artificial intelligence methods; artificial neural network; deep learning; ensemble method;
regression; lightweight fiber-reinforced concrete

1. Introduction

Currently, there is a need to introduce methods of digitalization of business and
technological processes, including in the construction industry, which helps construction
companies move towards the introduction of modern information technologies. There is
a tendency to accumulate and digitize the available data with the aim of further applica-
tions of mining algorithms [1–5] to predict the properties of materials, which will further
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optimize the construction process at all stages, including quality control in the production
of building materials.

The modern construction industry, and in particular the production of complex com-
posite materials such as concrete, is facing a serious problem that often affects the quality of
buildings and structures being built, leads to an increased number of accidents in construc-
tion and, in general, significantly reduces the life cycle of buildings and structures [6–9].
All of this requires innovative approaches, not only at all stages of the life cycle of buildings
and structures but also at the stage of concrete production itself, that is, even at the stage of
construction industry enterprises [6–9]. The problems, in turn, arising in the enterprises
of the construction industry are expressed in manufacturing defects and the imperfection
of prescription and technological factors that affect the quality of the resulting concrete,
as well as in factors such as the influence of the human factor, errors in the selection of
compositions, the production of concrete, and their assessment in terms of the ratio of
initial parameters and output parameters. In this regard, it also implies the digitalization of
all branches of modern industry, the application of artificial intelligence in the construc-
tion industry, and in particular, in concrete technology, which contains many vectors and
directions for digitalization and improvement of properties, is seen as a relevant direc-
tion [10–16]. Currently, one of the relevant areas among artificial intelligence methods in
industrial production is neural networks, which allow one to create systems for predicting
output parameters, that is, the operational properties of any products, structures, buildings
and structures that depend on the characteristics of the initial components and process
parameters. All this shows that the production of concrete can be improved using artificial
intelligence methods, as well as the development, training, and use of special neural net-
works to determine the characteristics of the resulting concrete [17–21]. A brief overview of
such methods is presented in Table 1.

In the study [19], predictive models were developed to analyze and predict the crack
width in the junction zone of a reinforced concrete beam and a column subjected to lateral
cyclic loads. Four machine learning models were developed to predict the width of cracks in
seven nodes of reinforced concrete beams and columns. The results showed that the support
vector machine–dot kernel (SVM-dot kernel) model can provide accurate performance of
the fracture width prediction process. The discrepancy between the measured and predicted
fracture width were 30%, which turned out to be smaller compared to DL-max-out (56%),
DL-rectifier (55%), and SVM-neural (48%). However, this model is only applicable for
lateral cyclic loading simulating seismic loading and needs to be improved in the case of
different types of reinforced concrete [19].

In a comparison of multilayer perceptron neural networks (MLPNNs), adaptive
neural systems for fuzzy detection (ANFIS), and genetic programming (GEP) in terms
of predicting compressive and tensile strengths, the highest efficiency was noted for
GEP and the lowest for MLPNN. The order of accuracy for the compressive and tensile
strength models is GEP > ANFIS > MLPNN. The advantage of GEP is that it provides a
new mathematical equation that can be used to predict the properties of another database.
Sensitivity analysis showed that water and cement are the determining factors in the
development of the compressive strength model. However, these factors have the least
impact on the development of a tensile strength model [20].

Backpropagation neural network (BPNN) models have been used to predict the tor-
sional strength of reinforced concrete beams [22], the unconfined compressive strength of
high-strength concrete [23] showed high accuracy, and the resulting BAS-BPNN model with
the beetle antennae search (BAS) algorithm outperformed widely used machine learning
models such as SVM, random forest (RF), K-nearest neighbors (KNN), logistic regression
(LR), and multiple-linear regression (MLR) [23,24].
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Table 1. An overview of the main artificial intelligence methods used to predict the properties of
various types of concrete.

Reference
Number Methods Materials

Parameters
Objectives

Input Variable

[6]

Support vector
machine (SVM)

Gaussian process
regression, ANN

Concrete

P- and S-wave velocities,
electrical resistivity,

density, water-to-binder
ratio

Compressive
strength

Recommendation of a set of
criteria for evaluating the
compressive strength of

concrete in a marine
environment with various

saturation and
salinity conditions

[7]

SVM,
Adaptive neural fuzzy

inference system
(ANFIS), ANN

Concrete
Results from the two

non–destructive testing
tests

Compressive
strength

Using non-destructive testing
to improve concrete strength

estimation by aI
predictive models

[8]
Decision tree (DT)

Ensemble ML
(boosting, Ada Boost)

Fiber reinforced
polymer (FRP)

Database of 121 groups of
experimental results

Punching shear
strength

Build machine learning
models to accurately predict
the punching shear strength

of FRP reinforced
concrete slabs

[9] DT, ANN, Gradient
boosting Concrete

Water, cement, coarse
aggregate, fine aggregate,

fly ash, microsilica,
superplasticizers,

nanosilica, temperature

Compressive
strength

High temperature
compressive strength

prediction

[10] ANN

Self-sensing
concrete, carbon

nanotubes/carbon
nanofibers

(CNT/CNF)
reinforced concrete

Parameters of the
composition of the
concrete mixture

Compressive
strength, flexural

strength

Approximation of the ANN
approach to a range of

specific researchers and
possible implementation of

ANN in civil
engineering practice

[11] ANN, DT
Concrete in fresh

and hardened
states

Dosage of ceramic waste
powder 10% and 20%

Compressive
strength

Application of ANN and DT
to predict compressive

strength of concrete
containing CWP

[13] ANN, boosting, Ada
Boost ML

Geopolymer
concrete (GPC)

Parameters of the
composition of the
concrete mixture

Compressive
strength

Using ANN, Boosting and
AdaBoost ML approaches
based on Python coding to

predict the compressive
strength of high calcium fly

ash based GPCs

[17] ANN
Fiber-reinforced
polymers—short
concrete columns

Column length, modulus
of elasticity of fiberglass,
compressive strength of
concrete, coefficients of

longitudinal and
transverse reinforcement,

ultimate axial load

Load carrying
capacity

Forecasting the bearing
capacity of fiberglass short

concrete columns

[21]

Separate stacking
ensemble with the

random forest
algorithm

(SSE-Random Forest)
SSE-Bagging,

Integrated stacking
ensemble (ISE),

weighted averaging
ensemble (WAE)

Fly Ash Concrete
(FAC)

Parameters of the
composition of the
concrete mixture

Compressive
strength

Comparison of ensemble
models of deep neural

networks, i.e., superlearning
algorithm, simple averaging,

weighted averaging,
integrated summation, as

well as individual ensemble
summation models and

superlearning models. to
develop an accurate approach

to estimating the FAC
compressive strength and to
reduce the high variance of

the predictive models
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The Convolutional Neural Network (CNN) has found applications in the construction
industry, especially for monitoring and inspection purposes, in particular, to identify
areas covered by fresh and young concrete [25] and predict the corresponding concrete
damage class [20]. A novel approach to automatically extract defects in high-precision
concrete surface images by combining the advantages of image processing and the deep
convolutional neural network (DCNN) and attempting to evaluate concrete quality based
on detection results has also shown good performance [26].

A method for predicting the 28-day compressive strength of concrete using Multilayer
Feed-forward Neural Networks (MFNNs), based on the inadequacy of existing methods
dealing with multiple variables and non-linear problems, demonstrates that using a neural
network to predict the strength of concrete is practical and beneficial [27,28].

A comparison of several methods, such as artificial neural networks, the support
vector machine, classification and regression trees, the Gaussian regression process, and the
extreme gradient boosting tree in terms of predicting the properties of fiber-reinforced con-
crete, showed the effectiveness of the latter, which had the least error. The tree model with
an extreme gradient was the best imitator in predicting the properties of fiber-reinforced
concrete [29].

A study of the structural behavior of hollow concrete columns (HCC) reinforced with
fiberglass, which performed detailed numerical simulations, is presented in [30]. The
authors proposed a design-oriented stress–strain model that can capture the softening and
curing behavior of FRP-reinforced HCCs [30].

Depending on the actual production situation and performance requirements, it is
proposed to choose one of the methods for developing high-strength concrete (UHPC) with
the given requirements. Integrating two or more methods can serve as a good approach to
addressing the challenges of UHPC development by taking advantage of the benefits of
each method [31].

All the above-mentioned machine learning methods and neural network models
have been applied to a wide range of materials, such as heavy concrete without addi-
tives [9,27,28], concrete with the addition of industrial and agricultural waste ash [21],
slag [16], eggshell powder [12], microsilica [20], recycled concrete aggregate [18,32], ce-
ramic waste [11], reinforced concrete with the addition of carbon nanotubes/nanofibers, [10]
high-strength concrete [23,31], fiber-reinforced concrete [29], reinforced concrete (columns,
beams, slabs) [17,19,22,30], and geopolymer concrete [13], as well as porous cement
pastes [33], soil with cement [14], and metals [15].

However, it is known that the properties of lightweight concrete are much more diffi-
cult to predict than the properties of normal mass concrete, especially when the prediction
concerns the thermal insulation properties of concrete with artificial lightweight aggregate
(LWA) [34,35]. The presented results prove that the additional benefits of using ANN
include the ability to design lightweight concrete composition with high accuracy, opti-
mize the composition, and predict the properties of the cement composite both in terms
of compressive strength and determining the coefficient of thermal conductivity of the
modulus of elasticity. Furthermore, the correct use of ANN for the design of new structures
made of lightweight concrete should be preceded by laboratory tests, since the results of
the studies are extremely important for a complete understanding of the design process of
such structures [34–41].

As a result of experiments in the production of highly functional lightweight fiber-
reinforced concrete, researchers have generated a large stream of data containing important
information about the mechanical properties of the resulting material. Data such as the
volume content of components, experimental results, description of experimental results
(the class of concrete and its strength and density), and others often have an unstructured
and complex form (in the form of texts in natural language, tables, and graphs). The use of
methods for the intelligent processing of accumulated data arrays will allow for structuring
data, automating the solution of many problems that arise in practice, thus improving the



Materials 2022, 15, 6740 5 of 18

quality of construction production technology, and optimizing costs by reducing the time
required to determine the key properties of the building material in question.

The scientific novelty lies in:

- Revealing the fundamental possibility of predicting the properties of lightweight
fiber-reinforced concrete using artificial intelligence methods.

- Determination of the quantitative and qualitative picture of the relationship between
the initial data of the formulation and technology and the output parameters expressed
in the properties of concrete.

- The fundamental basis of structure formation and the formation of concrete properties,
presented for the analysis of the constructed neural network and the issuance of
applied forecasts to it on the operational characteristics of concrete.

- Proof of the possibility of neural network control of the structure and properties
of concrete and analysis of complex relationships that were previously inaccessible
through the manual method.

In this regard, the main purpose of the study is to develop and train a deep neural
network, as well as to use an ensemble regression tree model to determine the mechanical
properties of lightweight fiber-reinforced concrete. It is possible to realize the set purpose
using the accumulated empirical base and data available at the disposal of the construction
industry enterprises. The ultimate purpose of the study is to improve the production
processes in the construction industry.

The main task of the study was to achieve the ability to control the properties of
concrete using artificial intelligence methods using lightweight fiber-reinforced concrete
with improved characteristics as an example. The next task of the authors in the future is to
project the result obtained onto other types of concrete and establish the technical feasibility
and rational ranges of such control.

The stages of the study are as follows:

- Review and analysis of existing literature in the areas of improving the quality of
the concrete industry and the introduction of new management and quality control
systems in production, as well as a review of existing authors’ methods for the appli-
cation of artificial intelligence methods in the concrete industry and manufacturing
enterprises in general.

- Selection of an empirical base built on physical experiments and accumulated expe-
rience with the results of testing concretes and the mutual dependencies between
the input parameters of the initial components and the technological and output
parameters of the resulting concretes established by us and other authors.

- After processing and applying the data of a physical experiment, it is necessary to
develop, train, and test a deep neural network, as well as apply an ensemble model of
regression trees to process the empirical base with a further comparison of the results
based on the values of the main metrics.

- Evaluate the prospects of applying the developed methods in practice and evaluate
the possibility of translating and projecting the results obtained to other types of
concrete, as well as developing specific proposals for the construction industry.

2. Materials and Methods

Determination of the key mechanical properties of highly functional lightweight fiber-
reinforced concrete, such as the density, cubic compressive strength, prism compressive
strength, tensile strength in bending, and axial tensile strength, is of great importance
in determining the quality and further performance properties of the material. Ideally,
these properties should be obtained empirically. However, it is quite often difficult to
carry out appropriate measurements after a series of experiments due to the high cost and
time-consuming nature.

The evaluation of the mechanical properties of highly functional lightweight fiber-
reinforced concrete is an area in which artificial intelligence methods can be very effective
due to saving material resources and time. In this work, the following methods will be
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applied: Deep learning and an ensemble of regression trees. The methods discussed repre-
sent an alternative way to obtain reliable and accurate results to determine the mechanical
properties of a material, since there can be both linear and non-linear relationships between
input data (features) and output (predicted) values.

2.1. Materials

The initial dataset for the methods under consideration is the results of 153 experi-
mental compositions for concrete with strength ranging from 40 to 50 MPa (Table S1). The
features of the models are the content of glass fiber in an amount from 0 to 8% (with a step
of 0.5) from the mass of cement and the way the fibers are distributed (1t—pre-mixing of
cement, water + mixing with fiber + mixing with sand and crushed stone; 2t—pre-mixing of
cement, sand, crushed stone + mixing with fiber + mixing with water; 3t—pre-mixing of ce-
ment, sand, crushed stone, water + mixing with fiber). At the same time, the properties and
their values are constant for all variables. The predicted parameters are cubic compressive
strength (MPa), prismatic compressive strength (MPa), flexural tensile strength (MPa), and
axial tensile strength (MPa). Data collection on testing lightweight fiber-reinforced concrete
was carried out by the authors of the study using their own accumulated empirical database
and data from construction industry enterprises. Lightweight fiber concrete samples were
tested in accordance with GOST 10180 “Concretes. Methods for Strength Determination
Using Reference Specimens” [42] and GOST 24452 “Concretes. Methods of prismatic com-
pressive strength, modulus of elasticity and Poisson’s ratio determination” [43] according
to the research program presented in [36].

Table 2 presents the main statistical characteristics of the analyzed dataset.

Table 2. Statistical characteristics of the dataset.

Variable Glass Fiber
Content

Fiber
Distribution

Method

Cubic
Compressive

Strength

Prismatic
Compressive

Strength

Flexural Tensile
Strength

Axial Tensile
Strength

Unit % - MPa MPa MPa MPa
mean 4.0 - 48.41 36.78 9.41 5.76

std 2.46 - 3.98 3.71 3.12 1.56
min 0.0 - 40.20 28.0 3.0 2.80
max 8.0 - 57.80 44.10 16.0 8.90

Here, the “glass fiber content” and “fiber distribution method” data are feature values
(training sets), and the cubic compressive strength, prismatic compressive strength, flexural
tensile strength, and axial tensile strength are prediction value data (prediction sets).

2.2. Deep Learning

The concept of “deep learning” describes the training of so-called “deep artificial neu-
ral networks”. The architecture of a deep artificial neural network is a structure (Figure 1)
consisting of a large number of internal (hidden) layers with adjustable parameters—the
weight coefficients of artificial neurons that make up each layer of the network. In the
first input layer (input layer, i), the network receives a vector of features that describe the
object—in this case, two features. In the inner layers (hidden layer, h1 . . . hn), they are
processed: The input vector is multiplied by the matrix of connections, and the vector of
new features formed in this way is transferred to the next layer. The signal processing
result is sent to the output layer of the network (Output layer, o).



Materials 2022, 15, 6740 7 of 18

Figure 1. Deep neural network architecture.

For the study, a neural network of the following architecture was selected (Table 3):
A fully connected neural network of direct propagation, consisting of 5 hidden layers
containing 40, 30, 20, 30, and 40 neurons, respectively. As the activation function on the
hidden layers, the most commonly used activation function in deep learning is Relu. As an
optimization algorithm, the quasi-Newtonian algorithm of Broyden–Fletcher–Goldfarb–
Shannot with limited use of Limited-memory BFGS (LBFGS) memory was used. To prevent
overfitting, the early stop form of regularization was used.

Table 3. Neural network architecture.

Parameter
Number Parameter Value Description

1 Network type
Fully Connected Feedforward

Neural Network for Solving the
Regression Problem

The first fully connected layer of the
neural network has a connection from

the input of the network, and each
subsequent layer has a connection

from the previous layer

2 Number of hidden layers 5

1 hidden layer—40 neurons
2 hidden layer—30 neurons
3 hidden layer—20 neurons
4 hidden layer—30 neurons
5 hidden layer—40 neurons

3 Activation function for hidden layers Relu f (x) =
{

x, x ≥ 0
0, x < 0

4 Loss function minimization method LBFGS
Broyden-Fletcher-Goldfarb-Shannot

quasi-Newton algorithm with limited
memory usage

5 Regularization method Early stopping Scheduled to stop when it starts to
deteriorate validation set error

The choice of neural network architecture (number of neurons, layers, nature of
connections) was justified by a small empirical base. In such cases, a network with an
excess number of elements would lose its generalization ability and would work well only
on the training set.
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2.3. Ensemble of Regression Trees

An ensemble of regression trees is a predictive model consisting of a combination
of decision trees, each of which by itself gives a low quality of regression, but due to
their large number, the result is satisfactory, thereby combining regression trees increases
predictive efficiency.

The study used an ensemble model of regression trees with a variety of parameters to
select the best ones (Table 4).

Table 4. Parameters of the ensemble model of regression trees.

Parameter
Number Parameter Value Description

1 Ensemble Aggregation Algorithm LSBoost
The LSBoost (Least-squares boosting)
method uses the least squares method

as a loss function

2 Number of trees 10 . . . 100 with step 10 The model is a combination of
n-decision trees

3 Tree Complexity Level (Depth) 1,2,3 The maximum depth of the tree takes
the values 1, 2 and 3

4 Limit on the number of objects in
leaves (MinLeafSize) 5

According to the classics, in regression
problems it is recommended to use

the value 5

5 Minimum number of branch node
observations (MinParentSize) 10 Each branch node in the tree has at least

the MinParentSize of the observation

6 Learning rate 1 Ensemble model learning rate (can take
values in the range (0 . . . 1])

7 Method for estimating the
generalizing ability of a model 10 block cross validation 10-box cross validation on training data

The Number of Trees parameter specifies the total number of decision trees to create
in the ensemble. Their number can vary from a few dozen to several thousand. Typically,
an ensemble with a good predictive score requires several hundred to several thousand
“weak learners”. However, in the case of small samples, one should start with a few dozen
trees, evaluate the efficiency of the ensemble, and then, if necessary, increase their number.
Another important hyperparameter that needs to be tuned is the depth of decision trees.
The study will evaluate the effectiveness of depth from 1 to 3 levels.

3. Results

To solve the problem, the MATLAB 9.11 (Release 2021b) environment was used, which
implements a deep neural network and the ensemble method of regression trees.

The following metrics were used to assess the quality of the constructed models: Mean
Absolute Error (MAE), Mean Square Error (MSE), Root-Mean-Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE).

MAE =
1
n

n

∑
i=1
|yi − ŷi| (1)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

RMSE =
1
n

√
n

∑
i=1

(yi − ŷi)
2 (3)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣× 100 (4)

where yi is the actual measured value of the quantity in question; ŷi represents its predicted value.
When training the neural network, the dataset was divided into training, validation,

and test sets in the ratio of 70/10/20. For an ensemble of regression trees, the sample is
divided into training and test in the ratio of 80/20; in turn, 10% of the test data, when
building trees, go to validation.

3.1. Results for a Deep Neural Network

Consider the process of training a deep artificial neural network when predicting the
parameter “cubic compressive strength” (MPa).

From the graph (Figure 2), which shows the process of training the neural network, it
can be seen that the error in the training and validation sets tends to be 0, which indicates
that this architecture is suitable for approximating experimental data.

Figure 2. Neural network training.

3.2. Results for an Ensemble of Regression Trees

It makes sense to build graphs of errors against the number of trees, taking into account
the depth of the tree structure, and limit the size at the moment when the errors become
the smallest.

Figures 3–5 show the dynamics of the above metrics for different tree depths with the
number of regression trees in the ensemble ranging from 10 to 100 for test and training sets.

Figures 3–5 show that a large number of trees does not guarantee the high quality
of the model; however, it was noticed that the model running time increases when this
parameter increases. The most optimal value for the number of trees is 10, since at this
value, both the training and test samples have the smallest error values. In terms of tree
depth, trees that are too deep can cause models to be too detailed and not generalize to
new data. On the other hand, trees that are too small can lead to overly simple models that
define data specifics. The depth of the tree is critical, and as Figures 3–5 increase, there is
an improvement in training and test quality metrics. This study uses a maximum depth of
3 to capture the specifics of a particular dataset.
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Figure 3. Mean Absolute Error meaning.

Figure 4. Meaning of Root-Mean-Square Error.

Figure 5. Mean Absolute Percentage Error.

That is why, according to the figures, the smallest errors are observed when the model
runs with a tree depth of 3 and the number of trees is equal to 20.

Decision trees allow one to obtain easily interpretable models, which are a set of rules
of the form “if . . . then . . . ”. Interpretation is facilitated, among other things, by the ability
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to present these rules in the form of a visual tree structure. Figure 6 is a plot of the first
trained regression tree for the best model.

Figure 6. Visualization of the first trained regression tree.

Prediction error plots (Figures 7–10) show the actual values from the analyzed data
set compared to the predicted values generated by our models. This allows us to see how
large the variance is in the model.

Figure 7. Correlation between real values of cubic compressive strength (MPa) and calculated values:
(a) Deep neural network; (b) ensemble of regression trees.
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Figure 8. Correlation between real values of prismatic compressive strength (MPa) and calculated
values: (a) Deep neural network; (b) ensemble of regression trees.

The developed regression models can be evaluated using similar graphs, where a
line at an angle of 45 degrees is highlighted, and the ratios between the real values of the
predicted parameters and their calculated values are presented. Figures 7–10 allow us to
make sure that the developed models are adequate since the distribution of points on the
graphs is free from any patterns and looks like a random spread of points around zero. The
coefficient of determination takes values from 0.94 to 0.99, which indicates a high fit of the
model to the data.

Tables 5–8 present a comparative performance of the two methods. Comparing the
two considered models, it can be noted that, in some cases, the ensemble method is ahead
of the neural network trained using the deep learning method.

Table 5. Comparative characteristics of the work of the implemented methods on a test sample in
determining the cubic compressive strength.

Method MAE RMSE MAPE, %

Deep Neural Network 0.46 0.60 0.98

Ensemble of Regression Trees 0.62 0.80 1.30
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Table 6. Comparative characteristics of the work of the implemented methods on a test sample when
determining the prism compressive strength.

Method MAE RMSE MAPE, %

Deep Neural Network 0.73 0.89 2.11

Ensemble of Regression Trees 0.48 0.62 1.33

Table 7. Comparative characteristics of the work of the implemented methods on the test sample
when determining the tensile strength in bending.

Method MAE RMSE MAPE, %

Deep Neural Network 0.63 0.87 6.62

Ensemble of Regression Trees 0.30 0.44 3.4

Table 8. Comparative characteristics of the work of the implemented methods on the test sample
when determining the axial tensile strength.

Method MAE RMSE MAPE, %

Deep Neural Network 0.15 0.17 2.49

Ensemble of Regression Trees 0.11 0.15 2.06

Figure 9. Correlation between real values of tensile strength in bending (MPa) and calculated values:
(a) Deep neural network; (b) ensemble of regression trees.
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Figure 10. Relationship between real values of axial tensile strength (MPa) and calculated values:
(a) Deep neural network; (b) ensemble of regression trees.

The ensemble method of regression trees in this implementation demonstrated the
best values of metrics compared to the neural network, since it is a more complex algorithm
in terms of the number of parameters than the neural network. Thus, the ensemble method
of regression trees had more opportunities to adjust to the data.

4. Discussion

As the experience of the application of machine learning methods shows, the use of
algorithms for combining models—ensembles—is one of the most powerful methods of
machine learning and often surpasses other models in quality. In this study, the ensemble
method, which consists of using a committee of decision trees, demonstrated better metric
values compared to a neural network due to the ability to work with categorical vari-
ables (the fiber distribution method parameter), as well as fine-tuning the key parameters
of the model.

Artificial intelligence methods make it possible to generalize the results of experiments
for complex models with many parameters (compared to empirical models). It is not
necessary to conduct a deep theoretical analysis to obtain an adequate forecast. Even after
the derivation of theoretical formulas, their accuracy is often lower than that given by the
neural network model. The considered methods are valuable for their ability to generalize
the information coming to them during training, and not just memorize specific examples.



Materials 2022, 15, 6740 15 of 18

Many works are known concerning the application of artificial intelligence meth-
ods for various high-tech industries, such as automotive, instrumentation, and various
technological industries, as well as the service sector [44,45].

However, in the global space of scientific research and in practice, there is a deficit,
expressed in a certain conservatism of the construction industry and the slow pace of
the introduction of artificial intelligence methods and other innovative methods in this
industry [6–35].

The most important parameter of the operational reliability of lightweight concrete
is the rational ratio of its strength and density. Due to the fact that the density directly
depends on the pore structure and on the whole process of concrete structure formation,
the strength indicator comes to the fore. In order to fully use the advantages of fiber
reinforcement (or fibers) and rely on the created concrete as a running structural material, a
range of strength values from 30 MPa to 40 MPa was adopted in our study. Fiber-reinforced
concretes with such strength characteristics have great prospects, and after working out
the neural network model on these concretes, it is supposed to project the study to even
higher-strength concretes, and also, if necessary, turn to less durable concretes for less
critical levels of construction work.

Taking into account the fact that we have previously established objective oppor-
tunities to significantly improve the quality of lightweight fiber-reinforced concrete and
reduce the percentage of rejects and losses due to the correct recipe and technological
approaches, the introduction of artificial intelligence methods in the concrete industry will
further improve these processes, achieve a significant increase quality, and ultimately lead
to a reduction in the cost of concrete production by up to 20%, which has already been
established according to preliminary estimates of industrial partners.

As for scientific deficits, some pioneering studies were carried out earlier in Russia
and the CIS, in particular, reference [46], the authors of which used a fuzzy neural network
as a model for predicting the strength of reinforced concrete products. The mathematical
model showed its effectiveness in testing. The average error was 0.96 MPa or 2% [46].

The quantitative characteristics of the work performed and the result obtained are
as follows. We present the characteristics of accuracy for each method for each property.
Thus, for the cubic compressive strength, MAE varied from 0.46 to 0.62, RMSE from 0.6 to
0.8, and MAPE from 0.98% to 1.30%. For prismatic compressive strength, the accuracy of
the methods was somewhat different: MAE from 0.48 to 0.73, RMSE from 0.62 to 0.89, and
MAPE from 1.33% to 2.11%. For bending tensile strength, the accuracy was MAE from
0.30 to 0.63, RMSE from 0.44 to 0.87, and MAPE from 3.40% to 6.62%. Finally, for axial
tensile strength, MAE was from 0.11 to 0.15, RMSE from 0.15 to 0.17, and MAPE from 2.06%
to 2.49%. Thus, the percentage characteristics of accuracy are very high, and the qualitative
picture of the validity and expediency of using the studied methods of artificial intelligence
in predicting the properties of concrete is quantitatively confirmed. Such high accuracy is
ensured by the accepted large amount of empirical data, in-depth analysis of the results,
and, as a result, the good correlation between artificial intelligence methods and standard
methods for predicting the strength of concrete. Such high-precision characteristics of the
methods are a significant achievement and open further opportunities for the development
of the direction of introducing artificial intelligence methods for predicting the properties
of concrete.

5. Conclusions

The information obtained using the constructed models based on artificial intelligence
methods makes it possible to obtain additional information for controlling and adjusting the
process of preparing highly functional lightweight fiber-reinforced concrete and obtaining a
material with specified strength and density characteristics without additional experiments.

An analysis of the literature data and the results obtained in the course of our own
experiments made it possible to formulate the following main conclusions.
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(1) Deep neural network and ensemble regression trees methods can be applied to determine
the mechanical properties of highly functional lightweight fiber-reinforced concrete.

(2) The developed models are adequate since the distribution of points on the graphs has
no patterns and looks like a random scatter of points around zero. The coefficient of
determination shows values from 0.94 to 0.99, which indicates a high correspondence
of the model to the data.

(3) The ensemble method of regression trees in this implementation demonstrated the
best values of metrics compared to the neural network, since it is a more complex
algorithm in terms of the number of parameters compared to the neural network.
Therefore, the ensemble method of regression trees had more opportunities to adjust
to the data.

(4) The quantitative picture of the accuracy of the applied methods for strength charac-
teristics varies: For the deep neural network method, it was from 0.15 to 0.73 (MAE),
from 0.17 to 0.89 (RMSE), and from 0.98% to 6.62% (MAPE), and for the ensemble of
regression trees, it was from 0.11 to 0.62 (MAE), from 0.15 to 0.80 (RMSE), and from
1.30% to 3.4% (MAPE). Both methods have shown fairly high efficiency in relation to
such a hard-to-predict material as concrete, which is very heterogeneous in structure
and depends on a large number of factors.

(5) The result obtained in the form of a developed neural network for predicting the
properties of lightweight fiber-reinforced concrete allows us to establish the fun-
damental role of the initial factors, namely the amount of fiber and the method of
distribution of fibers in the formation of output parameters—the strength properties
of fiber-reinforced concrete. Thus, with the help of the considered methods of artificial
intelligence, the role of specific recipe-technological factors, which were previously
evaluated only from the point of view of traditional recipes and technology, is re-
vealed. Thus, artificial intelligence methods for building a neural network made it
possible to reveal, establish, and manage this fundamental relationship, strengthening
the role of the control technologist in the formation and prediction of the properties of
specific building materials.

These methods can be easily implemented in the process of development and produc-
tion of unique building materials, since they do not require serious computing resources,
and in the future, based on artificial intelligence, an expert system can be created to sum-
marize all the accumulated experimental data, which can be located in the electronic
environment of the university and provide data to interested workers and researchers
for the development of the industry. Thus, the main goal of the study was achieved: it
was shown that artificial intelligence methods are applicable to this task and have great
potential in determining the mechanical characteristics of unique building materials.

In further studies, we plan to focus on the study of new theoretical and practical
dependencies that arise in the production of fiber-reinforced concrete made from various
components and operated in various conditions, for even greater universalization of the
proposed concept.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15196740/s1, Table S1: The initial data set.
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